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1 Introduction

A flock of a quadratic cone in PG(3, q) is a covering of the cone minus the
vertex by a set of q conics. There are equivalences between flocks of quadratic
cones and translation planes with spreads in PG(3, q) admitting certain elation
groups of order q, the so-called ‘regulus-inducing’ elation groups; the axis and
any component orbit is a regulus in PG(3, q). This result may be stated more
generally over any fieldK that admits a quadratic extension field. It is a surprise
then that flocks of a quadratic cone in PG(3, q) are also equivalent to translation
planes with spreads in PG(3, q) that admit cyclic affine homology groups of
order q+1, where again the result may be stated more generally. Of fundamental
importance is the work of Baker, Ebert and Penttila [1] that connects ‘regular
hyperbolic fibrations with constant back half’ with flocks of quadratic cones

iThe author is indebted to Ulrich Dempwolff for the analysis of the translation planes of
order 49. In particular, the appendix arose out of a series of e-mail exchanges.
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(the reader is referred either to [1] or [15] for the requisite definitions). These
ideas provide the framework for the following general result.

1 Theorem. (Johnson [15]) Let π be a translation plane with spread in
PG(3,K), for K a field. Assume that π admits an affine homology group H, so
that some orbit of components is a regulus in PG(3,K).

(1) Then π produces a regular hyperbolic fibration with constant back half.

(2) Conversely, each translation plane obtained from a regular hyperbolic fi-
bration with constant back half admits an affine homology group H, one
orbit of which is a regulus in PG(3,K).

The group H is isomorphic to a subgroup of the collineation group of
a Pappian spread Σ, coordinatized by a quadratic extension field K+, H �〈
tσ+1; t ∈ K+ − {0}〉, where σ is the unique involution in GalKK+.

(3) Let H be a regular hyperbolic fibration with constant back half of PG(3,K).
The subgroup of ΓL(4,K) that fixes each hyperbolic quadric of a regular
hyperbolic fibration H and acts trivially on the front half is isomorphic to〈
ρ,
〈
tσ+1; t ∈ K+ − {0}〉〉, where ρ is defined as follows: If e2 = ef + g,

f, g in K and 〈e, 1〉K = K+, then ρ is
[

I 0
0 P

]
, where P =

[
1 0
g −1

]
.

In particular,
〈
tσ+1; t ∈ K+ − {0}〉 fixes each regulus and opposite regulus

of each hyperbolic quadric of H and ρ inverts each regulus and opposite
regulus of each hyperbolic quadric.

When K is finite, it turns out due to work of Jha and Johnson [13] that
cyclic homology groups of order q + 1, when the plane has order q2, have the
property that each component orbit defines a derivable net and when the spread
is in PG(3, q), each orbit defines a regulus. Hence, the following theorem holds.

2 Theorem. (Johnson [15]) Translation planes with spreads in PG(3, q)
admitting cyclic affine homology groups of order q + 1 are equivalent to flocks
of quadratic cones.

A major question concerning the relationship with the flock and the trans-
lation plane is the determination of the collineation group of the associated
translation plane admitting a cyclic homology group as related to the group of
the flock. In particular, if there is a cyclic homology group of order q + 1, is
the set {axis,coaxis} invariant by the full collineation group? Furthermore, if
the set {axis,coaxis} is invariant under the full collineation group is the cyclic
homology group normal in the full collineation group? For example, could there
be two distinct cyclic homology groups with the same axis and coaxis?
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We consider the following general problem in this article: Determine the
translation planes of order q2 with spread in PG(3, q) that admit at
least three affine homology groups of order q+1. In the second section, we
shall review the various examples. That these previous examples of translation
planes are exceptionally rare, is made manifest, as this paper demonstrates. Our
principal result is the following.

3 Theorem. Let π denote a translation plane of order q2 = p2r, for p a
prime, with spread in PG(3, q) that admits an affine homology group H of order
q + 1, in the translation complement.

(1) Then either the set {axis,coaxis} of H is invariant under the full collin-
eation group or π is one of the following planes:

(a) Desarguesian,

(b) Hall plane,

(c) Desarguesian,the Heimbeck plane of order 49 of type III.

(2) If there exist at least three mutually distinct affine homology groups of
order q + 1 but one or two axes, we have one of the following situations:

The plane is either

(a) the irregular nearfield plane of order 25,

(b) the irregular nearfield plane of order 49,

(c) q = 11 or 19 and admits SL(2, 5) as an affine homology group (the
irregular nearfield plane of orders 112 and 192 and the two exceptional
Lüneburg planes of order 192 are examples),

(d) q ≡ −1mod4, and there are two homology groups H1, H2 of order
q + 1, with the same axis M and same coaxis L, exactly one of which
is cyclic. Furthermore, in this last case, the group generated by the two
groups H1H2 has order 2(q + 1). If K∗ denotes the kernel homology
group then H1H2K

∗ induces the regular nearfield group of dimension
two on the coaxis L.

Also, there is a corresponding flock of a quadratic cone admitting a col-
lineation g fixing one regulus and permuting the remaining q − 1 reguli in
(q − 1)/2 pairs. In this case, there is an affine homology group of order 2
acting on the flock plane.

Indeed, the conical flock spread is either Desarguesian, Fisher or con-
structed from a Desarguesian spread by 3q-double-nest construction and
the conical flock plane is described in Theorem 8.
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More generally, we may prove the following result when the assumption is
that there are but two homology groups of order q + 1.

4 Theorem. Let π be a translation plane with spread in PG(3, q) that ad-
mits at least two homology groups of order q + 1. Then one of the following
occurs:

(1) q ∈ {5, 7, 11, 19, 23} (the irregular nearfield planes and the exceptional
Lüneburg planes are examples),

(2) π is André,

(3) q is odd and π is constructed from a Desarguesian spread by (q + 1)-nest
replacement (actually q = 5 or 7 for the irregular nearfield planes also
occur here),

(4) q is odd and π is constructed from a Desarguesian spread by a combination
of (q + 1)-nest and André net-replacement,

(5) q is odd and q ≡ −1mod 4 and the axis/coaxis pair is invariant under the
full collineation group (furthermore, there is a non-cyclic homology group
of order q + 1),

(6) q = 7 and the plane is the Heimbeck plane of type III with 10 homology
axes of quaternion groups of order 8.

These general results applied to cyclic homology groups then provide the
following theorem connecting the collineation groups of the translation planes
associated with a regular hyperbolic fibration with constant back half and the
collineation groups of the associated translation planes arising from flocks of
quadratic cones.

5 Theorem. Let πH be a translation plane of order q2 with spread in
PG(3, q) admitting a cyclic affine homology group H of order q + 1. Let H
denote the regular hyperbolic fibration obtained from πH and let πE be the cor-
responding conical flock spread.

Then one of the following occurs.

(1) H is normal in the collineation group FH of πH . In this case, the col-
lineation group of πH is a subgroup of the group of the regular hyperbolic
fibration and induces a permutation group FH/H on the associated q reguli
sharing a component, fixing one, of the corresponding conical flock spread
πE.

If Ker is the subgroup of πE that fixes each regulus then πH is either
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(a) Desarguesian or

(b) Kantor-Knuth of odd order or

(c) Ker = K∗, the kernel homology group of order q − 1.

(2) H is not normal in FH and there is a collineation inverting the axis and
coaxis of H. In this case, πH is one of the following types of planes:

(a) André,

(b) q is odd and πH is constructed from a Desarguesian spread by (q+1)-
nest replacement, or

(c) q is odd and πH is constructed from a Desarguesian spread by a com-
bination of (q + 1)-nest and André net-replacement.

2 The known examples

2.1 The exceptional Lüneburg planes
admitting SL(2, 3) × SL(2, 3)

There are eleven translation planes of order p2 admitting SL(2, 3)×SL(2, 3)
generated by affine homologies, admitting a collineation group G, such that GL
is doubly transitive on L for any component L, and such that the component
orbits of the two homology groups isomorphic to SL(2, 3) are identical. These
collectively are known as the exceptional Lüneburg planes of type F ∗ p (see
section 19 of Lüneburg [20]). In this case, p ∈ {5, 7, 11, 23}.

We are interested in when SL(2, 3) contains two distinct groups of order
p+ 1.

Consider A4 and note that there is a unique Sylow 2-subgroup S2 such that
any 3-group acts transitively on S2 − {1} by conjugation. Hence, there are no
subgroups of A4 of order 6. Since there is a unique involutory affine homology
with a given axis in a translation plane, it follows that there are not two groups
of order 12 in SL(2, 3). Hence, p cannot be 11. We know that the affine homology
group induced on the coaxis is a subgroup of SL(2, 3)Zp−1, implying that there
cannot be two homology subgroups of order 24 with a given axis. Hence, when
p = 23, there are two homology groups of order 23 + 1 but not three.

