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Abstract. We construct a strictly increasing function f : [0, 1] → [0, 1] such that f(0) = 0,
f(1) = 1, f is absolutely continuous, and f−1 is not absolutely continuous. Functions of this
type are very scarce in the literature.
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1 Introduction

Throughout this paper, λ denotes the Lebesgue measure on the real line R,
and ”a.e.” means ”λ-almost everywhere”. We recall that a function f : [a, b] −→
R is said to be absolutely continuous if for each ε > 0 there exists δ > 0 such
that

∑n
i=1 |f(bi)− f(ai)| < ε whenever ]a1,b1[, . . .]an, bn[ are pairwise disjoint

subintervals of [a, b] for which
∑n

i=1(bi−ai) < δ. It turns out that any absolutely
continuous function f on [a, b] is continuous, and has a finite derivative f ′ on
[a, b]. Moreover,

f(x)− f(a) =

∫ x

a
f ′(t)dt, x ∈ [a, b]. (1)

The purpose of this note is to construct a strictly increasing function f :
[0, 1] −→ [0, 1] such that f(0) = 0, f(1) = 1, f is absolutely continuous, and
the inverse function f−1 is not absolutely continuous. To do this, we need the
following standard result due to M. A. Zareckii (see, e.g., [1]).

Theorem. Let f : [a, b] −→ [c, d] be a strictly increasing function that maps
[a, b] onto [c, d]. Then the following hold:

(i) f is absolutely continuous if and only if λ(f({x : f ′(x) =∞})) = 0;

(ii) f−1 is absolutely continuous if and only if λ({x : f ′(x) = 0}) = 0.
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2 The construction

First, we construct a Cantor-like set B ⊂ [0, 1] as follows. Remove an open in-
terval I11 of length α < 1/3 from the center of [0, 1]. This leaves 2 disjoint closed
intervals J11 and J12 each having length < 1/2. This completes the first stage of
the construction. If the n-th step of the construction has been completed, leav-
ing 2n disjoint close intervals Jn1, . . . , Jn2n (numbered from left to right), each
of length < 1/2n, we perform the (n + 1)-st step by removing an open interval
In+1,k of length αn+1 from the center of Jnk, 1 ≤ k ≤ 2n. This leaves 2n+1 closed

intervals Jn+1,1, . . . , Jn+1,2n+1 each of length < 1/2n+1. Denote An =
2n−1⋃
k=1

Ink,

n ≥ 1, A =
⋃

n≥1 An, and B = [0, 1]−A. We have λ(An) = 2n−1αn, n ≥ 1, and
so

λ(A) =
∑

n≥1

λ(An) =
α

1− 2α
< 1.

Therefore, the Cantor-like set B has positive Lebesgue measure.
Further, we define recursively a sequence (fn) of continuous, piecewise linear,

strictly increasing functions on [0, 1] (fn(0) = 0, fn (1) = 1) by way of the next
algorithm:

(a) Set Jn1 = [0, an]. The graph of fn on Jn1 is the straight line joining the
points (0, 0) and (an, αn) , and the graph of fn on In1 is the straight line joining
the points (an, αn) and (an + αn, αn + αn/λ(A));

(b) For 1 ≤ m ≤ n, define

fn (am + αm + x) = αm +
αm

λ(A)
+ fn(x), x ∈ Jm2,

i.e. the graph of fn on Jm2 is a translation of the graph of fn on Jm1;
(c) For 1 ≤ m < n, fn = fm on Im1.
Notice that the graph of fn is symmetric about the center of the square

[0, 1]× [0, 1]. For any n ≥ 1, on account of (b) and (c), we have

fn+1(x) = fn (x) , x ∈
n⋃

m=1

Am, (2)

and so, for each p ≥ 1,

fn+p(x) = fn (x) , x ∈
n⋃

m=1

Am. (3)

From (a), (b) and (2), we see that

|fn+1 − fn| < αn, n ≥ 1,
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and so (fn) is a Cauchy sequence of continuous, strictly increasing functions.
Thus there exists a continuous, nondecreasing function f : [0, 1] −→ [0, 1] such
that (fn) converges uniformly to f (f (0) = 0, f (1) = 1). For any n ≥ 1, upon
letting p→∞ in (3), we get

f(x) = fn (x) , x ∈
n⋃

m=1

Am. (4)

As each fn is strictly increasing, (4) implies that f (x1) < f (x2) whenever
x1, x2 ∈ A and x1 < x2. Actually f is strictly increasing. For, if x, x′ ∈ [0, 1]
and x < x′, then exists [x1, x2] ⊂ A such that x ≤ x1 < x2 ≤ x′.

Finally, we show that f is absolutely continuous, while f−1 is not absolutely
continuous. Whatever n ≥ 1, in view of (a) and (b), we have

λ (fn (Ink)) = λ (fn (In1)) =
αn

λ(A)
, 1 ≤ k ≤ 2n−1,

and so

λ (fn (An)) =
2n−1∑

k=1

λ (fn (Ink)) =
2n−1αn

λ (A)
.

Therefore, applying (4), we obtain

λ (f (A)) =
∑

n≥1

λ (fn (An)) =
1

λ (A)

∑

n≥1

2n−1αn = 1. (5)

On the other hand, for each n ≥ 1, we have

f ′
n (x) =

1

λ (A)
, x ∈ An,

and so

f ′ (x) =
1

λ (A)
, x ∈ A. (6)

From (5), (6) and part (i) of Zareckii’s theorem, it follows that f is absolutely
continuous. Consequently, in view of (1) and (6), we may write

1 =

∫ 1

0
f ′ (x) dx =

∫

A
f ′ (x) dx +

∫

B
f ′ (x) dx = 1 +

∫

B
f ′ (x) dx,

and so f ′ = 0 a.e. on B. As λ (B) > 0, part (ii) of Zareckii’s theorem shows that
f−1 is not absolutely continuous.
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