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Abstract. This paper is devoted to the study of canonical coordinate systems and the
corresponding exponential maps of n-ary differentiable loops and to the discussion of their
differentiability properties. Canonical coordinate systems can be determined by the canonical
normal form of the power series expansion of the n-th power map x — xoxo---oxoux.
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1 Introduction

The canonical coordinate systems of Lie groups are important tools for the
investigation of local properties of group manifolds. They can be generalized
for non-associative differentiable loops. The first study of the expansion of ana-
lytical loop multiplication in a canonical coordinate system using formal power
series was given in the paper [1] by M. A. Akivis in 1969, (cf. [6, Chapter 2]). The
convergence conditions of power series expansions of loop multiplications were
investigated later in [2] (1986). E. N. Kuzmin in [9] (1971) treated the local Lie
theory of analytic Moufang loops using power series expansion in canonical co-
ordinate systems and gave a generalization of the classical Campbell-Hausdorff
formula. V. V. Goldberg introduced canonical coordinates using power series
expansions in local analytic n-ary loops, (cf. [6, Chapter 3]).

As it is well-known differentiable groups are automatically (analytic) Lie
groups. But in the case of non-associative loop theory the class of C*-differen-
tiable loops contains the class of Cl-differentiable loops for any k < I;k,l =
0,1,...,00, as a proper subclass (cf. P. T. Nagy — K. Strambach [10] (2002)).

The theory of normal forms of C*°-differentiable n-ary loop multiplications
has been investigated in the paper of J-P. Dufour and P. Jean [4], (1985) by the
application of S. Sternberg’s linearization theorem to the coordinate represen-
tation of n + 1-webs, which are the differential geometric structures determined
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by the level manifolds of n-ary loop multiplications and its inverse operations.
J. Kozma in [8] (1987) defined the canonical coordinates of binary C*°-loops by
the linearizing coordinate systems of the square map x — x o x. For Lie groups
these canonical coordinate systems coincide with the classical systems defined
with help of one-parameter subgroups.

Now, we consider a natural generalization of Kozma’s construction to n-
ary CF-differentiable loops. According to Sternberg’s linearization theorem the
linearizing coordinate system of the n-th power map * — xoxo---oxox
has the same differentiability property as the n-ary loop multiplication map if
k > 2. Hence in the following we will assume that the differentiability class C*
of the investigated n-ary loops satisfies k£ > 2. Similar construction for canonical
coordinate systems was introduced by V. V. Goldberg in [6, Chapter 3], in the
case of analytic n-loop multiplications using formal power series expansions.

The author expresses her sincere thanks to Professor Péter T. Nagy for his
valuable suggestion and help.

2 Canonical coordinate systems of n-loops

1 Definition. Let H be a differentiable manifold of class C*, let e € H
be a given element and let m: H" — H, 6;: H" — H be differentiable maps
of class C*, where i = 1,...,n. Then H = (H,e,m,6y,...,0,) is called a C*-
differentiable n-ary loop (or shortly n-loop) with unit element e if the multipli-
cation m and the i-th divisions d;, i = 1,...n, satisfy the following identities:

(1) m(((li), el (Z?zl), (Z‘L), (He_l), el (g)) =a, for all a € H, (1 <i < n), where (;U)
means that the i-th argument has the value x,

(2) m(a1,az,...,a;—1,0i(b,a1,a2,...,6i—1,Qit1,--.,0n),Cit1,...,0n) =b
foralla; e H, (1<i<mn),be H,

(3) di(m(ai,az,...,an),a1,a2,...,04;—1,0i+1,...,0,) = a; for all a; € H,
(1<i<n),be H.

2 Definition. If H is a differentiable manifold of class C¥, e € H is a
given element and m: H" — H, §;: H" — H are differentiable maps of class
CF i = 1,...n, which are defined in a neighbourhood of e € H, then H =
(H,e,m,61,...,0,) is called a C*-differentiable local n-loop with unit element e,
provided that the multiplication m and the i-th divisions §;, i = 1,...n satisfy
the following identities:

(1) m((é), cel (251), (CZL), (221), el (2)) =a, for all a € H, (1 <i < n), where (JZL’)
means that the i-th argument has the value x,
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(2) m(ar,az,...,ai—1,0i(b,a1,a2, ..., @i—1,0i41,- -, 0n), Qix1s---,0n) =D
foralla; € H, (1 <i<mn),be H,

(3) di(m(ai,ag,...,an),a1,a2,...,6i—1,0i+1,-..,0n) = a; for all a; € H,
(1<i<n),be H

in a neighbourhood of e € H.

