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Abstract. It is shown that the every plane of the class of André planes of order qn cor-
responds to a flat flock of a Segre variety Sn−1,n−1 over GF (q) if and only if n is divisible
by q − 1. In addition, there are large numbers of generalized André planes constructed that
produce flat flocks.
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1 Introduction

The connections of the theories of finite geometries is widely expanding and
many diverse geometries are intrinsically related to ‘translation planes’ or rather
to ‘spreads’ in projective spaces. It is now well known that there are connections
of the theories of flocks of hyperbolic quadrics in PG(3, q) and translation planes
with spreads that are unions of reguli mutually sharing two common lines. A
wonderful illustration of a symbiosis between these two theories is illustrated by
the beautiful theorem of Thas [12] and Bader-Lunardon [2], which completely
characterizes ‘hyperbolic flocks’. The hyperbolic flocks corresponding to the
regular nearfield planes were constructed by Thas [12] by geometric methods.
Also, it was shown independently that there are flocks corresponding to certain
irregular nearfields by Bader [1], Baker and Ebert [5] for p = 11 and 23, and
Johnson [10].

1 Theorem (Thas, Bader-Lunardon). A flock of a hyperbolic quadric
in PG(3, q) is one of the following types:

(i) linear,

(ii) a Thas flock, or

(iii) a Bader/Baker-Ebert/Johnson flock of order p2 for p = 11, 23, 59.
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Further contributing to the interconnections between various geometries,
Bader, Cossidente, and Lunardon ( [3], [4]) recently generalized the notions of
hyperbolic flocks that connects with a theory of spreads or translation planes
depending on the notion of an (A,B)-regular spread.

2 Definition. An (A,B)-regular spread in PG(2n+1, q) is a spread S such
that for C in S − {A,B}, the q-regulus generated by {A,B,C} is in S.

The authors have recently studied translation planes of order qn correspond-
ing to certain flocks of Segre varieties Sn−1,n−1 over GF (q). Each associated
spread admits a ‘regulus ‘hyperbolic cover’ which is a union of (qn − 1)/(q − 1)
reguli that share two components.

In Jha and Johnson [8], the emphasis was on semifield planes that can pro-
duce flocks of certain Segre varieties. In this case, there is a cover of the Segre
variety by caps and there is a cyclic group that acts transitively on the caps of
the covers. The flocks obtained are called ‘flat flocks’. In this article, the con-
nections between the Segre varieties and the translation planes were based on
algebraic techniques involving the so-called ‘right, middle, and left nuclei’ of an
associated semifield.

However, if a translation plane exists of order qn and kernel containingGF (q)
that admits two affine homology groups of order q − 1 such that the kernel
homology group of order q − 1 is contained in the product of these two groups
then there is a corresponding flat flock.

In Bader, Cossidente and Lunardon [4], it is shown that the class of Dickson
nearfield planes of orders qn and kernel containing GF (q) always produce such
flat flocks. In this situation, all Dickson nearfield planes are generalized André
planes but not conversely.

In the present article, we exploit this idea and consider the following ques-
tion: Is there a class of translation planes of order qn and kernel con-
taining GF (q) such that each plane of this class corresponds to and
produces a flat flock of a Segre variety Sn−1,n−1?

Since we will be guided by such considerations in André planes, we ask if
there is a fixed order qn such that every André plane of this order produces a
flat flock of a Segre variety?

In this note, we show that flat flocks are ubiquitous in André planes of order
qt(q−1). That is, every such André plane in this class produces a flat flock.

2 Background

Part of this background section is taken from Jha and Johnson [8] and the
reader is referred to this article for additional information.
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As mentioned in the introduction, Bader, Cossidente, and Lunardon ( [3]
and [4]), showed that there are connections between what are called ‘(A,B)-
regular’ spreads and flocks of Segre varieties.

We have defined ‘regulus hyperbolic covers’ in the introduction. We again
merely point out that the definition of a spread admitting a regulus hyperbolic
cover is equivalent to an (A,B)-regular spread. Since every three mutually skew
lines in PG(2n − 1, 2) determine a regulus, we shall usually assume that q > 2
to avoid this trivial case.

3 Definition. Let N = (k+1)(m+1)+1. The ‘Segre variety’ of PG(m, q)
and PG(k, q) is the variety Sm,k of PG(N, q) consisting of the points given by
the vectors v⊗u as v and u vary over PG(m, q) and PG(k, q) respectively (the
decomposable tensors in the associated tensor product of the vector spaces).

