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Abstract. This paper is devoted to the study of canonical coordinate systems and the
corresponding exponential maps of n-ary differentiable loops and to the discussion of their
differentiability properties. Canonical coordinate systems can be determined by the canonical
normal form of the power series expansion of the n-th power map x → x ◦ x ◦ · · · ◦ x ◦ x.
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1 Introduction

The canonical coordinate systems of Lie groups are important tools for the
investigation of local properties of group manifolds. They can be generalized
for non-associative differentiable loops. The first study of the expansion of ana-
lytical loop multiplication in a canonical coordinate system using formal power
series was given in the paper [1] by M. A. Akivis in 1969, (cf. [6, Chapter 2]). The
convergence conditions of power series expansions of loop multiplications were
investigated later in [2] (1986). E. N. Kuzmin in [9] (1971) treated the local Lie
theory of analytic Moufang loops using power series expansion in canonical co-
ordinate systems and gave a generalization of the classical Campbell-Hausdorff
formula. V. V. Goldberg introduced canonical coordinates using power series
expansions in local analytic n-ary loops, (cf. [6, Chapter 3]).

As it is well-known differentiable groups are automatically (analytic) Lie
groups. But in the case of non-associative loop theory the class of Ck-differen-
tiable loops contains the class of Cl-differentiable loops for any k < l; k, l =
0, 1, . . . ,∞, as a proper subclass (cf. P. T. Nagy – K. Strambach [10] (2002)).

The theory of normal forms of C∞-differentiable n-ary loop multiplications
has been investigated in the paper of J-P. Dufour and P. Jean [4], (1985) by the
application of S. Sternberg’s linearization theorem to the coordinate represen-
tation of n+1-webs, which are the differential geometric structures determined
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by the level manifolds of n-ary loop multiplications and its inverse operations.
J. Kozma in [8] (1987) defined the canonical coordinates of binary C∞-loops by
the linearizing coordinate systems of the square map x→ x ◦ x. For Lie groups
these canonical coordinate systems coincide with the classical systems defined
with help of one-parameter subgroups.

Now, we consider a natural generalization of Kozma’s construction to n-
ary Ck-differentiable loops. According to Sternberg’s linearization theorem the
linearizing coordinate system of the n-th power map x → x ◦ x ◦ · · · ◦ x ◦ x
has the same differentiability property as the n-ary loop multiplication map if
k ≥ 2. Hence in the following we will assume that the differentiability class Ck
of the investigated n-ary loops satisfies k ≥ 2. Similar construction for canonical
coordinate systems was introduced by V. V. Goldberg in [6, Chapter 3], in the
case of analytic n-loop multiplications using formal power series expansions.

The author expresses her sincere thanks to Professor Péter T. Nagy for his
valuable suggestion and help.

2 Canonical coordinate systems of n-loops

1 Definition. Let H be a differentiable manifold of class Ck, let e ∈ H
be a given element and let m : Hn → H, δi : Hn → H be differentiable maps
of class Ck, where i = 1, . . . , n. Then H = (H, e,m, δ1, . . . , δn) is called a Ck-
differentiable n-ary loop (or shortly n-loop) with unit element e if the multipli-
cation m and the i-th divisions δi, i = 1, . . . n, satisfy the following identities:

(1) m(
(1)
e , . . . ,

(i−1)
e ,

(i)
a ,

(i+1)
e , . . . ,

(n)
e ) = a, for all a ∈ H, (1 ≤ i ≤ n), where

(i)
x

means that the i-th argument has the value x,

(2) m(a1, a2, . . . , ai−1, δi(b, a1, a2, . . . , ai−1, ai+1, . . . , an), ai+1, . . . , an) = b
for all ai ∈ H, (1 ≤ i ≤ n), b ∈ H,

(3) δi(m(a1, a2, . . . , an), a1, a2, . . . , ai−1, ai+1, . . . , an) = ai for all ai ∈ H,
(1 ≤ i ≤ n), b ∈ H.

