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Abstract. In this article, we investigate the inequality between the warping function of a
warped product submanifold isometrically immersed in locally conformal almost cosymplectic
manifold of pointwise constant ϕ-sectional curvature and the squared mean curvature. Fur-
thermore, some applications are derived.
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Introduction

Let M1 and M2 be Riemannian manifolds of positive dimension n1 and n2,
equipped with Riemannian metrics g1 and g2, respectively. Let f be a positive
function on M1. The warped product M1 ×f M2 is defined to be the product
manifold M1 ×M2 with the warped metric: g = g1 + f2g2 (see [3]).

It is well-known that the notion of warped products plays some important
role in differential geometry as well as in physics. For a recent survey on warped
products as Riemannian submanifolds, we refer to [3].

Let x : M1×f M2 −→ M̃(c) be an isometric immersion of a warped product
M1×f M2 into a Riemannian manifold M̃(c) with constant sectional curvature c.
We denote by h the second fundamental form of x and Hi = 1

ni
trace hi, where

trace hi is the trace of h restricted to Mi. We call Hi ( i = 1, 2) the partial
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mean curvature vectors. The immersion x is said to be mixed totally geodesic if
h(X, Z) = 0 for any vector fields X and Z tangent to M1 and M2, respectively.

Recently, in [4] B.-Y. Chen established the following sharp relationship be-
tween the warping function f of a warped product M1 ×f M2 isometrically
immersed in a real space form M̃(c) and the squared mean curvature ||H||2:

1 Theorem ([4]). Let x : M1×f M2 −→ M̃(c) be an isometric immersion of
a warped product into a Riemannian m-manifold of constant sectional curvature
c. Then, we have

∆f

f
≤ (n1 + n2)

2

4n2
||H||2 + n1c, (1)

where ∆ is the Laplacian operator of M1.

As an immediate application, he obtained necessary conditions for a warped
product to admit a minimal isometric immersion in a Euclidean space or in a
real space form.

On the other hand, for the above related researches B.-Y. Chen investigated
the inequality (1) of a warped product submanifold into complex hyperbolic
space [7] and complex projective space form ([5]). Also, K. Matsumoto and I.
Mihai ([9]) studied the inequality (1) of a warped product submanifold into
Sasakian space form of constant ϕ-sectional curvature, and the first author and
Y. H. Kim ([7]) studied the inequality (1) of a totally real warped product
submanifold into locally conformal Kaehler space form.

In this paper, we prove a similar inequality for warped product submani-
folds of locally conformal almost cosymplectic manifold of pointwise constant
ϕ-sectional curvature c.

1 Preliminaries

Let M̃ be a (2m+1)-dimensional almost contact manifold with almost con-
tact structure (ϕ, ξ, η), i.e., a global vector field ξ, a (1, 1) tensor field ϕ and a
1-form η on M̃ such that ϕ2X = −X + η(X)ξ, η(ξ) = 1 for any vector field
X on M̃ . We consider a product manifold M̃ × R, where R denote a real line.
Then a vector field on M̃ × R is given by (X, λ d

dt), where X is a vector field

tangent to M̃ , t the coordinate of R and λ a function on M̃ × R. We define a
linear map J on the tangent space of M̃ ×R by J(X, λ d

dt) = (ϕX−λξ, η(X) d
dt).

Then we have J2 = −I and hence J is an almost complex structure on M̃ ×R.
The manifold M̃ is said to be normal ([1]) if the almost complex structure J is
integrable ( i.e., J arises from a complex structure on M̃ × R). The condition
for being normal is equivalent to vanishing of the torsion tensor [ϕ, ϕ]+2dη⊗ ξ,
where [ϕ, ϕ] is the Nijenhuis tensor of ϕ. Let g be a Riemannian metric on M̃
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compatible with (ϕ, ξ, η), that is, g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ) for any
vector fields X and Y tangent to M̃ . Thus, the manifold M̃ is almost contact
metric, and (ϕ, ξ, η, g) is its almost contact metric structure. Clearly, we have
η(X) = g(X, ξ) for any vector field X tangent to M̃ . Let Φ denote the funda-
mental 2-form of M̃ defined by Φ(X, Y ) = g(ϕX, Y ) for any vector fields X
and Y tangent to M̃ . The manifold M̃ is said to be almost cosymplectic if the
forms η and Φ are closed, i.e., dη = 0 and dΦ = 0, where d is the operator of
exterior differentiation. If M̃ is almost cosymplectic and normal, then it is called
cosymplectic ([1]). It is well know that the almost contact metric manifold is
cosymplectic if and only if ∇̃ϕ vanishes identically, where ∇̃ is the Levi-Civita
connection on M̃ . An almost contact metric manifold M̃ is called a locally con-
formal almost cosymplectic manifold ([12]) if there exists a 1-form ω such that
dΦ = 2ω ∧ Φ, dη = ω ∧ η and dω = 0.