However, when p = 5, there are four Sylow 3-subgroups and hence four
groups of order 6 in SL(2, 3), implying that the irregular nearfield plane of
order 52 has at least three affine homology groups of order 5 + 1.

However, when p = 7, there are two distinct quaternion groups of order 8
in SL(2, 3)× SL(2, 3), and two cyclic groups of order 8 in GL(2, 3)×GL(2, 3).
Hence, in the irregular nearfield plane there are at least four homology groups
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of order 8. In the exceptional Lüneburg plane, there are two distinct quaternion
groups of order 8.

Summary.

(1) When p = 5 or 7 the irregular nearfield planes of order p2 admit at least
three affine homology groups of order p+ 1.

(2) When p = 7, the exceptional Lüneburg plane of order 72 admits at least
two affine homology groups of order 7 + 1.

(3) When p = 23, the irregular nearfield plane admits at least two affine
homology groups of order 23 + 1.

2.2 The exceptional Lüneburg planes
admitting SL(2, 5)× SL(2, 5)

There are 14 translation planes of order p2 admitting SL(2, 5) × SL(2, 5),
generated by affine homologies, where there is a group G such that the stabilizer
GL of a non-axis, non-coaxis component L is transitive on the non-zero points of
L and the orbits of the two homology groups isomorphic to SL(2, 5) are identical
(see Lüneburg [20], section 18). Among these planes are the irregular nearfield
planes. When p = 112, there is only the irregular nearfield plane and when
p = 192, there is the irregular nearfield plane and three others. The question is
are there three affine homology groups of order p+ 1?

Note that in SL(2, 5), there are six Sylow 5-subgroups of order 5, normalized
by a group of order 4. Hence, there are at least two affine homology groups of
order 20 = 19 + 1 with the same axis. Hence, the irregular nearfield plane and
the three exceptional Lüneburg planes of order 192 admit at least three affine
homology groups of order 19 + 1.

In this setting p ∈ {11, 19, 29, 59}.
Consider A5, and the subgroup 〈(123), (45)(23)〉 and note that

(45)(23)(123)(45)(23) = (132).

Hence, A5 has subgroups of order 6 (i. e., the normalizer of a Sylow 3-subgroup),
implying that SL(2, 5) has at least two subgroups of order 11 + 1. Thus, the
irregular nearfield plane of order 112 admits at least three homology groups of
order 11 + 1.

Summary.

(1) The irregular nearfield plane of order 112 with non-solvable homology
groups admit at least three homology groups of order 11 + 1.
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(2) The irregular nearfield plane and the three exceptional Lüneburg planes
of order 192 admit at least three homology groups of order 19 + 1.

2.3 The regular nearfield planes of odd order q2

and kernel GF (q)

Since a homology group is generated from the Frobenius automorphism of
GF (q) and the cyclic group of order (q2 − 1)/2 of ΓL(1, q2), and is sharply
transitive on the non-zero vectors of the coaxis, the regular nearfield planes of
odd order q2, for q ≡ −1mod4, admit homology subgroups of order 2(q + 1),
containing a cyclic subgroup of order (q + 1) and a non-Abelian subgroup of
order (q + 1), containing a cyclic subgroup of order (q + 1)/2.

Hence, there are at least three homology groups of order q + 1.

2.4 Flocks of quadratic cones; two groups

Now consider a conical flock plane; a translation plane corresponding to
a flock of a quadratic cone, when q is odd and q ≡ −1mod 4. Assume that
there is an affine homology of order 2 acting on the conical flock plane. If the
corresponding spread is

x = 0, y = x

[
u+ g(t) f(t)

t u

]
;u, t ∈ GF (q),

where f and g are functions on GF (q), then the collineation takes the form:

(x, y) �−→ (x,−y).

From the calculations of Baker, Ebert and Penttila [1, see p. 6], it follows that
there is an associated collineation of the corresponding hyperbolic fibration of
the form

(x, y) �−→ (x, yA),

where A is the matrix of an associated field involutory automorphism of an
associated field times an element of the field:[

u t
ft u+ gt

]
;u, t ∈ K.

Note that this mapping normalizes the cyclic homology group of order (q + 1)
arising from the construction of the hyperbolic fibration. So, the orbits of this
homology group of order (q + 1) are permuted by the collineation in question.
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By a proper choice of reguli, there are translation planes admitting both groups
as affine homology groups. Hence,

A =
[
1 0
g −1

] [
u t
ft u+ gt

]
.

For example, if g = 0, and u2 + t2 = −1, then A2 = −I2. Note that A =[
u t
t −u

]
does not have an eigenvalue of 1 and hence is fixed-point-free on the

coaxis. Then the group generated by A, the field elements M of determinant 1
and the scalar group K∗ of order q − 1 will induce a group on the coaxis x = 0
which is regular and corresponds to the regular nearfield group of dimension 2.
We note that AM = M−1A, for field elements of determinant 1, as M q = M−1.
Hence, we obtain an affine homology group of order 2(q + 1) admitting two
subgroups of order q + 1, 〈M〉, and 〈

A,M2
〉
, exactly one of which is cyclic

(which is, of course, normal).
We have proved the following result.

6 Theorem. Let ρ be a finite conical flock plane of odd order q2, q ≡
−1mod 4 admitting an affine homology group of order 2; the spread has the
following form:

x = 0, y = x

[
u+ g(t) f(t)

t u

]
;u, t ∈ GF (q),

f(−t) = −f(t), g(−t) = −g(t).

Then there are associated translation planes of order q2 admitting a cyclic ho-
mology group of order q + 1 that also admit an affine homology group of order
2(q + 1), with the following presentation:〈

g, h;hq+1 = g4 = 1, g2 = h(q+1)/2, gh = h−1g
〉
,

admitting two distinct affine homology groups of order q + 1:

〈h〉 , 〈g, h2
〉
.

2.5 Flocks of quadratic cones; three groups

In this section, we shall be considering three types of translation planes:
translation planes πH admitting cyclic affine homology groups of order q + 1,
conical flock planes πE , corresponding to these previous planes and Desarguesian
planes Σ that are related as noted below.
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Concerning translation planes πH of order q2 admitting cyclic affine homol-
ogy groups of order q + 1 and their associated conical flock translation planes
πE, we see that if G is the group of a plane πH and H is a cyclic homology
group of order q + 1 then G/H is a group that acts on the set of reguli of the
associated conical flock spread πE. This group fixes one regulus and if πH is not
an André plane, then πE is not Desarguesian so that G/H arises from a group
G+ of the translation plane πE such that action on the set of reguli is G/H. It
is possible that there is a collineation in G+ that is not in the kernel homology
group K∗ of order q−1 but fixes each regulus. However, the possible planes can
only be the Kantor-Knuth or Desarguesian planes by the theory of ‘rigidity’ of
Jha and Johnson [12] The Kantor-Knuth spread is monomial and all monomial
conical flock spreads correspond to j-planes (see Johnson [14]). Hence, either
the plane πE is Kantor-Knuth or the group G+ may be assumed to contain K∗

and G+/K∗ is isomorphic to G/H. Furthermore, note that the Kantor-Knuth
planes do not admit groups of order (q + 1).

