Nonperiodic product of subsets and Hajós' theorem

Sándor Szabó
Department of Mathematics
Institute of Mathematics and Informatics, University of Pécs, Ifjúság u. 6. H-7624 Pécs, HUNGARY
sszabo7@hotmail.com

Received: 4/4/1998; accepted: 3/10/2003.

Abstract

G. Hajós proved that if a finite abelian group is a direct product of its cyclic subsets, then at least one of the factors must be a subgroup. We give a new elementary proof of this theorem based on the special case for p-groups.

Keywords: factorization of finite abelian groups, Hajós-Rédei theory.
MSC 2000 classification: 20K01 (primary); 52C22.

1 Introduction.

Throughout this paper we will use multiplicative notation in connection with abelian groups. Let A_{1}, \ldots, A_{n} be subsets of the finite abelian group G. If the product $A_{1} \cdots A_{n}$ is direct and is equal to G, then we say that $G=A_{1} \cdots A_{n}$ is a factorization of G. The subset A of G is called cyclic if there is a prime p and an element a of G such that $|a|$ the order of a is at least p and

$$
A=\left\{e, a, a^{2}, \ldots, a^{p-1}\right\}
$$

Here e is the identity element of G.
In 1941 G. Hajós proved that if a finite abelian group is factored into cyclic subsets, then at least one of the factors must be a subgroup.

We say that a subset A of G is periodic with period g if $g \in G, A g=A$ and $g \neq e$. Under certain conditions the product of nonperiodic subsets is itself nonperiodic. This observation suggests a plan to prove Hajós' theorem. Suppose that $G=A_{1} \cdots A_{n}$ is a factorization of the finite abelian group G into cyclic subsets which are not subgroups. From this we can draw two contradictory conclusions. As A_{1} is not a subgroup, it follows that $A_{2} \cdots A_{n}$ is periodic. On the other hand the subsets A_{2}, \ldots, A_{n} satisfy a conditions that guarantees that the product $A_{2} \cdots A_{n}$ is not periodic.

2 Nonperiodic products

Let A and A^{\prime} be subsets of G. We say that A is replaceable by A^{\prime} if $G=A B$ is a factorization of G gives rise to a factorization $G=A^{\prime} B$ of G for each subset B of G.

The subset A of G is called a PP ("periodicity preventing") subset if
(i) $A=\left\{e, a, a^{2}, \ldots, a^{p-1}\right\},|a|=p^{\alpha}, \alpha \geq 2$
or
(ii) $A=\left\{e, a, a^{2}, \ldots, a^{p-2}, a^{p-1} d\right\},|a|=p,|d|=q$ are distinct primes.

1 Lemma. Suppose that $G=A B$ is a factorization of the finite abelian group G, where $A=\left\{e, a, a^{2}, \ldots, a^{p-1}\right\}$ is a cyclic subset.
(a) Then $B=a^{p} B$ and A can be replaced by

$$
A^{\prime}=\left\{e, a^{r}, a^{2 r}, \ldots, a^{(p-1) r}\right\}
$$

for each integer r which is relatively prime to p.
(b) If A is not a subgroup of G, then A can be replaced by a PP subset A^{*}.

Proof. The fact that $G=A B$ is a factorization is equivalent to that

$$
G=B \cup a B \cup a^{2} B \cup \cdots \cup a^{p-1} B
$$

is a partition of G. Multiplying the factorization $G=A B$ by a we get the factorization $G=G a=(a A) B$ and so

$$
G=a B \cup a^{2} B \cup \cdots \cup a^{p-1} B \cup a^{p} B
$$

is a partition of G. Comparing the two partitions gives that $B=a^{p} B$. This implies that if $i \equiv j(\bmod p)$, then $a^{i} B=a^{j} B$. As $0, r, 2 r, \ldots,(p-1) r$ is a permutation of $0,1,2, \ldots, p-1$ modulo p, it follows that

$$
G=B \cup a^{r} B \cup a^{2 r} B \cup \cdots \cup a^{(p-1) r} B
$$

is a partition of G and consequently $G=A^{\prime} B$ is a factorization of G. This completes the proof of part (a).