A necessary and sufficient condition for a structure to be normal locally
conformal almost cosympletic is ([10])

(∇̃Xϕ)Y = u(g(ϕX, Y )ξ − η(Y )ϕX), (2)

where ω = uη. From formula (2) it follows that ∇̃Xξ = u(X − η(X)ξ).

A plane section σ in TpM̃ of an almost contact structure manifold M̃ is
called a ϕ-section if σ ⊥ ξ and ϕ(σ) = σ. M̃ is of pointwise constant ϕ-sectional
curvature if at each point p ∈ M̃ , the section curvature K̃(σ) does not depend
on the choice of the ϕ-section σ of TpM̃ , and in this case for p ∈ M̃ and for
any ϕ-section σ of TpM̃ , the function c defined by c(p) = K̃(σ) is called the
ϕ-sectional curvature of M̃ . A locally conformal almost cosymplectic manifolds
M̃ of dimension ≥ 5 is of pointwise constant ϕ-sectional curvature if and only
if its curvature tensor R̃ is of the form ([12])

R̃(X, Y, W, Z) =
c− 3u2

4
{g(X, W )g(Y, Z)− g(X, Z)g(Y, W )}

+
c + u2

4
{g(X, ϕW )g(Y, ϕZ)− g(X, ϕZ)g(Y, ϕW )

− 2g(X, ϕY )g(Z, ϕW )}

−
(

c + u2

4
+ u′

)
{g(X, W )η(Y )η(Z)− g(X, Z)η(Y )η(W )

+ g(Y, Z)η(X)η(W )− g(Y, W )η(X)η(Z)}
+ g(h(X, W ), h(Y, Z))− g(h(X, Z), h(Y, W )),

(3)

where u is the function such that ω = uη, u′ = ξu, and c is the pointwise
constant ϕ-sectional curvature of M̃ .
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Let M be an n-dimensional submanifold immersed in a locally conformal
almost cosymplectic manifold M̃ . Let ∇ be the induced Levi-Civita connection
of M . Then the Gauss and Weingarten formulas given respectively by

∇̃XY = ∇XY + h(X, Y ),

∇̃XV = −AV X + DXV

for vector fields X, Y tangent to M and a vector field V normal to M , where
h denotes the second fundamental form, D the normal connection and AV the
shape operator in the direction of V . The second fundamental form and the
shape operator are related by

g(h(X, Y ), V ) = g(AV X, Y ).

We also use g for the induced Riemannian metric on M as well as the locally
conformal almost cosymplectic manifold M̃ .

For any vector X tangent to M we put ϕX = PX + FX, where PX and
FX are the tangential and the normal components of ϕX, respectively. Given
an orthonormal basis {e1, . . . , en} of M , we define the squared norm of P by

||P ||2 =
n∑

i,j=1

g2(Pei, ej) (4)

and the mean curvature vector H(p) at p ∈M is given by H = 1
n

∑n
i=1 h(ei, ei).

We put

hr
ij = g(h(ei, ej), er) and ||h||2 =

n∑

i,j=1

g(h(ei, ej), h(ei, ej))

where {en+1, . . . , e2m+1} is an orthonormal basis of T⊥
p M and r = n+1, . . . , 2m+

1.

A submanifold M is totally geodesic in M̃ if h = 0, and minimal if H = 0.

On the other hand, M is said to be a totally real submanifold if P is identi-
cally zero, that is, ϕX ∈ T⊥

p M for any X ∈ TpM, p ∈M .

