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Abstract. G. Hajós proved that if a finite abelian group is a direct product of its cyclic
subsets, then at least one of the factors must be a subgroup. We give a new elementary proof
of this theorem based on the special case for p-groups.
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1 Introduction.

Throughout this paper we will use multiplicative notation in connection with
abelian groups. Let A1, . . . , An be subsets of the finite abelian group G. If the
product A1 · · ·An is direct and is equal to G, then we say that G = A1 · · ·An

is a factorization of G. The subset A of G is called cyclic if there is a prime p
and an element a of G such that |a| the order of a is at least p and

A = {e, a, a2, . . . , ap−1}.

Here e is the identity element of G.

In 1941 G. Hajós proved that if a finite abelian group is factored into cyclic
subsets, then at least one of the factors must be a subgroup.

We say that a subset A of G is periodic with period g if g ∈ G, Ag = A
and g 6= e. Under certain conditions the product of nonperiodic subsets is itself
nonperiodic. This observation suggests a plan to prove Hajós’ theorem. Suppose
that G = A1 · · ·An is a factorization of the finite abelian group G into cyclic
subsets which are not subgroups. From this we can draw two contradictory
conclusions. As A1 is not a subgroup, it follows that A2 · · ·An is periodic. On
the other hand the subsets A2, . . . , An satisfy a conditions that guarantees that
the product A2 · · ·An is not periodic.
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2 Nonperiodic products

Let A and A′ be subsets of G. We say that A is replaceable by A′ if G = AB
is a factorization of G gives rise to a factorization G = A′B of G for each subset
B of G.

The subset A of G is called a PP (“periodicity preventing”) subset if

(i) A = {e, a, a2, . . . , ap−1}, |a| = pα, α ≥ 2

or

(ii) A = {e, a, a2, . . . , ap−2, ap−1d}, |a| = p, |d| = q are distinct primes.

1 Lemma. Suppose that G = AB is a factorization of the finite abelian
group G, where A = {e, a, a2, . . . , ap−1} is a cyclic subset.

(a) Then B = apB and A can be replaced by

A′ = {e, ar, a2r, . . . , a(p−1)r}

for each integer r which is relatively prime to p.

(b) If A is not a subgroup of G, then A can be replaced by a PP subset A∗.

Proof. The fact that G = AB is a factorization is equivalent to that

G = B ∪ aB ∪ a2B ∪ · · · ∪ ap−1B

is a partition of G. Multiplying the factorization G = AB by a we get the
factorization G = Ga = (aA)B and so

G = aB ∪ a2B ∪ · · · ∪ ap−1B ∪ apB

is a partition of G. Comparing the two partitions gives that B = apB. This
implies that if i ≡ j (mod p), then aiB = ajB. As 0, r, 2r, . . . , (p − 1)r is a
permutation of 0, 1, 2, . . . , p− 1 modulo p, it follows that

G = B ∪ arB ∪ a2rB ∪ · · · ∪ a(p−1)rB

is a partition of G and consequently G = A′B is a factorization of G. This
completes the proof of part (a).

In order to prove part (b) assume that A is not a subgroup and write |a| in
the form |a| = pαr, where p is relatively prime to r. Let c = ar and set

C = {e, c, c2, . . . , cp−1}.
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By part (a) A can be replaced by C to get the factorization G = CB.
Clearly |c| = pα and so in the α ≥ 2 case with the A∗ = C choice we are

done. Suppose that α = 1. As A is not a subgroup, there is a prime q such that
q
∣∣ r. Let x = ar/q and set

X = {e, x, x2, . . . , xp−1}.

Now |x| = pq, |c| = p. By part (a), A can be replaced by X. From the factoriza-
tion G = XB by part (a), it follows that B = xpB. Let d = xp. Here |xp| = q.
The factorization G = CB is equivalent to that

G = B ∪ cB ∪ c2B ∪ · · · ∪ cp−2B ∪ cp−1B

is a partition of G. Using B = dB we get that

G = B ∪ cB ∪ c2B ∪ · · · ∪ cp−2B ∪ cp−1dB

is a partition of G. Therefore A is replaceable by

A∗ = {e, c, c2, . . . , cp−2, cp−1d},

where |c| = p, |d| = q are distinct primes. This completes the proof. QED

2 Lemma. Let A, B be subsets and let H be a subgroup of the finite abelian
group G such that

(i) B ⊂ H,

(ii) the elements of A are incongruent modulo H,

(iii) A and B are not periodic,

(iv) A is a PP subset.

If the product AB is direct, then AB is not periodic.