3 Definition. Let H = (H,e,m,61,...,6,) be a CF-differentiable local n-
loop. A coordinate map ¢: U — RY of class C* of the open neighbourhood
U C H of e € H into the coordinate space R? is called a canonical coordinate
system of H if ¢(e) = 0 and the coordinate function

-1

M=gpomo(p™x - x o) p(U) x - xp(U) =R

of the multiplication map m: H™ — H satisfies
M(z,z,...,x) =nx

for all x € o(U).

We will need the following assertions in the investigation of canonical coor-
dinate systems:

4 Lemma. Let be k > 2 and ¢ a local Ck-diffeomorphism of RY keeping
0 € RY fired which is defined in some neighbourhood of 0 € R? and let ¢/
denote the tangent map of ¢ at0 € RY. We assume that ¢ satisfies ¢«| o) = Aidra
with A # 0,1, —1. Then there exists a unique local C*-diffeomorphism p of RY
keeping 0 € RY fized such that p-¢-p~ ! = b+l 0y and psl(o) = idga-

PROOF. The existence of a local C*-diffeomorphism p of R? satisfying the
conditions of the assertion follows from Sternberg’s Linearization Theorem for
local contractions (cf. [11]) since either the map ¢ or its inverse ¢! is a lo-
cal contraction, the minimum and maximum of eigenvalues of its tangent map
coincide, k > 2 and it satisfies the so called resonance condition A # A" for
any m > 1. The unicity of the map p follows from the ideas of the proof of
Sternberg’s Theorem, since the difference of two solutions must be a fixed point
of a contractive operator on a linear space of differentiable maps. Hence the
difference of these solution is 0. QED

5 Lemma. Let k be a differentiable map of a star shaped neighbourhood
W C RP into R? with k(0) = 0. If there exists a real number 0 < r < 1 such that
k(rx) =rk(z) holds for all x € W then k is the restriction of a linear map.

PRrROOF. Since the map x: W — RP is differentiable one can define the
continuous map w: W — RP satisfying

w(@) = selio) (@) + lalle(e), w(0) =0,
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Hence
5 2) = 7 (5el(0) (@) + el 2)) = 7 5(2) = 1 (mul ) (&) + 2l ().
It follows w(z) = w(r™ z) for any natural number m € N and hence
w(x)= lim w(™)=w(0)=0

for all z € W. QED

6 Theorem. For any C*-differentiable local n-loop H = (H,e,m, 61, ..., 0n)
with k > 2 there exists a canonical coordinate system.

If (U,¢) is a canonical coordinate system of H then for any linear map
A:RY — RY the pair (U, o ) is a canonical coordinate system of H, too.

If p: U — R? and y: U — R are the coordinate maps of canonical coor-
dinate systems of H defined on the same neighbourhood U then o1 is the
restriction of a linear map R? — RY.

PROOF. Let (U, @) be a coordinate system of H, let M be the coordinate
function of the local n-loop multiplication m with respect to (U, @). Now, we
introduce the map G: ¢(U) — R? defined by G(x) = M(z,x, ..., ). Clearly one
has G(0) = 0. Since M (0,...,0,z,0,...,0) = z the tangent map Gy|g: R? — R?
of G at the point 0 satisfies Gi|o = n idge. The map G is of class C* in a
neighborhood of 0 and hence it has an inverse map in a neighborhood of 0 of
the same class C*. We can apply Lemma 4 for G~1. It follows that there exists
a local C*-diffeomorphism p keeping 0 € RY fixed such that (po G op™t), |o =
poGop~t. We consider the composed map ¢ = po @ as the coordinate map of a
new coordinate system (U, ¢) with a suitable neighborhood U. The coordinate
function of the multiplication map m: H® — H satisfies M = po M o p~'. Let
Q@ be the following function

Q:z— Q)= (z,z,...,2): RT - R x R? x --- x R%.
Then we have the equation
G =MoQ = (poMop ") (poQop™)=poGop™ =(poGop'),|o=nidg.

Hence (U, ¢) is a canonical coordinate system of H.
For a canonical coordinate system (U, ¢) of the local n-loop H the coordinate
function

M=pomo(p~x - xp 1) pU) x - xp(U) =R

of the multiplication map m: H" — H satisfies M(x,z,...,z) = nz for all
x € o(U). Hence for arbitrary linear map A\: R™ — R"™ one has

Ao MMy, ..., A3y = A X y) =ny, yerop).
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It follows that (U,1 = X o ¢) is also a canonical coordinate system of H.