For an n-dimensional Riemannian manifold M , we denote by K(π) the sec-
tional curvature of M associated with a plane section π ⊂ TpM, p ∈M . For any
orthornormal basis e1, . . . , en of the tangent space TpM , the scalar curvature τ
at p is defined by to be

τ(p) =
∑

i<j

K(ei ∧ ej). (5)
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2 Some inequality for warped product submanifolds

We give the following lemma for later use.

2 Lemma ([2]). Let a1, . . . , an, an+1 be n + 1 (n ≥ 2) real numbers such
that (

n∑

i=1

ai

)2

= (n− 1)

(
n∑

i=1

a2
i + an+1

)
.

Then, 2a1a2 ≥ an+1, with the equality holding if and only if a1 + a2 = a3 =
· · · = an.

We investigate warped product submanifolds tangent to the structure vector
field ξ in a locally conformal almost cosymplectic manifold M̃(c).

3 Theorem. Let x : M1 ×f M2 −→ M̃(c) be an isometric immersion of an
n-dimensional warped product into a (2m+1)-dimensional locally conformal al-
most cosymplectic manifold of pointwise constant ϕ-sectional curvature c whose
structure vector field ξ is tangent to M1. Then, we have

∆f

f
≤ n2

4n2
||H||2 +

c− 3u2

4
n1 −

(
c + u2

4
+ u′

)
+

3(c + u2)

4
, (6)

where ni = dimMi, i = 1, 2, and ∆ is the Laplacian operator of M1.

Proof. Let M1 ×f M2 be a warped product submanifold of a locally con-
formal almost cosymplectic manifold M̃(c) with pointwise constant ϕ-sectional
curvature c whose structure vector field ξ is tangent to M1. Since M1 ×f M2 is
a warped product, it is easily seen that

∇XZ = ∇ZX =
1

f
(Xf)Z, (7)

for any vector fields X, Z tangent to M1, M2, respectively. If X and Z are unit
vector fields, it follows that the sectional curvature K(X∧Z) of the plane section
spanned by X and Z is given by

K(X ∧ Z) = g(∇Z∇XX −∇X∇ZX, Z) =
1

f
{(∇XX)f −X2f}. (8)

We choose an orthonormal basis {e1, . . . , en, en+1, . . . , e2m+1} such that e1,
. . . , en1 = ξ are tangent to M1, en1+1, . . . , en are tangent to M2 and en+1 is
parallel to H. Then, using (8) we obtain

∆f

f
=

n1∑

j=1

K(ej ∧ es), (9)
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for each s ∈ {n1 + 1, . . . , n}.
From the equation of Gauss, we obtain

2τ =
c− 3u2

4
n(n−1)+

3(c + u2)

4
||P ||2−

(
c + u2

4
+ u′

)
(2n−2)+n2||H||2−||h||2.

(10)
We denote

δ = 2τ − c− 3u2

4
n(n−1)− 3(c + u2)

4
||P ||2 +

(
c + u2

4
+ u′

)
(2n−2)− n2

2
||H||2.

(11)
Substituting (10) in (11), we have

n2||H||2 = 2(δ + ||h||2). (12)

With respect to the above orthonormal basis, (12) takes the following form:

(
n∑

i=1

hn+1
ii

)2

= 2


δ +

n∑

i=1

(hn+1
ii )2 +

∑

i6=j

(hn+1
ij )2 +

2m+1∑

r=n+2

n∑

i,j=1

(hr
ij)

2


 ,

which implies

(
3∑

i=1

ai

)2

= 2



δ +

3∑

i=1

a2
i +

∑

1≤i6=j≤n

(hn+1
ij )2 +

2m+1∑

r=n+2

n∑

i,j=1

(hr
ij)

2

−
∑

2≤j 6=k≤n1

hn+1
jj hn+1

kk −
∑

n1+1≤s6=t≤n

hn+1
ss hn+1

tt



 ,

(13)

where a1 = hn+1
11 , a2 =

∑n1
i=2 hn+1

ii and a3 =
∑n

t=n1+1 hn+1
tt .