Now assume that there are at least three distinct affine homology groups
with affine axes acting in πH . The axes could be distinct also, but assume that
they are not. Then there must be two groups with the same axis and coaxis.
It turns out that normally (and it is the object of this paper to prove this) the
third group must have axis and coaxis equal to the coaxis and axis, respectively,
of the preceding two homology groups. In this case, except for a few sporadic
cases, we are able to show that there is a cyclic homology group of order q + 1
on the two group axis, where the group generated by the two homology groups
has order 2(q + 1). In this case, q ≡ −1mod 4. Furthermore, one of the groups
of order q + 1 is cyclic and there is an associated flock of a quadratic cone by
the above Theorem 2. If there are two cyclic homology groups of order (q + 1)
then the translation plane admitting the homology groups is determined as
either an André plane, a plane constructed by (q + 1)-nest replacement or a
combination of André replacement and (q + 1)-nest replacement. Let H denote
the cyclic homology group of order q+1. Then, NG(H)/H induces a collineation
group on the associated flock and this group leaves one of the conics invariant.
Considering what this says about the corresponding translation plane, we have a
group of order 2(q+1) that normalizes the ‘regulus-inducing’ elation group E of
order q (assuming that the associated flock is not linear or equivalently that the
translation plane is not Desarguesian). Hence, we obtain a collineation group
acting on the translation plane of order q(2(q+1))t, where there is a subgroup of
order 2t that fixes each of the q reguli of the spread, so by the above remarks, this
is a subgroup of the kernel homology group K∗ of order q − 1. Since this group
arises from a subgroup of GL(4, q), it follows from the action on the conical flock
that the corresponding group is a subgroup of GL(4, q) that fixes a regulus and
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normalizes E. Hence, there is a subgroup of order 2(q + 1)t that fixes the axis
x = 0 of E and a second component y = 0. Since this group is a subgroup of
GL(4, q) that leaves invariant a regulus, it is also in GL(2, q) ∗GL(2, q), where
the ∗ denotes a central product by the center of either group. There is then a
subgroup of GL(2, q) ∗ GL(2, q) that fixes two components of the regulus net
and order 2(q + 1)t. We know that in the affine homology translation plane,
any subgroup of odd prime power order of the homology group of order (q +1)
(that is not cyclic) is cyclic. Moreover, the product of the Sylow t-subgroups of
odd order forms a normal and cyclic subgroup. Assume that q + 1 has an odd
prime factor u. Then there is an element τu of order u that fixes at least three
components. Note that τu must centralize E, implying that τu fixes the regulus
linewise. Hence, there is an associated Desarguesian affine plane Σ admitting
a group G of order 2(q + 1)t, there a subgroup of order (q + 1)2′ is a cyclic
homology group (since the cyclic group is in G/K∗, and (q + 1, q − 1) = 2).
Therefore, the intersection with GL(2, q2), the linear collineation group of Σ,
has order divisible by (q+1)t and this group fixes two components of the conical
flock plane which are then components of Σ as well. Moreover, the regulus of the
conical flock plane also becomes a regulus of Σ fixed by G, so the stabilizer in
G∩GL(2, q2) of three components is a kernel homology group. Hence, we have
a kernel homology group of order divisible by (q + 1)/2 of the Desarguesian
plane Σ. Now assume that q is odd and q + 1 = 2a, so that q = p is prime.
In the original affine homology group plane πH , there is a homology group of
order (q+1) and since we are assuming that we don’t have two cyclic homology
groups of order (q + 1), this group must be generalized quaternion. Therefore,
there is a cyclic sub homology group of order (q + 1)/2. So, there is a cyclic
subgroup acting on the conical flock, so there is a group G of order 2(q + 1)t,
normalizing the elation group E, such that the group induced on the set of q
reguli contains a cyclic group of order (q+1)/2. Thus, it follows that G contains
a cyclic group C of order divisible by (q + 1)/2. If q > 3, the same ideas show
that there is an associated Desarguesian affine plane Σ admitting the normalizer
of C as a collineation group. Since the groups originate from a direct product
of affine homology groups, it follows that the cyclic affine homology group of
order (q + 1)/2 is normalized by the group of order 2(q + 1)2 of the affine
homology group plane. This means that the group of order 2(q + 1) induced
(not necessarily faithfully) on the set of reguli of the conical flock plane also
normalizes the corresponding cyclic group. Since q = p, the conical flock plane
cannot be Kantor-Knuth without being Desarguesian. Hence, G+/K∗ contains
a normal cyclic subgroup of order (q+1)/2, so let N be a normal subgroup of G+

containing K∗ such that N/K∗ is cyclic of order (q+1)/2. Let N/K∗ = 〈gK∗〉,
such that g(q+1)/2 ∈ K∗. Since we may assume that q ≡ −1mod4 (as otherwise
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all affine homology groups of order (q+1) are cyclic), it follows that there is an
element g of order either (q + 1)/2 or (q + 1) such that gK∗ generates N/K∗.
Since all of these groups arise from subgroups of GL(4, q), it follows that 〈g〉
is normal in N and N is Abelian. Therefore, there exists a unique Sylow 2-
subgroup of N , implying that 〈g〉 is characteristic in N of order (q+1), so that
we have a normal subgroup of order divisible by (q+1)/2 in a subgroup of order
2(q + 1)t. Furthermore, since we have a cyclic group of order (q + 1)/2 and if
q > 3, the same ideas show that there is an associated Desarguesian affine plane
Σ admitting as a collineation group the normalizer of this cyclic group of order
(q+1)/2. Hence, we again have a subgroup of ΓL(2, q2) of order 2(q+1)t, that
fixes two components and normalizes an elation group E of order q. So, this
group intersects GL(2, q2) is a group of order divisible by (q + 1)t, implying
there is a kernel homology group of order at least (q + 1)/2.

Hence, we have shown the following theorem.

7 Theorem. Let πH be a translation plane of order q2 with spread in
PG(3, q) that admits at least three affine homology groups, where one is as-
sumed cyclic, so q is odd. Then there is an associated Desarguesian affine plane
Σ such that the conical flock plane πE associated with πH admits a Desarguesian
collineation group of order q(q + 1)/2, which is a product of a regulus-inducing
elation group of order q and a kernel homology group of order (q + 1)/2 of Σ.

Such planes have been classified by Jha and Johnson [9], [10], [11].

8 Theorem. (Jha and Johnson [9]) Let π be a translation plane of order
q2 with spread in PG(3, q) that admits a linear group G with the following
properties:

(i) G has order q(q + 1)/2,

(ii) there is an associated Desarguesian affine plane Σ of order q2 such that
G = EZ where E is a normal, regulus-inducing elation group of Σ and Z
is a kernel homology group of order (q + 1)/2 of Σ.

Then

(1) π is either a conical flock plane or a derived conical flock plane.

(2) π is either Desarguesian or Hall or

(3) if 4 does not divide (q + 1) then π is Fisher or derived Fisher.

(4) If π is of odd order q2, 4 | (q + 1), then either π is one of the planes of
part (2) or (3), or π may be either
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(a) constructed from a Desarguesian plane by double-nest replacement of
a 3q-double-nest or

(b) derived from a plane which may be so constructed, by a base regulus
net fixed by the group of order q(q + 1)/2.

(5) If π is constructed by 3q-double-nest replacement, the replacement net con-
sists of a set of exactly 3(q + 1)/4 base reguli (E-orbits of components of
Σ). This set is replaced by {πiEZ; i = 1, 2, 3} where πi are Baer subplanes
of Σ that intersect exactly (q + 1)/2 base reguli in two components each.

The sets Bi of (q+1)/2 base reguli of intersection pairwise have the prop-
erty that |Bi ∩ Bj | = (q+1)/4 for i = j, i, j = 1, 2, 3 and B1∩B2∩B3 = ∅.

Hence, the type of associated conical flock plane that is obtained from a
translation plane of order q2 admitting at least three affine homology groups of
order (q+1) is determined. The reader is referred to Jha and Johnson [9] or [11]
for the definition of a double-nest of reguli. We shall see later that if there are
three affine homology groups of order q+1 then either the order is in {5, 7, 11, 19}
or admit homology groups of order q+1 with symmetric axes (the axis and coaxis
of one group is the coaxis and axis of the second group, respectively), at least
one of which is cyclic. Hence, we have the following theorem.

9 Theorem. Let π be a translation plane of order q2, with spread in
PG(3, q), for q /∈ {5, 7, 11, 19} that admits at least three affine homology groups
of order (q + 1). Then π corresponds to a flock of a quadratic cone and the
corresponding conical flock spread is either

(1) Desarguesian,

(2) Fisher or

(3) q ≡ −1mod 4 and the plane may be constructed from a Desarguesian plane
by 3q-double-nest replacement.

2.6 The Heimbeck planes

Heimbeck [8] classifies all translation planes of order 72 that admit a quater-
nion affine homology group of order 8. There are exactly ten planes, of which
there is a unique plane, type III, that admits at least three quaternion homology
groups. The set of orbit lengths of the full collineation group on the components
is {10, 40}.
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2.7 The Hall planes

Of course, the very exceptional Hall plane of order 9 admits 10 homology
axes of groups of order 4. The Hall planes of order q2, q > 3, admit (q2 − q)
homology axes of cyclic groups of order q + 1.

Hence, we have examples in each of the possibilities listed in the main the-
orem when there are at least three affine homology groups of order q + 1. The
specific examples are the irregular nearfield planes of orders 52, 72, 112, 192 and
the exceptional Lüneburg planes of order 192, the Heimbeck planes of order 72,
the Hall and Desarguesian planes and planes arising from flocks of quadratic
cones admitting involutory affine homologies and arising from the Desarguesian,
Fisher, or 3q-double-nest replacements.