2 Definition. If H is a differentiable manifold of class Ck, e ∈ H is a
given element and m : Hn → H, δi : Hn → H are differentiable maps of class
Ck, i = 1, . . . n, which are defined in a neighbourhood of e ∈ H, then H =
(H, e,m, δ1, . . . , δn) is called a Ck-differentiable local n-loop with unit element e,
provided that the multiplication m and the i-th divisions δi, i = 1, . . . n satisfy
the following identities:

(1) m(
(1)
e , . . . ,

(i−1)
e ,

(i)
a ,

(i+1)
e , . . . ,

(n)
e ) = a, for all a ∈ H, (1 ≤ i ≤ n), where

(i)
x

means that the i-th argument has the value x,
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(2) m(a1, a2, . . . , ai−1, δi(b, a1, a2, . . . , ai−1, ai+1, . . . , an), ai+1, . . . , an) = b
for all ai ∈ H, (1 ≤ i ≤ n), b ∈ H,

(3) δi(m(a1, a2, . . . , an), a1, a2, . . . , ai−1, ai+1, . . . , an) = ai for all ai ∈ H,
(1 ≤ i ≤ n), b ∈ H

in a neighbourhood of e ∈ H.
3 Definition. Let H = (H, e,m, δ1, . . . , δn) be a Ck-differentiable local n-

loop. A coordinate map ϕ : U → Rq of class Ck of the open neighbourhood
U ⊂ H of e ∈ H into the coordinate space Rq is called a canonical coordinate
system of H if ϕ(e) = 0 and the coordinate function

M = ϕ ◦m ◦ (ϕ−1 × · · · × ϕ−1) : ϕ(U)× · · · × ϕ(U) → Rq

of the multiplication map m : Hn → H satisfies

M(x, x, . . . , x) = nx

for all x ∈ ϕ(U).
We will need the following assertions in the investigation of canonical coor-

dinate systems:
4 Lemma. Let be k ≥ 2 and φ a local Ck-diffeomorphism of Rq keeping

0 ∈ Rq fixed which is defined in some neighbourhood of 0 ∈ Rq and let φ∗|(0)
denote the tangent map of φ at 0 ∈ Rq. We assume that φ satisfies φ∗|(0) = λ idRq

with λ 6= 0, 1,−1. Then there exists a unique local Ck-diffeomorphism ρ of Rq

keeping 0 ∈ Rq fixed such that ρ · φ · ρ−1 = φ∗|(0) and ρ∗|(0) = idRq .

Proof. The existence of a local Ck-diffeomorphism ρ of Rq satisfying the
conditions of the assertion follows from Sternberg’s Linearization Theorem for
local contractions (cf. [11]) since either the map φ or its inverse φ−1 is a lo-
cal contraction, the minimum and maximum of eigenvalues of its tangent map
coincide, k ≥ 2 and it satisfies the so called resonance condition λ 6= λm for
any m > 1. The unicity of the map ρ follows from the ideas of the proof of
Sternberg’s Theorem, since the difference of two solutions must be a fixed point
of a contractive operator on a linear space of differentiable maps. Hence the
difference of these solution is 0. QED

5 Lemma. Let κ be a differentiable map of a star shaped neighbourhood
W ⊂ Rp into Rq with κ(0) = 0. If there exists a real number 0 < r < 1 such that
κ(r x) = r κ(x) holds for all x ∈W then κ is the restriction of a linear map.

Proof. Since the map κ : W → Rp is differentiable one can define the
continuous map ω : W → Rp satisfying

κ(x) = κ∗|(0)(x) + ‖x‖ω(x), ω(0) = 0.
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Hence

κ(r x) = r (κ∗|(0)(x) + ‖x‖ω(r x)) = r κ(x) = r (κ∗|(0)(x) + ‖x‖ω(x)).

It follows ω(x) = ω(rm x) for any natural number m ∈ N and hence

ω(x) = lim
m→∞

ω(rm) = ω(0) = 0

for all x ∈W . QED

6 Theorem. For any Ck-differentiable local n-loop H = (H, e,m, δ1, . . . , δn)
with k ≥ 2 there exists a canonical coordinate system.