Applying Lemma 1 to (13) yields

∑

1≤j<k≤n1

hn+1
jj hn+1

kk +
∑

n1+1≤s<t≤n

hn+1
ss hn+1

tt

≥ δ

2
+

∑

1≤α<β≤n

(hn+1
αβ )2 +

1

2

2m+1∑

r=n+2

n∑

α,β=1

(hr
αβ)2,

(14)

with equality holding if and only if we have

n1∑

i=1

hn+1
ii =

n∑

t=n1+1

hn+1
tt . (15)



Some inequalities for warped products 57

Using the Gauss equation, we have from (9)

n2
∆f

f
= τ −

∑

1≤j<k≤n1

K(ej ∧ ek)−
∑

n1+1≤s<t≤n

K(es ∧ et)

= τ − c− 3u2

8
n1(n1 − 1)−

∑

1≤j<k≤n1

g2(Pej , ek)
3(c + u2)

4

+

(
c + u2

4
+ u′

)
(n1 − 1)−

2m+1∑

r=n+1

∑

1≤j<k≤n1

(hr
jjh

r
kk − (hr

jk)
2)

− c− 3u2

8
n2(n2 − 1)−

∑

n1+1≤s<t≤n

g2(Pes, et)
3(c + u2)

4

−
2m+1∑

r=n+1

∑

n1+1≤s<t≤n

(hr
ssh

r
tt − (hr

st)
2).

(16)

Combining (14) and(16) and taking account of (9), we have

n2
∆f

f
≤τ − c− 3u2

8
n(n− 1) +

c− 3u2

4
n1n2 −

δ

2
+

(
c + u2

4
+ u′

)
(n1 − 1)

−
∑

1≤j<k≤n1

g2(Pej , ek)
3(c + u2)

4
−

∑

n1+1≤s<t≤n

g2(Pes, et)
3(c + u2)

4
.

(17)
By (11), the inequality (17) reduces to

∆f

f
≤ n2

4n2
||H||2 +

c− 3u2

4
n1 −

(
c + u2

4
+ u′

)
+

3(c + u2)

4n2

∑

1≤j≤n1
n1+1≤t≤n

g2(Pej , et)

≤ n2

4n2
||H||2 +

c− 3u2

4
n1 −

(
c + u2

4
+ u′

)
+

3(c + u2)

4
min

{
n1

n2
, 1

}
.

(18)
We distinguish two cases:

(a) n1 ≤ n2, in this case the inequality (18) implies (6).
(b) n1 > n2, in this case (18) also becomes (6). It completes the proof.

QED

4 Corollary. Let x : M1 ×f M2 −→ M̃(c) be an isometric immersion of
an n-dimensional totally real warped product into a (2m + 1)-dimensional lo-
cally conformal almost cosymplectic manifold of pointwise constant ϕ-sectional
curvature c whose structure vector field ξ is tangent to M1. Then, we have

∆f

f
≤ n2

4n2
||H||2 +

c− 3u2

4
n1 −

c + u2

4
− u′, (19)
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where, ni = dimMi, i = 1, 2, and ∆ is the Laplacian operator of M1.
Moreover, the equality case of (19) holds if and only if x is a mixed totally

geodesic immersion and n1H1 = n2H2, where, Hi, i = 1, 2 are the partial mean
curvatures.

Proof. Let M1 ×f M2 be a totally real warped product into M̃(c). Then
we have g(Pei, es) = 0 for 0 ≤ i ≤ n1, n1 + 1 ≤ s ≤ n. Therefore, by (18) we
can easily obtain the inequality (19). Also, we see that the equality sign of (18)
holds if and only if

hr
jt = 0, 1 ≤ j ≤ n1, n1 + 1 ≤ t ≤ n, n + 1 ≤ r ≤ 2m + 1, (20)

and
n1∑

i=1

hr
ii =

n∑

t=n1+1

hr
tt = 0, n + 2 ≤ r ≤ 2m + 1. (21)

Obviously (20) is equivalent to the mixed totally geodesic of the warped product
M1 ×f M2 and (15) and (21) imply n1H1 = n2H2. The converse statement is
straightforward. QED

5 Corollary. Let M1×f M2 be a totally real warped product in a (2m + 1)-
dimensional locally conformal almost cosymplectic manifold of pointwise con-
stant ϕ-sectional curvature c whose the structure vector ξ is tangent to M1 and
a warping function f is a harmonic. Then, M1×f M2 admits no minimal totally
real immersion into a locally conformal almost cosymplectic manifold M̃(c) with
c < 1

n1−1(u2 + 3n1u
2 + 4u′).