3 Translation planes of order q2 admitting homology

groups of order q + 1

We assume that π is a translation plane of order q2 with spread in PG(3, q)
that admits an affine homology group H of order q+1 in the translation comple-
ment. In two papers ( [19], [18]), Johnson and Pomareda completely classified
the translation planes with spreads in PG(3, q) that admit ‘many’ homology
axes of groups of prime odd order u. The term ‘many’ is defined to be > q + 1
axes. The main theorem is as follows.

10 Theorem. (Johnson and Pomareda [19, Theorem 2]) Let π be a trans-
lation plane of order q2 with spread in PG(3, q) that admits > q + 1 axes (or
> q + 1 coaxes) of homologies of odd order u = 1.

Then one of the following situations occurs:

(i) all of the homology groups have the same axis or all have the same coaxis
and there is an elation group of order > q + 1 with affine axis,

(ii) π is Desarguesian,

(iii) π is Hall,

(iv) π is Ott-Schaeffer of order 22r where r is odd and the order u = 3,

(v) π is a Hering plane of order p2r where r and p are both odd and u = 3,

(vi) G is SL(2, 9), u = 3 and q = 7, 11, 13, 17 and the planes are enumerated
in Biliotti-Korchmáros [2],

(vii) G is GL(2, 3), u = 3 and q = 5, and the plane is determined as in Johnson
and Ostrom [16].
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In Johnson and Pomareda [19], there is also an analysis of translation planes
admitting two cyclic homology groups of order q + 1.

11 Theorem. (Johnson and Pomareda [19, Theorem 18]) Let π be a trans-
lation plane with spread in PG(3, q) that admits at least two cyclic homology
groups of order q + 1. Then π is one of the following types of planes:

(1) André,

(2) q is odd and π is constructed from a Desarguesian spread by (q + 1)-nest
replacement or

(3) q is odd and π is constructed from a Desarguesian spread by a combination
of (q + 1)-nest and André net-replacement.

However, the case when q is prime p and p + 1 = 2a was considered in
Johnson and Pomareda [19] only in the case when there might be p-elements
in the group generated by the affine homology groups. We argue this case more
generally here for arbitrary homology groups of order p + 1 (q + 1). (See (∗)
below.) Furthermore, this theorem remains valid even for this case. Note that it
has been previously pointed out in Johnson and Pomareda [19] that the irregular
nearfield planes of order 52 and 72 may be obtained from a Desarguesian plane
by q + 1-nest replacement.

Regarding the proof of the above theorem, we make the following points,
stated in the form of lemmas.

12 Lemma. Assume that there are two affine homology groups of order q+1
that are symmetric in the sense that the axis and coaxis of one group is coaxis
and axis, respectively of the second group.

Then, if the groups are cyclic, the planes may be classified as in Theorem 11.

13 Lemma. Let π be a translation plane of order q2 with spread in PG(3, q),
admitting an affine homology group H of order q + 1, H in the translation
complement. If q is even or q ≡ 1mod 4, then H is cyclic.

Proof. This is a result of Johnson [15]. QED

14 Lemma. Let π be a translation plane of order q2 with spread in PG(3, q),
admitting an affine homology group H of order q+1 in the translation comple-
ment. If q is even and π is non-Desarguesian and non-Hall then {axis,coaxis}
of H is invariant under the full translation complement.

Proof. Apply Theorem 11 above, to obtain an André plane. But, by Foulser
[7], the full collineation group leaves invariant {axis,coaxis}, when the plane is
a non-Desarguesian, non-Hall André plane. QED

Hence, in the following, we may assume that q is odd.
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15 Lemma. Let π be a non-Desarguesian, non-Hall translation plane of
odd order q2 with spread in PG(3, q), admitting an affine homology group H of
order q+1, H in the translation complement. Let L and M denote the axis and
coaxis on H. Let G denote the group generated by the set of affine homology
groups of π.

If {L,M} is not invariant under the full translation complement of π, then
the order of G is not divisible by p, for q = pr.

Proof. In the argument of Theorem 18 [19], there is absolutely no use of
the additional hypothesis that H is cyclic when dealing with the question of
p-elements. The argument is separated into the parts when q2 − 1 does and
does not admit a p-primitive divisor but, in either case, no use of the cyclic
assumption is used. QED

16 Lemma. Under the assumptions of the previous lemma, if {L,M} is
not invariant under the full translation complement of π, q + 1 cannot have an
odd prime factor u.

Proof. If so, then we may apply Theorem 10, since we now are forced to
have > q+1 homology axes. Then, noting that Sylow u-subgroups of homology
groups are cyclic for odd u, the argument given in Theorem 11 applies directly
(the only outstanding cases left from the possibilities given in Theorem 10 is
then G is SL(2, 9), u = 3 and q = 7, 11, 13, 17). QED

(∗) : So, we are left with the following possibilities when {L,M} is
not invariant under the full translation complement of π : q = p and
p+ 1 = 2a, and p � |G|.

17 Lemma. The Hall plane of order 9 admits 10 cyclic homology groups of
order 4.

Proof. Note that any translation plane of order 9 is Desarguesian or the
Hall plane of order 9. In the latter case, π does admit homology groups of order
4. To see this, note that we may consider the Hall plane as constructed from
the Desarguesian plane by the derivation of a single regulus net. So, the Hall
plane is an André plane that then admits an affine homology group of order
3+ 1. Since the full collineation group of the Hall plane is transitive on the line
at infinity, the result follows (see, e. g., Lüneburg [20]). QED

18 Lemma. The Hall plane of order q2, q > 3, admits (q2 − q) cyclic
homology groups of order q + 1.

Proof. The Hall plane is an André plane obtained by the derivation of a
single regulus net in a Desarguesian affine plane. Since the group GL(2, q) fixes
the derived net, it becomes a collineation group of the Hall plane. QED
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Note that any affine homology group is automatically in the linear trans-
lation complement, implying that G is a subgroup of the linear translation
complement GL(4, q).

19 Theorem. If π has order 72 and {axis,coaxis} is not invariant then π
is Desarguesian, Hall or the Heimbeck plane of class III.

Proof. All translation planes and their collineation groups have been de-
termined by computer by Charnes and Dempwolff [3], as well as Mathon and
Royle [22]. In particular, on p. 1211 of Charnes and Dempwolff [3], there are
two tables listing first the planes with involutory homologies and second the
Heimbeck planes with quaternion group of homologies. Also listed in this sec-
ond table are the orbits on the line at infinity. It is somewhat difficult to check,
as a computer check of the groups of the associated spreads is required, but
there is exactly one non-Desarguesian plane, the Heimbeck plane of class III of
order 49, with at least three homology group of order 8.

More details on the order-49 planes are given in the appendix. QED

If the axis-coaxis set is not invariant, we have noted that the collineation
group cannot have order divisible by p, where the order of the plane is q2, pr = q
(and in this case, r = 1). Hence, we may apply Ostrom’s main theorem of [21],
which we include for convenience.

20 Theorem. (Ostrom [21, (2.17)]) Let π be a translation plane of order
q2 with spread in PG(3, q). Let G be a subgroup of the linear translation com-
plement and assume that (p, |G|) = 1 where pr = q. Let G = GK/K where K
is the kernel homology group of order q − 1.

Then at least one of the following holds.

(a) G is cyclic.

(b) G has a normal subgroup of index 1 or 2 which is cyclic or dihedral or
isomorphic to one of PSL(2, 3), PGL(2, 3) or PSL(2, 5).

(c) G has a cyclic normal subgroup H such that G/H is isomorphic to a sub-
group of S4.

(d) G has a normal subgroup H of index 1 or 2. H is isomorphic to a subgroup of
GL(2, qa), for some a, such that the homomorphic image of H in PSL(2, qa)
is one of the groups in the list given under (b).

(e) There are five pairs of points on 8∞ such that if (P,Q) is any such pair, there
is an involutory homology with center P (or Q) whose axis goes through Q
(or P ). G has a normal subgroup E which is elementary Abelian of order 16.
For each pair (P,Q) each element of E either fixes P and Q or interchanges
them. G induces a transitive permutation group on these ten points.
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(f) G has a subgroup isomorphic to PSL(2, 9) and acts in the following manner:
Each Sylow 3-subgroup has exactly two fixed points on 8∞. If (P,Q) is such
a pair, G contains (P,OQ) and (Q,OP )-homologies of order 3. There are
ten such pairs and G is transitive on these ten pairs.