If (U,ϕ) is a canonical coordinate system of H then for any linear map
λ : Rq → Rq the pair (U, λ ◦ ϕ) is a canonical coordinate system of H, too.

If ϕ : U → Rq and ψ : U → Rq are the coordinate maps of canonical coor-
dinate systems of H defined on the same neighbourhood U then ϕ ◦ ψ−1 is the
restriction of a linear map Rq → Rq.

Proof. Let (Ū , ϕ̄) be a coordinate system of H, let M̄ be the coordinate
function of the local n-loop multiplication m with respect to (Ū , ϕ̄). Now, we
introduce the map Ḡ : ϕ̄(Ū) → Rq defined by Ḡ(x) = M̄(x, x, . . . , x). Clearly one
has Ḡ(0) = 0. Since M̄(0, . . . , 0, x, 0, . . . , 0) = x the tangent map Ḡ∗|0 : Rq → Rq

of Ḡ at the point 0 satisfies Ḡ∗|0 = n idRq . The map Ḡ is of class Ck in a
neighborhood of 0 and hence it has an inverse map in a neighborhood of 0 of
the same class Ck. We can apply Lemma 4 for Ḡ−1. It follows that there exists
a local Ck-diffeomorphism ρ keeping 0 ∈ Rq fixed such that (ρ ◦ Ḡ ◦ ρ−1)∗|0 =
ρ◦ Ḡ◦ρ−1. We consider the composed map ϕ = ρ◦ ϕ̄ as the coordinate map of a
new coordinate system (U,ϕ) with a suitable neighborhood U . The coordinate
function of the multiplication map m : Hn → H satisfies M = ρ ◦ M̄ ◦ ρ−1. Let
Q be the following function

Q : x 7→ Q(x) = (x, x, . . . , x) : Rq → Rq × Rq × · · · × Rq.

Then we have the equation

G = M ◦Q = (ρ◦M̄ ◦ρ−1)(ρ◦Q◦ρ−1) = ρ◦Ḡ◦ρ−1 = (ρ ◦ Ḡ ◦ ρ−1)∗|0 = n idRq .

Hence (U,ϕ) is a canonical coordinate system of H.
For a canonical coordinate system (U,ϕ) of the local n-loopH the coordinate

function

M = ϕ ◦m ◦ (ϕ−1 × · · · × ϕ−1) : ϕ(U)× · · · × ϕ(U) → Rq

of the multiplication map m : Hn → H satisfies M(x, x, . . . , x) = nx for all
x ∈ ϕ(U). Hence for arbitrary linear map λ : Rn → Rn one has

λ ◦M(λ−1y, . . . , λ−1y) = λ(nλ−1y) = n y, y ∈ λ ◦ ϕ(U).
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It follows that (U,ψ = λ ◦ ϕ) is also a canonical coordinate system of H.
Let (U,ϕ) and (U,ψ) be canonical coordinate systems of H given on the

same neighbourhood U and let Mϕ and Mψ be the coordinate functions of the
multiplication map m : Hn → H. We denote κ = ϕ ◦ ψ−1 : ψ(U) → ϕ(U). For
all x ∈ ϕ(U) and y ∈ ψ(U) we have

Mϕ(x, x, . . . , x) = nx and Mψ(y, y, . . . , y) = n y.

Since
Mϕ(κ(y), κ(y), . . . , κ(y)) = κ(Mψ(y, y, . . . , y))

we obtain nκ(y) = κ(n y). Putting z = n y we get κ(r z) = r κ(z) for all
z ∈ ψ(U), where r = 1

n . It follows by Lemma 5 that the map κ = ψ ◦ϕ−1 is the
restriction of a linear map. QED

7 Example. The local non-associative loop-multiplication f(x, y) = x+y+
x2y(x− y) is defined in a canonical coordinate system.