6 Corollary. Let M1×f M2 be a totally real warped product in a (2m + 1)-
dimensional locally conformal almost cosymplectic manifold of pointwise con-
stant ϕ-sectional curvature c whose the structure vector ξ is tangent to M1. If
the warping function f of M1×f M2 is an eigenfunction of the Laplacian on M1

with corresponding eigenvalue λ > 0, then M1×f M2 dose not admit a minimal
totally real immersion into a locally conformal almost cosymplectic manifold of
pointwise constant ϕ-sectional curvature c with c ≤ 1

n1−1(u2 + 3n1u
2 + 4u′).

7 Corollary. Let M1×f M2 be a compact minimal totally real warped prod-
uct in a locally conformal almost cosymplectic manifold of pointwise constant
ϕ-sectional curvature c such that the structure vector ξ is tangent to M1 and
c ≤ 1

n1−1(u2 + 3n1u
2 + 4u′). Then M1 ×f M2 is a Riemannian product.

8 Theorem. Let x : M1 ×f M2 −→ M̃(c) be an isometric immersion of an
n-dimensional warped product into a (2m+1)-dimensional locally conformal al-
most cosymplectic manifold of pointwise constant ϕ-sectional curvature c whose
structure vector field ξ is tangent to M2. Then, we have

∆f

f
≤ n2

4n2
||H||2 +

c− 3u2

4
n1 −

(
c + u2

4
+ u′

)
n1

n2
+

3(c + u2)

4
,
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where ni = dimMi, i = 1, 2, and ∆ is the Laplacian operator of M1.

9 Corollary. Let x : M1 ×f M2 −→ M̃(c) be an isometric immersion of
an n-dimensional totally real warped product into a (2m + 1)-dimensional lo-
cally conformal almost cosymplectic manifold of pointwise constant ϕ-sectional
curvature c whose structure vector field ξ is tangent to M2. Then, we have

∆f

f
≤ n2

4n2
||H||2 +

c− 3u2

4
n1 −

(
c + u2

4
+ u′

)
n1

n2
, (22)

where, ni = dimMi, i = 1, 2, and ∆ is the Laplacian operator of M1.
Moreover, the equality case of (22) holds if and only if x is a mixed totally

geodesic immersion and n1H1 = n2H2, where, Hi, i = 1, 2 are the partial mean
curvatures.

10 Corollary. Let M1×f M2 be a totally real warped product in a (2m+1)-
dimensional locally conformal almost cosymplectic manifold of pointwise con-
stant ϕ-sectional curvature c whose the structure vector ξ is tangent to M2 and
a warping function f is a harmonic. Then, M1×f M2 admits no minimal totally
real immersion into a locally conformal almost cosymplectic manifold M̃(c) with
c < 1

n2−1(u2 + 3n2u
2 + 4u′).

11 Corollary. Let M1×f M2 be a totally real warped product in a (2m+1)-
dimensional locally conformal almost cosymplectic manifold of pointwise con-
stant ϕ-sectional curvature c whose the structure vector ξ is tangent to M2. If
the warping function f of M1×f M2 is an eigenfunction of the Laplacian on M1

with corresponding eigenvalue λ > 0, then M1×f M2 dose not admit a minimal
totally real immersion into a locally conformal almost cosymplectic manifold of
pointwise constant ϕ-sectional curvature c with c ≤ 1

n2−1(u2 + 3n2u
2 + 4u′).

12 Corollary. Let M1×f M2 be a compact minimal totally real warped prod-
uct in a locally conformal almost cosymplectic manifold of pointwise constant
ϕ-sectional curvature c such that the structure vector ξ is tangent to M2 and
c ≤ 1

n2−1(u2 + 3n2u
2 + 4u′). Then M1 ×f M2 is a Riemannian product.
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