Note di Matematica 23, n. 1, 2004, 47–49.

An absolutely continuous function whose inverse function is not absolutely continuous

Silvia Spătaru

Academy of Economical Studies, Department of Economics Cybernetics, Mathematics Chair, Calea Dorobanti 15-17, 71131 Bucharest, ROMANIA aspataru@pcnet.ro

Received: 16/12/2003; accepted: 30/4/2004.

Abstract. We construct a strictly increasing function $f: [0,1] \rightarrow [0,1]$ such that f(0) = 0, f(1) = 1, f is absolutely continuous, and f^{-1} is not absolutely continuous. Functions of this type are very scarce in the literature.

Keywords: absolutely continuous functions, Cantor functions.

MSC 2000 classification: 26A46 (primary), 26A30.

1 Introduction

Throughout this paper, λ denotes the Lebesgue measure on the real line \mathbb{R} , and "a.e." means " λ -almost everywhere". We recall that a function $f : [a, b] \longrightarrow \mathbb{R}$ is said to be *absolutely continuous* if for each $\varepsilon > 0$ there exists $\delta > 0$ such that $\sum_{i=1}^{n} |f(b_i) - f(a_i)| < \varepsilon$ whenever $|a_1, b_1[, \ldots]a_n, b_n[$ are pairwise disjoint subintervals of [a, b] for which $\sum_{i=1}^{n} (b_i - a_i) < \delta$. It turns out that any absolutely continuous function f on [a, b] is continuous, and has a finite derivative f' on [a, b]. Moreover,

$$f(x) - f(a) = \int_{a}^{x} f'(t) dt, \quad x \in [a, b].$$
 (1)

The purpose of this note is to construct a strictly increasing function f: $[0,1] \longrightarrow [0,1]$ such that f(0) = 0, f(1) = 1, f is absolutely continuous, and the inverse function f^{-1} is not absolutely continuous. To do this, we need the following standard result due to M. A. Zareckii (see, e.g., [1]).

Theorem. Let $f : [a, b] \longrightarrow [c, d]$ be a strictly increasing function that maps [a, b] onto [c, d]. Then the following hold:

- (i) f is absolutely continuous if and only if $\lambda(f(\{x : f'(x) = \infty\})) = 0;$
- (ii) f^{-1} is absolutely continuous if and only if $\lambda(\{x : f'(x) = 0\}) = 0$.

2 The construction

First, we construct a Cantor-like set $B \subset [0, 1]$ as follows. Remove an open interval I_{11} of length $\alpha < 1/3$ from the center of [0, 1]. This leaves 2 disjoint closed intervals J_{11} and J_{12} each having length < 1/2. This completes the first stage of the construction. If the *n*-th step of the construction has been completed, leaving 2^n disjoint close intervals J_{n1}, \ldots, J_{n2^n} (numbered from left to right), each of length $< 1/2^n$, we perform the (n + 1)-st step by removing an open interval $I_{n+1,k}$ of length α^{n+1} from the center of J_{nk} , $1 \le k \le 2^n$. This leaves 2^{n+1} closed intervals $J_{n+1,1}, \ldots, J_{n+1,2^{n+1}}$ each of length $< 1/2^{n+1}$. Denote $A_n = \bigcup_{k=1}^{2^{n-1}} I_{nk}$, $n \ge 1$, $A = \bigcup_{n\ge 1} A_n$, and B = [0, 1] - A. We have $\lambda(A_n) = 2^{n-1}\alpha^n$, $n \ge 1$, and so

$$\lambda(A) = \sum_{n \ge 1} \lambda(A_n) = \frac{\alpha}{1 - 2\alpha} < 1.$$

Therefore, the Cantor-like set B has positive Lebesgue measure.