3 Exponential map

There are different natural possibilities for the definition of the exponential
map W → H with 0 ∈W ⊂ TeH of Ck-differentiable local n-loops. One of them
is analogous to the usual construction in Lie group theory, namely the map exp
could be determined by the integral curves of vector fields defined by the i-th
translations of tangent vectors at the unit element of the n-loop. In binary Lie
groups these curves are 1-parameter subgroups, but for smooth loops it is not
always the case (cf. J. Kozma [8]). An other disadvantage of such construction
is that one can expect only Ck−1-differentiability of the the map W → H with
0 ∈ W ⊂ TeH which is determined by integral curves of Ck−1-differentiable
vector fields defined by the i-th translations of tangent vectors.

An alternative natural possibility for the definition of the exponential map
is given by using the construction of canonical coordinate systems studied in
the previous section.

8 Theorem. Let H = (H, e,m, δ1, . . . , δn) be a Ck-differentiable local n-loop
with k ≥ 2. There exists a unique local Ck-diffeomorphism exp: W → H, where
W is a neighbourhood of 0 ∈ TeH, such that the following conditions hold:

(i) exp(0) = e and exp(nx) = m(exp(x), . . . , exp(x)),

(ii) exp∗ |0 = idTeH .

Proof. Let ϕ : U → Rq be the coordinate map of a canonical coordinate
system (U,ϕ) of the local n-loop H. According to Theorem 6 (U,ϕ∗|−1

0 ◦ϕ) is also
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a canonical coordinate system of H where the vector space TeH is the coordinate
space and ϕ∗|−1

0 ◦ ϕ : U → TeH is the coordinate map. Let W ⊂ ϕ∗|−1
0 ◦ ϕ(U)

be a neighbourhood of 0 ∈ TeH. Then the coordinate function

M = ϕ∗|−1
0 ◦ϕ ◦m ◦ ((ϕ∗|−1

0 ◦ ϕ)−1×· · ·× (ϕ∗|−1
0 ◦ ϕ)−1) : W ×· · ·×W → TeH

of the multiplication map m : Hn → H satisfies M(x, . . . , x) = nx, or equiva-
lently

m(ϕ−1 ◦ ϕ∗|0(x), . . . , ϕ−1 ◦ ϕ∗|0(x)) = ϕ−1 ◦ ϕ∗|0(nx)

for any x ∈W . Moreover one has (ϕ−1 ◦ ϕ∗|0)∗|0 = idTeH . Hence we can define
exp = ϕ−1 ◦ ϕ∗|0 and this map satisfies the conditions given in the assertion.

Let us assume that the map ẽxp: W → H fulfills the conditions (i) and (ii).
Then (ẽxp(W ), ẽxp−1) is a canonical coordinate system of the n-loop H and
according to the previous theorem the map ẽxp−1 ◦ exp: W → TeH is the
restriction of a linear map α : TeH → TeH. Since both of the maps ẽxp and exp
satisfy the condition (ii) the linear map α : TeH → TeH must be the identity
map. Hence ẽxp = exp: W → H which proves that the map exp: W → H is
determined uniquely. QED

9 Theorem. Let H = (H, e,m, δ1, . . . , δn) and H′ = (H ′, e′,m′, δ′1, . . . , δ
′
n)

be Ck-differentiable local n-loops and let exp: W → H, exp′ : W ′ → H ′ be the
corresponding exponential maps, where W ⊂ TeH and W ′ ⊂ Te′H

′.
If α : H → H′ is a continuous local homomorphism then the composed map

exp′−1 ◦α ◦ exp: W → Te′H
′ is locally linear.

Proof. Let us consider the Ck-differentiable binary local loops H̃ and H̃′

which are determined by the multiplication and division maps of H and H′ in
such a way that in the multiplication and division functions the j-th variable
(j ≥ 3) is replaced by the identity element e ∈ H and e′ ∈ H ′ respectively. The
map α : H → H ′ is clearly a continuous local loop homomorphism. According to
the result of R. Bödi and L. Kramer [3] the map α : H → H ′ is Ck-differentiable.
Hence according to Lemma 5 the identity

exp′−1 ◦α ◦ exp(nx) = n exp′−1 ◦α ◦ exp(x),

or equivalently

exp′−1 ◦α ◦ exp(ry) = r exp′−1 ◦α ◦ exp(y)

with y = nx and r = 1
n , implies the assertion. QED
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