(g) G has a reducible normal subgroup H not faithful on its minimal subspaces
and satisfying the following conditions:

Either the minimal H-spaces have dimension two and H has index 2 in G
or the minimal H-spaces have dimension 1. In the latter case, if H0 is a
subgroup fixing some minimal H-space pointwise, then H/H0 is cyclic and
G/H is isomorphic to a subgroup of S4.

We may now prove the following two main results.

21 Theorem. Let π denote a translation plane of order q2 = p2r, for p a
prime, with spread in PG(3, q) that admits an affine homology group H of order
q + 1, in the translation complement.

(1) Then either the set {axis,coaxis} of H is invariant under the full collin-
eation group or π is one of the following planes:

(a) Desarguesian,

(b) the Hall plane,

(c) the plane is the Heimbeck plane of order 49 of type III.

(2) If there exist at least three mutually distinct affine homology groups of
order q + 1 but one or two axes, we have one of the following situations:

The plane is either

(a) the irregular nearfield plane of order 25,

(b) the irregular nearfield plane of order 49,

(c) q = 11 or 19 and admits SL(2, 5) as an affine homology group (the
irregular nearfield plane of orders 112 and 192 and the two exceptional
Lüneburg planes of order 192 are examples),

(d) q ≡ −1mod4, and there are two homology groups H1, H2 of order
q + 1, with the same axis M and same coaxis L, exactly one of which
is cyclic. Furthermore, in this last case, the group generated by the two
groups H1H2 has order 2(q + 1). If K∗ denotes the kernel homology
group then H1H2K

∗ induces the regular nearfield group of dimension
two on the coaxis L.
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Also, there is a corresponding flock of a quadratic cone admitting a col-
lineation g fixing one regulus and permuting the remaining q − 1 reguli in
(q − 1)/2 pairs. In this case, there is an affine homology group of order 2
acting on the flock plane.

Indeed, the conical flock spread is either Desarguesian, Fisher or con-
structed from a Desarguesian spread by 3q-double-nest construction and
the conical flock plane is described in Theorem 8.

22 Theorem. Let π be a translation plane with spread in PG(3, q) that
admits at least two homology groups of order q + 1. Then one of the following
occurs:

(1) q ∈ {5, 7, 11, 19, 23} (the irregular nearfield planes and the exceptional
Lüneburg planes are examples),

(2) π is André,

(3) q is odd and π is constructed from a Desarguesian spread by (q + 1)-nest
replacement (actually q = 5 or 7 for the irregular nearfield planes also
occur here),

(4) q is odd and π is constructed from a Desarguesian spread by a combination
of (q + 1)-nest and André net-replacement,

(5) q is odd and q ≡ −1mod 4 and the axis/coaxis pair is invariant under the
full collineation group (furthermore, there is a non-cyclic homology group
of order q + 1),

(6) q = 7 and the plane is the Heimbeck plane of type III with 10 homology
axes of quaternion groups of order 8.

We give the proof to both theorems as a series of lemmas. If there is an affine
homology group of order q + 1 and the pair {axis,coaxis} is not invariant, we
may assume by the above lemmas and remarks that q = p and p+ 1 = 2a, and
there are no p-collineations. Hence, there are at least q + 2 axes of homology
groups of order q+1. Let G denote the group generated by the homology groups.
Note that it is clear that G is irreducible and primitive. We refer to parts O(a)
through O(g) of Ostrom’s Theorem 20. In the following, we assume the above
conditions and the hypothesis in the statement of the result and assume that
the {axis,coaxis} is not invariant.

23 Lemma. Case O(a) does not occur.
Proof. Assume case O(a) above, that G is cyclic. Then G fixes each axis

and coaxis, contrary to assumption. QED
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24 Lemma. Case O(b) does not occur.

Proof. In case O(a), G has a normal subgroup H of index at most 2. G
contains a subgroup C of order (q + 1), arising from an affine homology group
of order q+1, so C∩H has order at least (q+1)/2. If H is isomorphic to A4, S4

or A5, then (q + 1)/2 divides 12, 24, 60, and one of the groups has a subgroup
of order 2a−1. Thus, simply by order, p = 3 or 7.

So, there is a cyclic normal subgroup B of index 2 or 4 of G. Then C ∩ B
of order divisible by (q + 1)/4. Assuming that q > 3, we have a non-trivial
intersection, then B fixes or interchanges the axis and coaxis of C, so B fixes
two infinite points, and fixes all centers and cocenters of all homology groups,
a contradiction, since there are at least q + 2 centers and cocenters. QED

25 Lemma. Case O(c) does not occur.

Proof. In case O(c), G/H divides 23 · 3, implying that C ∩ H is a cyclic
subgroup of order dividing (q+1)/8, where C is an homology group of order q+1.
Assume that q is not 7. Then H is a cyclic normal group properly containing
at least q + 2 affine homologies with distinct axes, a contradiction. QED

26 Lemma. Case O(d) does not occur or one of the listed possibilities
occurs.

Proof. In case O(d) G has a normal subgroup H of index 1 or 2. H is
isomorphic to a subgroup of GL(2, qa), for some a, such that the homomorphic
image of H in PSL(2, qa) is one of the groups in the list given under O(b). So
H s a subgroup of GL(2, qa), containing no p-elements and contains a homol-
ogy subgroup of order divisible by (q + 1)/2. The quotient modulo the kernel
homology group K∗ contains a subgroup of order divisible by (q + 1)/4. By
Theorem 19, we may assume that q > 7. Then we need to avoid A4, S4 and A5,
which we will if there is a cyclic 2-subgroup of order > 4. Hence, if (q+1) > 32,
we have a 2-group of order at least 16. Except for p = 3 or 7, the only outstand-
ing case is q = 31, and we are forced into the S4 case; HK∗/K∗, in PGL(2, qa)
intersected with PSL(2, qa) is S4. Hence, the 2-groups of H have order 25. So
H is transitive on the set of homology axes. But modulo the kernel the only
elements of odd order have order 3. Since there is a homology group of order
16, and there are at least q+1 ≥ 33 axes, we have a contradiction and this case
does not arise.

So, otherwise, we know that HK∗/K∗ is a subgroup of a dihedral group
of order dividing 2(q + 1), which contains a characteristic cyclic subgroup; the
cyclic T/K∗. Hence, we have a normal subgroup T containing K∗ of index 1, 2
or 4 such that T/K∗ is cyclic. Note that T/K∗ is the group induced on the line
at infinity. Hence, C ∩T has order at least (q+1)/4, for any homology group C
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of order q + 1. But, then this means that T fixes all axis-coaxis pairs of points,
pointwise, a contradiction, if there are at least q + 2 such pairs. QED

27 Lemma. Case O(e) does not occur, or we have one of the listed possi-
bilities.

Proof. There are five pairs of points on 8∞ such that if (P,Q) is any such
pair, there is an involutory homology with center P (or Q) whose axis goes
through Q (or P ). G has a normal subgroup E which is elementary Abelian of
order 16. For each pair (P,Q) each element of E either fixes P and Q or inter-
changes them. G induces a transitive permutation group on these ten points.
This means that q + 2 ≤ 10. Since q = p is odd, then p ≤ 7 and since p is
not 7, p = 3 or 5, so p = 3 since p + 1 = 2a, and the plane is Hall as noted
above. QED

28 Lemma. Case O(f) implies that q = 7.
Proof. Hence, again there are 10 centers, implying that q + 1 ≤ 10, so

q = 7. QED

The final case is O(g).
29 Lemma. Case O(g) does not occur.
Proof. If O(g) occurs, then G has a reducible normal subgroup H not

faithful on its minimal subspaces and satisfying the following conditions: Either
the minimal H-spaces have dimension two and H has index 2 in G or the
minimal H-spaces have dimension 1. In the latter case, if H0 is a subgroup fixing
some minimal H-space pointwise, then H/H0 is cyclic and G/H is isomorphic
to a subgroup of S4. However, since G is primitive, this cannot occur. QED

So, what we have proved is that the set {axis,coaxis} is invariant. It remains
to consider if we have more than three homology groups of order q + 1.

Now assume that there are at least three homology groups of order q + 1.
If there are at least three axes of homologies, we may appeal to the previous
arguments. Hence, assume that there are at least two distinct homology groups
H1 and H2 of order q + 1 with the same axis L and let M denote the coaxis.
Let F denote the full homology group with axis L and coaxis M . Then, F is in
GL(4, q), so that F | M is a subgroup of GL(2, q). Since F is a homology group,
the Sylow v-subgroups for v odd are cyclic, and cyclic or generalized quaternion
if v = 2 (see, e. g., [20, p. 11 (3.5)]). Let K∗ denote the kernel homology group
of order q− 1. Acting on M , FK∗/K∗ in PGL(2, q) is a subgroup of a dihedral
group of order 2(q±1) or isA4, S4, A5, and has order divisible by (q+1)/(2, q−1).
Moreover, if q is even then H is cyclic, as noted below.

