An absolutely continuous function whose inverse function is not absolutely continuous

Silvia Spătaru

Academy of Economical Studies, Department of Economics Cybernetics, Mathematics Chair, Calea Dorobanti 15-17, 71131 Bucharest, ROMANIA
aspataru@pcnet.ro

Received: 16/12/2003; accepted: 30/4/2004.
Abstract. We construct a strictly increasing function $f:[0,1] \rightarrow[0,1]$ such that $f(0)=0$, $f(1)=1, f$ is absolutely continuous, and f^{-1} is not absolutely continuous. Functions of this type are very scarce in the literature.

Keywords: absolutely continuous functions, Cantor functions.
MSC 2000 classification: 26A46 (primary), 26A30.

1 Introduction

Throughout this paper, λ denotes the Lebesgue measure on the real line \mathbb{R}, and "a.e." means " λ-almost everywhere". We recall that a function $f:[a, b] \longrightarrow$ \mathbb{R} is said to be absolutely continuous if for each $\varepsilon>0$ there exists $\delta>0$ such that $\sum_{i=1}^{n}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|<\varepsilon$ whenever $] a_{1}, b_{1}[, \ldots] a_{n}, b_{n}[$ are pairwise disjoint subintervals of $[a, b]$ for which $\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)<\delta$. It turns out that any absolutely continuous function f on $[a, b]$ is continuous, and has a finite derivative f^{\prime} on $[a, b]$. Moreover,

$$
\begin{equation*}
f(x)-f(a)=\int_{a}^{x} f^{\prime}(t) \mathrm{d} t, \quad x \in[a, b] . \tag{1}
\end{equation*}
$$

The purpose of this note is to construct a strictly increasing function f : $[0,1] \longrightarrow[0,1]$ such that $f(0)=0, f(1)=1, f$ is absolutely continuous, and the inverse function f^{-1} is not absolutely continuous. To do this, we need the following standard result due to M. A. Zareckii (see, e.g., [1]).

Theorem. Let $f:[a, b] \longrightarrow[c, d]$ be a strictly increasing function that maps $[a, b]$ onto $[c, d]$. Then the following hold:
(i) f is absolutely continuous if and only if $\lambda\left(f\left(\left\{x: f^{\prime}(x)=\infty\right\}\right)\right)=0$;
(ii) f^{-1} is absolutely continuous if and only if $\lambda\left(\left\{x: f^{\prime}(x)=0\right\}\right)=0$.

2 The construction

First, we construct a Cantor-like set $B \subset[0,1]$ as follows. Remove an open interval I_{11} of length $\alpha<1 / 3$ from the center of $[0,1]$. This leaves 2 disjoint closed intervals J_{11} and J_{12} each having length $<1 / 2$. This completes the first stage of the construction. If the n-th step of the construction has been completed, leaving 2^{n} disjoint close intervals $J_{n 1}, \ldots, J_{n 2^{n}}$ (numbered from left to right), each of length $<1 / 2^{n}$, we perform the $(n+1)$-st step by removing an open interval $I_{n+1, k}$ of length α^{n+1} from the center of $J_{n k}, 1 \leq k \leq 2^{n}$. This leaves 2^{n+1} closed intervals $J_{n+1,1}, \ldots, J_{n+1,2^{n+1}}$ each of length $<1 / 2^{n+1}$. Denote $A_{n}=\bigcup_{k=1}^{2^{n-1}} I_{n k}$, $n \geq 1, A=\bigcup_{n \geq 1} A_{n}$, and $B=[0,1]-A$. We have $\lambda\left(A_{n}\right)=2^{n-1} \alpha^{n}, n \geq 1$, and so

$$
\lambda(A)=\sum_{n \geq 1} \lambda\left(A_{n}\right)=\frac{\alpha}{1-2 \alpha}<1 .
$$

Therefore, the Cantor-like set B has positive Lebesgue measure.
Further, we define recursively a sequence $\left(f_{n}\right)$ of continuous, piecewise linear, strictly increasing functions on $[0,1]\left(f_{n}(0)=0, f_{n}(1)=1\right)$ by way of the next algorithm:
(a) Set $J_{n 1}=\left[0, a_{n}\right]$. The graph of f_{n} on $J_{n 1}$ is the straight line joining the points $(0,0)$ and $\left(a_{n}, \alpha^{n}\right)$, and the graph of f_{n} on $I_{n 1}$ is the straight line joining the points $\left(a_{n}, \alpha^{n}\right)$ and $\left(a_{n}+\alpha^{n}, \alpha^{n}+\alpha^{n} / \lambda(A)\right)$;
(b) For $1 \leq m \leq n$, define

$$
f_{n}\left(a_{m}+\alpha^{m}+x\right)=\alpha^{m}+\frac{\alpha^{m}}{\lambda(A)}+f_{n}(x), \quad x \in J_{m 2},
$$

i.e. the graph of f_{n} on $J_{m 2}$ is a translation of the graph of f_{n} on $J_{m 1}$;
(c) For $1 \leq m<n, f_{n}=f_{m}$ on $I_{m 1}$.