Let (U,¢) and (U,1) be canonical coordinate systems of H given on the
same neighbourhood U and let M, and M, be the coordinate functions of the
multiplication map m: H® — H. We denote k = @ o~ 1: ¢(U) — ¢(U). For
all x € p(U) and y € ¥(U) we have

My(z,z,...,z) =nx and My(y,y,...,y) =ny.

Since

My (k(y), 6(y), - -, 6(y)) = 6(My(y,y, .-, y))
we obtain nk(y) = k(ny). Putting z = ny we get k(rz) = rk(z) for all
z € Y(U), where r = % It follows by Lemma 5 that the map x = 1o o~ ! is the
restriction of a linear map. QED

7 Example. The local non-associative loop-multiplication f(z,y) = z+y+
2?y(x — y) is defined in a canonical coordinate system.

3 Exponential map

There are different natural possibilities for the definition of the exponential
map W — H with 0 € W C T,H of C*-differentiable local n-loops. One of them
is analogous to the usual construction in Lie group theory, namely the map exp
could be determined by the integral curves of vector fields defined by the i-th
translations of tangent vectors at the unit element of the n-loop. In binary Lie
groups these curves are 1-parameter subgroups, but for smooth loops it is not
always the case (cf. J. Kozma [8]). An other disadvantage of such construction
is that one can expect only C*~!-differentiability of the the map W — H with
0 € W C T.H which is determined by integral curves of C*¥~!-differentiable
vector fields defined by the i-th translations of tangent vectors.

An alternative natural possibility for the definition of the exponential map
is given by using the construction of canonical coordinate systems studied in
the previous section.

8 Theorem. Let H = (H,e,m,d1,...,6,) be a Ck-differentiable local n-loop
with k > 2. There exists a unique local C*-diffeomorphism exp: W — H, where
W is a neighbourhood of 0 € T, H, such that the following conditions hold:

(i) exp(0) = e and exp(nzx) = m(exp(z),...,exp(x)),
(ii) exp, |o = idr.H.

PrROOF. Let ¢: U — R? be the coordinate map of a canonical coordinate
system (U, ¢) of the local n-loop H. According to Theorem 6 (U, ¢. ]al o) is also
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a canonical coordinate system of H where the vector space T, H is the coordinate
space and @.|q' o ¢: U — T.H is the coordinate map. Let W C .|y " o ¢(U)
be a neighbourhood of 0 € T, H. Then the coordinate function

_ _ 1 _ 1
M:gp*\ologpomo((gp*|ologp) ><---><(<,0*|Olo<p) ) Wx--xW — T.H

of the multiplication map m: H™ — H satisfies M (z,...,x) = nx, or equiva-
lently

m(e™t o pulo(@), . o7 o pulo(@) = ¢ 0 pufo(na)

for any 2 € W. Moreover one has (¢! o ¢4|o),|o = id7, 7. Hence we can define
exp = ¢! o ¢,]o and this map satisfies the conditions given in the assertion.
Let us assume that the map exp: W — H fulfills the conditions (i) and (ii).
Then (exp(W),exp ') is a canonical coordinate system of the n-loop H and
according to the previous theorem the map 6}&)71 oexp: W — T.H is the
restriction of a linear map «: T,H — T,H. Since both of the maps exp and exp
satisfy the condition (ii) the linear map a: TeH — T.H must be the identity
map. Hence exp = exp: W — H which proves that the map exp: W — H is
determined uniquely. QED

9 Theorem. Let H = (H,e,m,01,...,0,) and H' = (H',e/,m',8},...,0))
be Ck-differentiable local n-loops and let exp: W — H, exp’: W' — H' be the
corresponding exponential maps, where W C T.H and W' C T H'.

If a: H — H' is a continuous local homomorphism then the composed map

exp’loaocexp: W — T, H' is locally linear.

PROOF. Let us consider the C*-differentiable binary local loops H and ‘H’
which are determined by the multiplication and division maps of H and H’ in
such a way that in the multiplication and division functions the j-th variable
(j > 3) is replaced by the identity element e € H and ¢’ € H' respectively. The
map «: H — H' is clearly a continuous local loop homomorphism. According to
the result of R. Bodi and L. Kramer [3] the map a: H — H' is CF-differentiable.
Hence according to Lemma 5 the identity

exp’ ™ oav 0 exp(nz) = nexp ™! oo o exp(z),

or equivalently

1

exp’ L oav 0 exp(ry) = rexp’?

o0 0 exp(y)

with y = nx and r = %, implies the assertion. QED
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