30 Theorem. (Johnson [15]) Let π be a translation plane with spread in
PG(3, q) that admits an affine homology group H of order q + 1 in the transla-
tion complement. If any of the following conditions hold, π constructs a regular



Several homology groups 29

hyperbolic fibration with constant back half and hence a corresponding flock of a
quadratic cone.

(1) q is even,

(2) q is odd and q ≡ 1mod 4,

(3) H is Abelian,

(4) H is cyclic.

What the previous result shows is that we may assume that Hi are cyclic
when q is even or q ≡ −1mod 4.

31 Lemma. If H1 and H2 are both cyclic then H1 ∩H2 has order dividing
2.

Proof. Then the component orbits of Hi are reguli by Theorem 1 and the
following theorem for the finite case, for i = 1, 2. Assume that H1∩H2 has order
> 2. Then there is an orbit of components ofH1 with at least 3 elements common
to an orbit of H2. Since both components orbits are reguli, the two reguli are
equal, implying that the two orbits are equal. This implies that H1 = H2, since
these groups have the same axis and coaxis. QED

32 Lemma. If H1 and H2 are both cyclic then F , the full homology group
with axis L, has order at least (q + 1)2/(2, q − 1), and the order of F divides
q2 − 1. Then one of the following occurs:

(1) q ∈ {3, 7} and FK∗/K∗ is a subgroup of a dihedral group of order 2(q+1),

(2) q ∈ {3, 5, 7} and FK∗/K∗ is isomorphic to A4,

(3) q ∈ {3, 5, 7, 9, 11} and FK∗/K∗ is isomorphic to S4 or

(4) q ∈ {3, 7, 9, 11} and FK∗/K∗ is isomorphic to A5.

Proof. The first part follows from the previous lemma. Hence, FK∗/K∗

has order at least (q + 1)2/(2, q − 1)2 and contains a cyclic subgroup of order
(q + 1)/(2, q − 1). Assume that q is even. Then FK∗/K∗ is a group of order
divisible by (q + 1)2 and contains a cyclic subgroup of order q + 1. Since the
group is a subgroup of a dihedral group of order 2(q ± 1) or A4, S4 or A5, this
cannot occur. Hence, q is odd and there is a subgroup of FK∗/K∗ of order
divisible by (q + 1)2/4, containing a cyclic subgroup of order (q + 1)/2. If the
group is a subgroup of a dihedral group of order 2(q + 1), then q + 1 divides
8. Hence, q = 3 or 7. So, assume that FK∗/K∗ is A4, S4 or A5. Therefore,
(q + 1)2 ≤ 4 |A4, S4 or A5|. Then, (q + 1) ≤ 4{√3,

√
6,
√
15}, implying that
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q < 15. Thus, q ∈ {3, 5, 7, 9, 11, 13}. Note that 13 + 1 cannot divide any of the
orders of the groups. Hence, q cannot be 13. The exact situation is then given
in the statement of the lemma. QED

33 Lemma. In general, if F is non-solvable then F contains a subgroup
isomorphic to SL(2, 5) and has order dividing q2 − 1, so 120 divides q2 − 1.

Proof. By Lüneburg [20] (3.6)(b), p. 10, there is a unique subgroup of F
isomorphic to SL(2, 5). QED

Assume that F is non-solvable and q = 9. Then the 3-elements must be
planar and since the spread is in PG(3, 9), the 3-elements are Baer collineations.
However, the 3-elements in F are affine homologies. If q = 11 and F is non-
solvable, we would require that SL(2, 5) contains a subgroup of order 12, since
120(q − 1)/z, the order of F , must divide 112 − 1, implying that (q − 1)/z = 1.
However, this cannot occur.

We note that all translation planes of order q2 for q = 5, 7 are completely
known by computer (see [4], [5], [3], [22]). When q = 3 the plane is Hall or
Desarguesian, when q = 5 and we have an affine homology group of order 6, the
group must be cyclic and two distinct groups will generate SL(2, 3). By [5], the
only plane of order 25 to admit SL(2, 3) is the irregular nearfield plane of order
25. When q = 7 the only planes admitting homology groups of order 8 may be
determined from [3] as is sketched in the appendices.

If there are cyclic homology groups of orders q + 1 and we have situation
(3) in the previous lemma, assume q = 9 or 11. When q = 9, the 3-elements are
Baer, a contradiction. When q = 11, we would require two distinct subgroups
of order 12 in F , which we have indicated do occur, as indicated in the section
on examples.

Hence, we have shown that when there are cyclic homology groups of orders
q + 1, the planes are determined as stated in the main theorem.

Hence, assume that at least one of the groups, say H1, is not cyclic. This
means that q ≡ −1mod 4.

34 Lemma. If F is non-solvable then q ∈ {3, 7, 11, 19, 23}.
Proof. Since FK∗/K∗ has a subgroup of order (q + 1)/2, then (q + 1)/2

divides 60. The possible numbers that occur when q ≡ −1mod 4 are exactly as
indicated (note of course that 39 is not a prime power). QED

We have considered q = 11 previously. If q = 19 then 120(18)/z must divide
192 − 1 = (18 · 20), implying that 18/z is either 3 or 1. If 3, then the plane is
a nearfield plane admitting a non-solvable group, a possibility. If 18/z = 1 then
there must be a subgroup of SL(2, 5) of order 20, still this is a possibility. If
q = 23 then 120 must divide 232 − 1 = 22 · 24, a contradiction.

Hence, we obtain the following lemma.
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35 Lemma. If F is non-solvable the possibilities are as listed in the theorem.

36 Lemma. If FK∗/K∗ is either A4 or S4 then (q + 1)/2 divides 23 · 3,
implying that q ∈ {3, 7, 11, 23}.

Proof. Simply compute using the restriction that q ≡ −1mod 4. QED

37 Lemma. If there are at least three affine homology groups of order q+1
then q = 23.

Proof. If q = 23, it follows that if there are three affine homology groups
then acting on one coaxis L, the group is a subgroup of GL(2, 3) × Z11 (the
kernel homology group then is isomorphic to Z22). But, this is the irregular
nearfield group for the plane of order 232. However, there then cannot be two
subgroups of order 24 with the same axis. Hence, q = 23. QED

Hence, either we have one of the situations listed in the main theorem or
FK∗/K∗ is a subgroup of a dihedral group of order 2(q + 1), there are two
homology subgroups of F of order (q + 1), at least one of which is not cyclic.

38 Lemma. If FK∗/K∗ is a subgroup of a dihedral group of order 2(q+1)
then F contains a normal subgroup N of order (q + 1)/2.

Proof. We know that there is a subgroup of FK∗/K∗, which contains a
normal cyclic subgroup of order (q +1)/4, since H1K

∗/K∗ has order (q+1)/2.
(Note that there is a unique involutory homology with a given axis.) Hence,
there is a normal subgroup N of F of order (q + 1)/2. QED

39 Lemma. If H1 and H2 are distinct subgroups of F of order (q+1) then
H1 ∩H2 is a subgroup of order either (q + 1)/4 or (q + 1)/2.

Proof. Let H1,H2 be two subgroups of F of order q+1. Consider NH1 of
order (q + 1)2/2z, where z = |H1 ∩N |. We note that (q + 1)2/2z must divide
q2−1, since homology groups are semi-regular, implying that (q+1)/2z divides
(q − 1). Since (q + 1, q − 1) = 2, it follows that (q + 1)/2z divides 2. Hence,
z = (q + 1)/4 or (q + 1)/2. QED

Hence, both H1 and H2 contain a common subgroup of order divisible by
(q+1)/4, normal in N and hence H1∩H2 contains a normal cyclic subgroup of
order (q+1)/4. Also, H1N has order dividing q2 − 1 and is 4(q+1) or 2(q+1).
Since (q− 1)/2 is odd, it follows that H1N has order 2(q+1). So, we obtain the
following lemma.