Notice that the graph of f_{n} is symmetric about the center of the square $[0,1] \times[0,1]$. For any $n \geq 1$, on account of (b) and (c), we have

$$
\begin{equation*}
f_{n+1}(x)=f_{n}(x), \quad x \in \bigcup_{m=1}^{n} A_{m} \tag{2}
\end{equation*}
$$

and so, for each $p \geq 1$,

$$
\begin{equation*}
f_{n+p}(x)=f_{n}(x), \quad x \in \bigcup_{m=1}^{n} A_{m} . \tag{3}
\end{equation*}
$$

From (a), (b) and (2), we see that

$$
\left|f_{n+1}-f_{n}\right|<\alpha^{n}, \quad n \geq 1
$$

and so $\left(f_{n}\right)$ is a Cauchy sequence of continuous, strictly increasing functions. Thus there exists a continuous, nondecreasing function $f:[0,1] \longrightarrow[0,1]$ such that $\left(f_{n}\right)$ converges uniformly to $f(f(0)=0, f(1)=1)$. For any $n \geq 1$, upon letting $p \rightarrow \infty$ in (3), we get

$$
\begin{equation*}
f(x)=f_{n}(x), \quad x \in \bigcup_{m=1}^{n} A_{m} \tag{4}
\end{equation*}
$$

As each f_{n} is strictly increasing, (4) implies that $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}, x_{2} \in A$ and $x_{1}<x_{2}$. Actually f is strictly increasing. For, if $x, x^{\prime} \in[0,1]$ and $x<x^{\prime}$, then exists $\left[x_{1}, x_{2}\right] \subset A$ such that $x \leq x_{1}<x_{2} \leq x^{\prime}$.

Finally, we show that f is absolutely continuous, while f^{-1} is not absolutely continuous. Whatever $n \geq 1$, in view of (a) and (b), we have

$$
\lambda\left(f_{n}\left(I_{n k}\right)\right)=\lambda\left(f_{n}\left(I_{n 1}\right)\right)=\frac{\alpha^{n}}{\lambda(A)}, \quad 1 \leq k \leq 2^{n-1}
$$

and so

$$
\lambda\left(f_{n}\left(A_{n}\right)\right)=\sum_{k=1}^{2^{n-1}} \lambda\left(f_{n}\left(I_{n k}\right)\right)=\frac{2^{n-1} \alpha^{n}}{\lambda(A)} .
$$

Therefore, applying (4), we obtain

$$
\begin{equation*}
\lambda(f(A))=\sum_{n \geq 1} \lambda\left(f_{n}\left(A_{n}\right)\right)=\frac{1}{\lambda(A)} \sum_{n \geq 1} 2^{n-1} \alpha^{n}=1 . \tag{5}
\end{equation*}
$$

On the other hand, for each $n \geq 1$, we have

$$
f_{n}^{\prime}(x)=\frac{1}{\lambda(A)}, \quad x \in A_{n},
$$

and so

$$
\begin{equation*}
f^{\prime}(x)=\frac{1}{\lambda(A)}, \quad x \in A \tag{6}
\end{equation*}
$$

From (5), (6) and part (i) of Zareckii's theorem, it follows that f is absolutely continuous. Consequently, in view of (1) and (6), we may write

$$
1=\int_{0}^{1} f^{\prime}(x) \mathrm{d} x=\int_{A} f^{\prime}(x) \mathrm{d} x+\int_{B} f^{\prime}(x) \mathrm{d} x=1+\int_{B} f^{\prime}(x) \mathrm{d} x,
$$

and so $f^{\prime}=0$ a.e. on B. As $\lambda(B)>0$, part (ii) of Zareckii's theorem shows that f^{-1} is not absolutely continuous.

References

[1] P. I. NATANSON: Theory of Functions of a Real Variable, Ungar, New York, 1955.