Proof. Let A = {a0, a1, . . . , ap−1}, where ai = ai for 0 ≤ i ≤ p − 2 and
either ap−1 = ap−1 or ap−1 = ap−1d. Since the product AB is direct

AB = a0B ∪ a1B ∪ · · · ∪ ap−1B

is a partition of AB. In order to prove that AB is not periodic assume the con-
trary that AB is periodic with period g. We may assume that |g| = r is a prime.
Since B ⊂ H and since elements of A are incongruent modulo H, it follows
that the sets a0B, a1B, . . . , ap−1B fall into distinct cosets a0H, a1H, . . . , ap−1H
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modulo H. Multiplying all the cosets modulo H by g permutes these cosets.
Hence multiplying the sets a0B, a1B, . . . , ap−1B by g permutes these sets.

There is an i, 0 ≤ i ≤ p−1 such that gaiB = ap−1B. Since B is not periodic,
it follows that g = ap−1a

−1
i . If i = p − 1, then g = e. This is not the case and

so 0 ≤ i ≤ p − 2. Thus ai = ai. If ap−1 = ap−1, then g = ap−1a
−1
i = ap−1−i.

Here 1 ≤ p − 1 − i ≤ p − 1. This leads to the r = |g| = |ap−1−i| = pα, α ≥ 2
contradiction. If ap−1 = ap−1d, then g = ap−1a

−1
i = ap−1−id with 1 ≤ p−1−i ≤

p− 1. This leads to the r = |g| = |ap−1−id| = pq contradiction which completes
the proof. QED

3 Hajós’ theorem

If G is a p-group we can apply [2] pages 157–161. We may assume that G is
not a p-group.

3 Theorem. If G = A1 · · ·An is a factorization of the finite abelian group
G into cyclic subset A1, . . . , An of prime order, then at least one of the factors
must be a subgroup of G.

Proof. We introduce some notations. Let

Ai = {e, ai, a
2
i , . . . , a

pi−1
i }.

and call the number
h(A1, . . . , An) = |a1| · · · |an|

the height of the cyclic subsets A1, . . . , An.
Assume that there is a factorization G = A1 · · ·An of the finite abelian

group G into cyclic subsets such that none of the factors is a subgroup of G.
We assume that n is minimal and for this n the height of the factors is minimal
as well.

Choose a prime divisor p of |G| and consider the factors among A1, . . . , An

whose order is p. Suppose that A1, . . . , Am are these factors. If ai is a p-element
for each i, 1 ≤ i ≤ m, then the direct product A1 · · ·Am is equal to the p-
component of G and so by Lemma 3 of [2] page 160, it follows that one of the
factors is a subgroup of G. This contradiction shows that one of the elements
a1, . . . , am, say a1, is not a p-element. There is a prime divisor r of |a1| such
that r 6= p.

In the factorization G = A1 · · ·An replace A1 by

A′
1 = {e, ar

1, a
2r
1 , . . . , a

(p−1)r
1 }
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to get the factorization G = A′
1A2 · · ·An. Here |ar

1| < |a1| and so

h(A′
1, A2, . . . , An) < h(A1, . . . , An).

The minimality of the height of A1, . . . , An gives that one of the factors A′
1, A2,

. . . , An is a subgroup of G. This is a contradiction unless A′
1 = H1 is a subgroup

of G. Note that G(1) = A
(1)
2 · · ·A

(1)
n is a factorization of the factor group G(1) =

G/H1, where

A
(1)
i = (AiH1)/H1 = {aH1 : a ∈ Ai}.

The minimality of n yields that one of the factors A
(1)
2 , . . . , A

(1)
n , say A

(1)
2 , is

a subgroup of G(1). Hence H1A2 = H2 is a subgroup of G and we get the

factorization G(2) = A
(2)
3 · · ·A

(2)
n of the factor group G(2) = G/H2, where A

(2)
i =

(AiH2)/H2. Repeating this argument leads to the ascending chain of subgroups

H1 = A′
1, H2 = A′

1A2, . . . , Hn = A′
1A2 · · ·An.

By Lemma 1, in the factorizations G = A1A2 · · ·An, Hi = A′
1A2 · · ·Ai,

1 ≤ i ≤ n each factor Aj , 2 ≤ j ≤ n can be replaced by a PP subset A∗
j to get

the factorizations G = A1A
∗
2 · · ·A∗

n and Hi = A′
1A

∗
2 · · ·A∗

i .
The factorization H3 = H2A

∗
3 implies that the elements of A∗

3 are incongru-
ent modulo H2. As A∗

2 ⊂ H2, Lemma 2 is applicable and gives that the product
A∗

2A
∗
3 is not periodic. In a similar way step by step we can conclude that

A∗
2A

∗
3A

∗
4, . . . , A

∗
2 · · ·A∗

n

are not periodic.
On the other hand from the factorization G = A1(A

∗
2 · · ·A∗

n) by Lemma 1, it
follows that A∗

2 · · ·A∗
n is periodic with period ap1

1 . This contradiction completes
the proof. QED



6 S. Szabó
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