40 Lemma. H1N = H2N is a group of order 2(q + 1).

Proof. Similarly, H2N has order 2(q + 1) and N is a subgroup of order
(q + 1)/2, whose quotient modulo K∗ is cyclic of order (q + 1)/4 or (q + 1)/2.
Since F has order dividing q2 − 1, it follows that H1N = H2N . QED
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Thus, letting F− denote H1N , it follows that H1 and H2 are normal sub-
groups of F− of index 2. There are q − 1 H1-orbits of length q + 1 that are
permuted by H2. Since 4 does not divide q−1, there is an H2-orbit of H1-orbits
of length dividing 2. So, there is a subgroup H−

2 of H2 of order (q + 1)/2 that
fixes some H1-orbit. Since these groups have the same axis and coaxis, it fol-
lows that H−

2 is a subgroup of H1. This means that H1 ∩H2 has order exactly
(q + 1)/2 since H1 = H2. Hence, H1H2 = H1N = H2N .

41 Lemma. H1H2 is transitive on the 1-dimensional GF (q)-subspaces on
the coaxis L.

Proof. Since the order of H1H2 is 2(q+1) and (q−1)/2 is odd, and H1H2

is semi-regular on the coaxis, it follows that the stabilizer of a 1-dimensional
subspace has order dividing (q− 1, 2(q+1)) = 2. Hence, this proves the lemma.

QED

42 Lemma. H1H2K
∗ is regular on L− {0}.

Proof. Again, (q − 1, 2(q + 1)) = 2, implying that the order of H1H2K
∗

acting on L is 2(q + 1)(q − 1)/2 = q2 − 1. Since K∗ is transitive on each 1-
dimensional GF (q)-subspace, we have the proof. QED

43 Lemma. H1H2K
∗ is a subgroup of ΓL(1, q2) ∩GL(2, q).

Proof. Since H1H2K
∗ is regular on L, we may identify L with GF (q2), im-

plying that H1H2K
∗ is a faithful subgroup of ΓL(1, q2) acting on L, by Zassen-

haus [23]. Since H1H2 is an affine homology group, it is in GL(4, q) and acting
on L is a faithful subgroup of GL(2, q). This completes the proof. QED

We have considered this situation in the section on examples and we know
that there is a cyclic subgroup in H1H2. That is, let G = H1H2K

∗. Hence,
the intersection C = G ∩ GL(1, q2) has order divisible by (q2 − 1)/2, since the
mappings in ΓL(2, q) must be GF (q)-linear. Hence, there is a cyclic subgroup
C of order (q2 − 1)/2 in H1H2K

∗ containing K∗. H1H2C then has order q2 − 1,
implying thatH1H2∩C has order 2(q+1)(q2−1)/2/i divides q2−1, where i is the
order of the intersection. Thus, q+1 divides i. Thus, there is a cyclic subgroup
of H1H2 of order (q+1). Hence, without loss of generality, we may assume that
H1 is cyclic of order (q + 1). So, we have a group of order 2(q + 1) admitting
a cyclic subgroup of order (q + 1) that contains a non-cyclic group H2 of order
(q + 1) containing a cyclic subgroup of order (q + 1)/2. We know the Sylow
2-subgroups of a homology group are cyclic are generalized quaternion. Assume
that the latter, that a Sylow 2-subgroup of H1H2 is generalized quaternion.
Let this group be generated by h and t such that h2n

= t4 = 1, h2n−1
= t2,

and tht−1 = h−1, and these are elements of ΓL(2, q) ∩ GL(2, q), suppose that
t : x �−→ xσw, where σ is 1 or q and h : x �−→ xτz, where τ is 1 or q. We may
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assume that H1 is a cyclic subgroup of GL(1, q2) of order q+1. Hence, we may
assume that h is in GL(1, q2). Therefore, τ = 1 and σ = q.

We then have a regular group on L in ΓL(1, q2) generated by t : x �−→ xqw
and s : x �−→ xz, such that the order of z is (q2−1)/2. At any rate, the situation
stated in Theorem 9, as explicated in the examples section, now completely
determines the situation.

This completes the proof of our main result.

4 Applications to conical flock planes

We now are able to combine our results to prove the following theorem.

44 Theorem. Let πH be a translation plane of order q2 with spread in
PG(3, q) admitting a cyclic affine homology group H of order q+1. Let H denote
the regular hyperbolic fibration obtained from πH and let πE be the corresponding
conical flock spread.

Then one of the following occurs.

(1) H is normal in the collineation group FH of πH . In this case, the col-
lineation group of πH is a subgroup of the group of the regular hyperbolic
fibration and induces a permutation group FH/H on the associated q reguli
sharing a component, fixing one, of the corresponding conical flock spread
πE.

If Ker is the subgroup of πE that fixes each regulus then πH is either

(a) Desarguesian or

(b) Kantor-Knuth of odd order or

(c) Ker = K∗, the kernel homology group of order q − 1.

(2) H is not normal in FH and there is a collineation inverting the axis and
coaxis of H. In this case, πH is one of the following types of planes:

(a) André,

(b) q is odd and πH is constructed from a Desarguesian spread by (q+1)-
nest replacement or

(c) q is odd and πH is constructed from a Desarguesian spread by a com-
bination of (q + 1)-nest and André net-replacement.

Proof. Since H is cyclic, we know that the full collineation group of πH
leaves invariant {axis,coaxis} of H. If there is a collineation that inverts the axis
and coaxis, then by the above mentioned result (and reproved for the special
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case q + 1 = 2a and the more general case of arbitrary affine homology groups
of order q+1), the planes are either André, (q+1)-nest plane or a combination
of the two as indicated in the statement of the theorem. The result about the
kernel of the action on the reguli of the conical flock plane follows directly
from [12]. QED
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[2] M. Biliotti, G. Korchmáros: Some finite translation planes arising from A6-invariant
ovoids of the Klein quadric, J. Geom., 37 (1990), 29–47.

[3] C. Charnes, U. Dempwolff: The translation planes of order 49 and their automorphism
groups, Math. Comp., 67 (1998), 1207–1224.

[4] T. Czerwinski, D. Oakden: The translation planes of order twenty-five, J. Combin.
Theory Ser. A, 59 (1992), n. 2, 193–217.

[5] T. Czerwinski: The collineation groups of the translation planes of order 25, Geom.
Dedicata, 39 (1991), n. 2, 125–137.

[6] L.E. Dickson: Linear Groups: With an Exposition of the Galois Field Theory, Dover,
New York, 1958.

[7] D.A. Foulser: Collineation groups of generalized André planes, Canad. J. Math., 21
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Appendix A—Comments

In these two appendices, we offer some of the details of the program that
shows there is no non-Desarguesian plane of order 49 that admits three cyclic
homology groups of order 8. This information was provided to the author by
Professor Ulrich Dempwolff through a series of e-mail exchanges.

By Charnes and Dempwolff [3], there are actually 1347 nonisomorhpic trans-
lation planes of order 49. Some of these planes are transposes of each other and,
in particular, homology groupsHx with axis x = 0 and coaxis y = 0 in one plane
will show up as an isomorphic homology group Hy with axis y = 0 and coaxis
x = 0 in the transposed plane. Hence, the abstract group generated by cyclic
homology groups of order 8 will be the same in either plane. There are exactly
972 translation planes unique up to isomorphism and transposition. Hence, to
determine if a translation plane of order 49 has a cyclic homology group of or-
der 8, we need only check these 972 planes. The program given in Charnes and
Dempwolff [3] has been converted into GAP and the collineation group for the
first 972 planes were searched for homologies of order 8.

We shall list among the 972 planes all planes that have either one, two, or at
least three cyclic homology groups of order 8. The set of planes of order 49 that
admit quaternion homology groups of order 8 is the set of Heimbeck planes. We
refer to Heimbeck [8] for details on these planes.

45 Remark. According to Theorem 11, every translation plane of order q2

that admits at least two cyclic homology groups of order q + 1 is one of the
following:

(1) André,

(2) q is odd and π is constructed from a Desarguesian spread by (q + 1)-nest
replacement or
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(3) q is odd and π is constructed from a Desarguesian spread by a combination
of (q + 1)-nest and André net-replacement.

46 Theorem. Hence, there are at most 26 André planes and 26 (7+1)-nest
planes in combination with André planes of order 49.

Appendix B—The planes admitting cyclic

homology groups of order 8

The reader might also note that the information we obtain here is essen-
tially also available from U. Dempwolff’s website : www.mathematik.uni-kl.
de/~dempw/, but it would be necessary to run the GAP programs for the spreads
and their collineation groups.