In order to prove part (b) assume that A is not a subgroup and write $|a|$ in the form $|a|=p^{\alpha} r$, where p is relatively prime to r. Let $c=a^{r}$ and set

$$
C=\left\{e, c, c^{2}, \ldots, c^{p-1}\right\}
$$

By part (a) A can be replaced by C to get the factorization $G=C B$.
Clearly $|c|=p^{\alpha}$ and so in the $\alpha \geq 2$ case with the $A^{*}=C$ choice we are done. Suppose that $\alpha=1$. As A is not a subgroup, there is a prime q such that $q \mid r$. Let $x=a^{r / q}$ and set

$$
X=\left\{e, x, x^{2}, \ldots, x^{p-1}\right\}
$$

Now $|x|=p q,|c|=p$. By part (a), A can be replaced by X. From the factorization $G=X B$ by part (a), it follows that $B=x^{p} B$. Let $d=x^{p}$. Here $\left|x^{p}\right|=q$. The factorization $G=C B$ is equivalent to that

$$
G=B \cup c B \cup c^{2} B \cup \cdots \cup c^{p-2} B \cup c^{p-1} B
$$

is a partition of G. Using $B=d B$ we get that

$$
G=B \cup c B \cup c^{2} B \cup \cdots \cup c^{p-2} B \cup c^{p-1} d B
$$

is a partition of G. Therefore A is replaceable by

$$
A^{*}=\left\{e, c, c^{2}, \ldots, c^{p-2}, c^{p-1} d\right\}
$$

where $|c|=p,|d|=q$ are distinct primes. This completes the proof.

2 Lemma. Let A, B be subsets and let H be a subgroup of the finite abelian group G such that
(i) $B \subset H$,
(ii) the elements of A are incongruent modulo H,
(iii) A and B are not periodic,
(iv) A is a $P P$ subset.

If the product $A B$ is direct, then $A B$ is not periodic.
Proof. Let $A=\left\{a_{0}, a_{1}, \ldots, a_{p-1}\right\}$, where $a_{i}=a^{i}$ for $0 \leq i \leq p-2$ and either $a_{p-1}=a^{p-1}$ or $a_{p-1}=a^{p-1} d$. Since the product $A B$ is direct

$$
A B=a_{0} B \cup a_{1} B \cup \cdots \cup a_{p-1} B
$$

is a partition of $A B$. In order to prove that $A B$ is not periodic assume the contrary that $A B$ is periodic with period g. We may assume that $|g|=r$ is a prime. Since $B \subset H$ and since elements of A are incongruent modulo H, it follows that the sets $a_{0} B, a_{1} B, \ldots, a_{p-1} B$ fall into distinct cosets $a_{0} H, a_{1} H, \ldots, a_{p-1} H$
modulo H. Multiplying all the cosets modulo H by g permutes these cosets. Hence multiplying the sets $a_{0} B, a_{1} B, \ldots, a_{p-1} B$ by g permutes these sets.

There is an $i, 0 \leq i \leq p-1$ such that $g a_{i} B=a_{p-1} B$. Since B is not periodic, it follows that $g=a_{p-1} a_{i}^{-1}$. If $i=p-1$, then $g=e$. This is not the case and so $0 \leq i \leq p-2$. Thus $a_{i}=a^{i}$. If $a_{p-1}=a^{p-1}$, then $g=a_{p-1} a_{i}^{-1}=a^{p-1-i}$. Here $1 \leq p-1-i \leq p-1$. This leads to the $r=|g|=\left|a^{p-1-i}\right|=p^{\alpha}, \alpha \geq 2$ contradiction. If $a_{p-1}=a^{p-1} d$, then $g=a_{p-1} a_{i}^{-1}=a^{p-1-i} d$ with $1 \leq p-1-i \leq$ $p-1$. This leads to the $r=|g|=\left|a^{p-1-i} d\right|=p q$ contradiction which completes the proof.

3 Hajós' theorem

If G is a p-group we can apply [2] pages $157-161$. We may assume that G is not a p-group.

3 Theorem. If $G=A_{1} \cdots A_{n}$ is a factorization of the finite abelian group G into cyclic subset A_{1}, \ldots, A_{n} of prime order, then at least one of the factors must be a subgroup of G.

Proof. We introduce some notations. Let

$$
A_{i}=\left\{e, a_{i}, a_{i}^{2}, \ldots, a_{i}^{p_{i}-1}\right\} .
$$

and call the number

$$
h\left(A_{1}, \ldots, A_{n}\right)=\left|a_{1}\right| \cdots\left|a_{n}\right|
$$

the height of the cyclic subsets A_{1}, \ldots, A_{n}.
Assume that there is a factorization $G=A_{1} \cdots A_{n}$ of the finite abelian group G into cyclic subsets such that none of the factors is a subgroup of G. We assume that n is minimal and for this n the height of the factors is minimal as well.