Further, we define recursively a sequence (f_n) of continuous, piecewise linear, strictly increasing functions on [0,1] $(f_n(0) = 0, f_n(1) = 1)$ by way of the next algorithm:

(a) Set $J_{n1} = [0, a_n]$. The graph of f_n on J_{n1} is the straight line joining the points (0, 0) and (a_n, α^n) , and the graph of f_n on I_{n1} is the straight line joining the points (a_n, α^n) and $(a_n + \alpha^n, \alpha^n + \alpha^n/\lambda(A))$;

(b) For $1 \le m \le n$, define

$$f_n(a_m + \alpha^m + x) = \alpha^m + \frac{\alpha^m}{\lambda(A)} + f_n(x), \qquad x \in J_{m2},$$

i.e. the graph of f_n on J_{m2} is a translation of the graph of f_n on J_{m1} ;

(c) For $1 \le m < n$, $f_n = f_m$ on I_{m1} .

Notice that the graph of f_n is symmetric about the center of the square $[0,1] \times [0,1]$. For any $n \ge 1$, on account of (b) and (c), we have

$$f_{n+1}(x) = f_n(x), \qquad x \in \bigcup_{m=1}^n A_m, \tag{2}$$

and so, for each $p \ge 1$,

$$f_{n+p}(x) = f_n(x), \qquad x \in \bigcup_{m=1}^n A_m.$$
(3)

From (a), (b) and (2), we see that

$$|f_{n+1} - f_n| < \alpha^n, \qquad n \ge 1,$$

On an absolutely continuous function

and so (f_n) is a Cauchy sequence of continuous, strictly increasing functions. Thus there exists a continuous, nondecreasing function $f : [0, 1] \longrightarrow [0, 1]$ such that (f_n) converges uniformly to f (f(0) = 0, f(1) = 1). For any $n \ge 1$, upon letting $p \to \infty$ in (3), we get

$$f(x) = f_n(x), \qquad x \in \bigcup_{m=1}^n A_m.$$
(4)

As each f_n is strictly increasing, (4) implies that $f(x_1) < f(x_2)$ whenever $x_1, x_2 \in A$ and $x_1 < x_2$. Actually f is strictly increasing. For, if $x, x' \in [0, 1]$ and x < x', then exists $[x_1, x_2] \subset A$ such that $x \le x_1 < x_2 \le x'$.

Finally, we show that f is absolutely continuous, while f^{-1} is not absolutely continuous. Whatever $n \ge 1$, in view of (a) and (b), we have

$$\lambda\left(f_n\left(I_{nk}\right)\right) = \lambda\left(f_n\left(I_{n1}\right)\right) = \frac{\alpha^n}{\lambda(A)}, \qquad 1 \le k \le 2^{n-1},$$

and so

$$\lambda\left(f_{n}\left(A_{n}\right)\right) = \sum_{k=1}^{2^{n-1}} \lambda\left(f_{n}\left(I_{nk}\right)\right) = \frac{2^{n-1}\alpha^{n}}{\lambda\left(A\right)}.$$

Therefore, applying (4), we obtain

$$\lambda(f(A)) = \sum_{n \ge 1} \lambda(f_n(A_n)) = \frac{1}{\lambda(A)} \sum_{n \ge 1} 2^{n-1} \alpha^n = 1.$$
 (5)

On the other hand, for each $n \ge 1$, we have

$$f'_{n}(x) = \frac{1}{\lambda(A)}, \qquad x \in A_{n},$$

and so

$$f'(x) = \frac{1}{\lambda(A)}, \qquad x \in A.$$
(6)

From (5), (6) and part (i) of Zareckii's theorem, it follows that f is absolutely continuous. Consequently, in view of (1) and (6), we may write

$$1 = \int_0^1 f'(x) \, \mathrm{d}x = \int_A f'(x) \, \mathrm{d}x + \int_B f'(x) \, \mathrm{d}x = 1 + \int_B f'(x) \, \mathrm{d}x,$$

and so f' = 0 a.e. on B. As $\lambda(B) > 0$, part (ii) of Zareckii's theorem shows that f^{-1} is not absolutely continuous.

References

[1] P. I. NATANSON: Theory of Functions of a Real Variable, Ungar, New York, 1955.