Notation. The notation used in the tables is as follows:

Number of the spread set

“Spread” means that the Spread property was checked

“Autgr ok” means that the given group acted indeed as an aut. group

“Ornung G 960” means the group has order 960

“Ornung S 64” means that a S 2 group has order 64

“Anz der fpf 16” means that a S 2 group has 16 elements of order 8

“Anz der homog 8” among these elements are 8 homologies with center
on the line at infinity

“Ordn von Group( homogˆG) 2688” means that the group generated by
the conjugacy class of the first element in homog has order 2688

“H Group( homog[1]ˆG) enthaelt alle Homol.” means that this group con-
tains all homologies thus all 8-homologies.

47 Remark. We are trying to show that there are no non-Desarguesian
translation planes of order 49 that admit cyclic affine homologies of order 8
with at least three axes.

(1) It follows from [15] that either

(a) any cyclic homology group of order 8 in a translation plane of order
49 is normal within the subgroup of all homologies with the same axis
and coaxis or
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(b) the plane is the irregular nearfield planes admittingGL(2, 3)×GL(2, 3)
generated by homologies.

(2) If there is exactly one axis and coaxis, there will be exactly four homolo-
gies of order 8 showing in the output, and the group generated by all
homologies will have order 8.

(3) If there are exactly two homology groups of order 8, the pair {axis,coaxis}
will be fixed by the full collineation group and there will be exactly eight
homologies of order 8 and the group generated will have order 64.

(4) The planes with one cyclic homology group of order 8 will have four ho-
mologies 2-group of order 8, generated by homologies and the planes with
two cyclic homology groups of order 8 will have eight homologies of order
8 and a 2-group of order 64 generated by homologies.

Furthermore, we shall list only the planes that admit at least one cyclic
homology group of order 8.

By the following computer calculations, there are

(5) exactly 11 (ten listed below, of which exactly nine are self-transpose) trans-
lation planes of order 49 admitting exactly one cyclic homology group of
order 8 and

(6) exactly 13 translation planes of order 49 admitting exactly two cyclic
homology groups of order 8, and the irregular nearfield plane admitting
six cyclic homology groups of order 8, all of which are self-transpose.

B.1 The 11 spreads with one cyclic group

(1) Spread Nummer 89 Spread Autgr ok Ornung G 192 Ornung S 64 Anz der
fpf 16 Anz der homog 4, Ordn von Group( homogˆG) 8, H Group( ho-
mog[1]ˆG) enthaelt alle Homol. Self transpose.

(2) Spread Nummer 319 Spread Autgr ok Ornung G 192 Ornung S 64 Anz der
fpf 16 Anz der homog 4, Ordn von Group( homogˆG) 8 H Group( ho-
mog[1]ˆG) enthaelt alle Homol.Self transpose.

(3) Spread Nummer 613 Spread Autgr ok Ornung G 96 Ornung S 32 Anz der
fpf 8 Anz der homog 4, Ordn von Group( homogˆG) 8 H Group( ho-
mog[1]ˆG) enthaelt alle Homol. Self transpose.

(4) Spread Nummer 938 Spread Autgr ok Ornung G 96 Ornung S 32 Anz der
fpf 8 Anz der homog 4, Ordn von Group( homogˆG) 8 H Group( ho-
mog[1]ˆG) enthaelt alle Homol. Self transpose.
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(5) Spread Nummer 939 Spread Autgr ok Ornung G 96 Ornung S 32 Anz der
fpf 8 Anz der homog 4, Ordn von Group( homogˆG) 8 H Group( ho-
mog[1]ˆG) enthaelt alle Homol. Self transpose.

(6) Spread Nummer 943 Spread Autgr ok Ornung G 96 Ornung S 32 Anz der
fpf 8 Anz der homog 4, Ordn von Group( homogˆG) 8 H Group( ho-
mog[1]ˆG) enthaelt alle Homol. Not isomorphic to its transpose. The
transposed spread number will be larger than 972 (this counts for
two spreads with homology groups of order 4).

(7) Spread Nummer 953 Spread Autgr ok Ornung G 192 Ornung S 64 Anz der
fpf 16 Anz der homog 4, Ordn von Group( homogˆG) 8 H Group( ho-
mog[1]ˆG) enthaelt alle Homol. Self transpose.

(8) Spread Nummer 956 Spread Autgr ok Ornung G 96 Ornung S 32 Anz der
fpf 8 Anz der homog 4, Ordn von Group( homogˆG) 8 H Group( ho-
mog[1]ˆG) enthaelt alle Homol. Self transpose.

(9) Spread Nummer 965 Spread Autgr ok Ornung G 384 Ornung S 128 Anz der
fpf 16 Anz der homog 4, Ordn von Group( homogˆG) 8 H Group( ho-
mog[1]ˆG) enthaelt alle Homol. Self transpose.

(10) Spread Nummer 970 Spread Autgr ok Ornung G 576 Ornung S 64 Anz der
fpf 8 Anz der homog 4, Ordn von Group( homogˆG) 8 H Group( ho-
mog[1]ˆG) enthaelt alle Homol. Self transpose

B.2 The 13 spreads with at least two cyclic groups

(1) Spread Nummer 2 Spread, Autgr ok, Ornung G 32256= 29327, Ornung
S 512= 29, Anz der fpf 112, Anz der homog 8, Ordn von Group( ho-
mogˆG) 2688= 273× 7, H Group( homog[1]ˆG) enthaelt alle Homol. This
plane is the Hall plane admitting SL(2, 7), where the 7-elements are Baer.
Self transpose.

(2) Spread Nummer 3 Spread, Autgr ok, Ornung G 3072, Ornung S 1024,
Anz der fpf 432, Anz der homog 8, Ordn von Group( homogˆG) 64, H
Group( homog[1]ˆG) enthaelt alle Homol. Self transpose.

(3) Spread Nummer 13 Spread, Autgr ok, Ornung G 1536, Ornung S 512,
Anz der fpf 112, Anz der homog 8, Ordn von Group( homogˆG) 64, H
Group( homog[1]ˆG) enthaelt alle Homol. Self transpose.
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(4) Spread Nummer 22 Spread Autgr ok Ornung G 768 Ornung S 256 Anz der
fpf 80 Anz der homog 8, Ordn von Group( homogˆG) 64, H Group( ho-
mog[1]ˆG) enthaelt alle Homol. Self transpose.

(5) Spread Nummer 24 Spread Autgr ok Ornung G 1536 Ornung S 512 Anz der
fpf 304 Anz der homog 8, Ordn von Group( homogˆG) 64, HGroup( ho-
mog[1]ˆG) enthaelt alle Homol. Self transpose.

(6) Spread Nummer 106 Spread Autgr ok Ornung G 768 Ornung S 256 Anz der
fpf 80 Anz der homog 8, Ordn von Group( homogˆG) 64, H Group( ho-
mog[1]ˆG) enthaelt alle Homol. Self transpose.

(7) Spread Nummer 131 Spread Autgr ok Ornung G 1536 Ornung S 512
Anz der fpf 272 Anz der homog 8, Ordn von Group( homogˆG) 64,
H Group( homog[1]ˆG) enthaelt alle Homol. Self transpose.

(8) Spread Nummer 191 Spread Autgr ok Ornung G 3072 Ornung S 1024
Anz der fpf 112 Anz der homog 8, Ordn von Group( homogˆG) 64, H
Group( homog[1]ˆG) enthaelt alle Homol. Self transpose.

(9) Spread Nummer 314 Spread Autgr ok Ornung G 9216 Ornung S 1024
Anz der fpf 432 Anz der homog 8, Ordn von Group( homogˆG) 64, H
Group( homog[1]ˆG) enthaelt alle Homol. Self transpose.

(10) Spread Nummer 860 Spread Autgr ok Ornung G 384= 273 Ornung S 128
Anz der fpf 48 Anz der homog 8, Ordn von Group( homogˆG) 8, H
Group( homog[1]ˆG) enthaelt NICHT alle Homol. Self transpose. (The
group does not contain all homologies.)

(11) Spread Nummer 944 Spread Autgr ok Ornung G 1536= 293, Ornung S
512 Anz der fpf 48 Anz der homog 8, Ordn von Group( homogˆG) 64,
H Group( homog[1]ˆG) enthaelt alle Homol. Self transpose.

(12) Spread Nummer 959 Spread Autgr ok Ornung G 768 Ornung S 256 Anz der
fpf 80 Anz der homog 8, Ordn von Group( homogˆG) 64, H Group( ho-
mog[1]ˆG) enthaelt alle Homol. Self transpose.

(13) Spread Nummer 969 Spread Autgr ok Ornung G 13824 Ornung S 512= 29

Anz der fpf 272 Ans der Homog 8, Ordn von Group( homogˆG) 2304=
2832 H, Group( homog[1]ˆG) enthaelt alle Homol. Self transpose.