Choose a prime divisor p of $|G|$ and consider the factors among A_{1}, \ldots, A_{n} whose order is p. Suppose that A_{1}, \ldots, A_{m} are these factors. If a_{i} is a p-element for each $i, 1 \leq i \leq m$, then the direct product $A_{1} \cdots A_{m}$ is equal to the p component of G and so by Lemma 3 of [2] page 160, it follows that one of the factors is a subgroup of G. This contradiction shows that one of the elements a_{1}, \ldots, a_{m}, say a_{1}, is not a p-element. There is a prime divisor r of $\left|a_{1}\right|$ such that $r \neq p$.

In the factorization $G=A_{1} \cdots A_{n}$ replace A_{1} by

$$
A_{1}^{\prime}=\left\{e, a_{1}^{r}, a_{1}^{2 r}, \ldots, a_{1}^{(p-1) r}\right\}
$$

to get the factorization $G=A_{1}^{\prime} A_{2} \cdots A_{n}$. Here $\left|a_{1}^{r}\right|<\left|a_{1}\right|$ and so

$$
h\left(A_{1}^{\prime}, A_{2}, \ldots, A_{n}\right)<h\left(A_{1}, \ldots, A_{n}\right)
$$

The minimality of the height of A_{1}, \ldots, A_{n} gives that one of the factors A_{1}^{\prime}, A_{2}, \ldots, A_{n} is a subgroup of G. This is a contradiction unless $A_{1}^{\prime}=H_{1}$ is a subgroup of G. Note that $G^{(1)}=A_{2}^{(1)} \cdots A_{n}^{(1)}$ is a factorization of the factor group $G^{(1)}=$ G / H_{1}, where

$$
A_{i}^{(1)}=\left(A_{i} H_{1}\right) / H_{1}=\left\{a H_{1}: a \in A_{i}\right\}
$$

The minimality of n yields that one of the factors $A_{2}^{(1)}, \ldots, A_{n}^{(1)}$, say $A_{2}^{(1)}$, is a subgroup of $G^{(1)}$. Hence $H_{1} A_{2}=H_{2}$ is a subgroup of G and we get the factorization $G^{(2)}=A_{3}^{(2)} \cdots A_{n}^{(2)}$ of the factor group $G^{(2)}=G / H_{2}$, where $A_{i}^{(2)}=$ $\left(A_{i} H_{2}\right) / H_{2}$. Repeating this argument leads to the ascending chain of subgroups

$$
H_{1}=A_{1}^{\prime}, \quad H_{2}=A_{1}^{\prime} A_{2}, \ldots, H_{n}=A_{1}^{\prime} A_{2} \cdots A_{n}
$$

By Lemma 1, in the factorizations $G=A_{1} A_{2} \cdots A_{n}, H_{i}=A_{1}^{\prime} A_{2} \cdots A_{i}$, $1 \leq i \leq n$ each factor $A_{j}, 2 \leq j \leq n$ can be replaced by a PP subset A_{j}^{*} to get the factorizations $G=A_{1} A_{2}^{*} \cdots A_{n}^{*}$ and $H_{i}=A_{1}^{\prime} A_{2}^{*} \cdots A_{i}^{*}$.

The factorization $H_{3}=H_{2} A_{3}^{*}$ implies that the elements of A_{3}^{*} are incongruent modulo H_{2}. As $A_{2}^{*} \subset H_{2}$, Lemma 2 is applicable and gives that the product $A_{2}^{*} A_{3}^{*}$ is not periodic. In a similar way step by step we can conclude that

$$
A_{2}^{*} A_{3}^{*} A_{4}^{*}, \ldots, A_{2}^{*} \cdots A_{n}^{*}
$$

are not periodic.
On the other hand from the factorization $G=A_{1}\left(A_{2}^{*} \cdots A_{n}^{*}\right)$ by Lemma 1 , it follows that $A_{2}^{*} \cdots A_{n}^{*}$ is periodic with period $a_{1}^{p_{1}}$. This contradiction completes the proof.

References

[1] G. Hajós: Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelngitter, Math. Z. 47 (1983), 427-467.
[2] S. Stein, S. Szabó: Algebra and Tiling, Carus Mathematical Monograph, No. 25, MAA, 1994.