When m = k = n, a ‘flock’ of Sn,n is a partition of the point-set into caps
(a set of points no three of which are collinear) of size (qn+1 − 1)/(q − 1). Note
that there would also be (qn+1 − 1)/(q − 1) such caps.

A flock is ‘flat’ if its caps are Veronese varieties Vn obtained as sections of
Sn,n by dimension n(n+ 3)/2 projective subspaces of PG(N, q).

The reader is referred to Hirschfeld and Thas [7], chapter 25 for background
on Veronese and Segre varieties. In particular, the variety considered in the
previous definition is the Veronesian of quadrics of PG(n, q), and sits naturally
in PG(n(n + 3)/2, q). There is a bijection from the Veronesian of quadrics Vn
onto PG(n, q) so that |Vn| = (qn+1 − 1)/(q − 1). Using [7], Theorems (25.1.8),
(25.5.4) and (25.5.8), we see that (i) Vn is a cap of PG(n(n+3)/2, q),(ii) |Sn,n| =
((qn+1−1)/(q−1))2, and (iii) the intersection of appropriate projective subspaces
of dimension n(n + 3)/2 of PG((n + 1)2 − 1, q) with Sn,n are Veronesian’s of
quadrics of type Vn.

When n = 1, S1,1 is a hyperbolic quadric in PG(3, q) and the Veronesian is
a conic of q+1 points in PG(2, q) considered as a section of S1,1 by a PG(2, q).
Hence, the concept of a flock of Segre varieties Sn,n by caps that are Veronese
varieties of type Vn is a direct generalization of flocks of hyperbolic quadrics in
PG(3, q).

Bader, Cossidente, and Lunardon show that the Veronese varieties corre-
spond to GF (q)-reguli and furthermore, show that there is a corresponding
spread.

4 Theorem (Bader, Cossidente, Lunardon [4], Theorem 3.4). Flat
flocks of Sn,n and (A,B)-regular spreads in PG(2n + 1, q) are equivalent.

Hence, we note from Jha and Johnson [8]:

5 Corollary. Flat flocks of Sn,n are equivalent to regulus hyperbolic q-covers
in translation planes of order qn+1.
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3 André planes

Let π be an André plane of order qn and kernel GF (q) that corresponds to a
flat flock of a Segre variety Sn−1,n−1 over GF (q). Let Σ denote a Desarguesian
affine plane of order qn coordinatized by a field F isomorphic to GF (qn) and let
K denote the subfield of F isomorphic to GF (q). We consider the André nets
defined by the following partial spreads:

Aδ =
{
y = xm | m ∈ F ; m(qn−1)/(q−1) = δ

}
.

This partial spread has a set of replacement partial spreads Aiδ, defined as
follows:

Aiδ =
{
y = xq

i
m | m ∈ F ; m

(qn−1)/(q−1)
= δ

}
,

for i = 0, 1, 2, . . . , n − 1.
For each δ in K − {0}, choose a element integer i(δ) between 0 and n− 1.

6 Definition. The ‘multiply-replaced André plane’ with components

x = 0, y = 0, y = xq
i(δ)

m; m
(qn−1)/(q−1)

= δ

shall be denoted by ∪n−1
i=0 A

i(δ)
δ .

We note that the André planes of order qn, for n > 2 have been characterized
by Johnson and Pomareda [11] as exactly those translation planes of order
qn that admit symmetric affine homology groups of orders (qn − 1)/(q − 1)
(symmetric simply means that the axis and coaxis of one homology group is the
coaxis and axis of a second homology group).

First assume that n = t(q − 1). Then

(qt(q−1) − 1)/(q − 1) = 1 + q + q2 + · · ·+ q
t(q−1)−1

=
t(q−1)−1∑
j=1

(qj − 1) + t(q − 1)− 1 + 1.

Hence, q − 1 divides (qt(q−1) − 1)/(q − 1). Consider the Desarguesian group
〈(x, y) �−→ (x, yα); α ∈ K − {0}〉. This group is ‘regulus-inducing’ in the sense
that each orbit of a n-dimensional K-subspace disjoint from x = 0, y = 0 union
x = 0, y = 0 is a K-regulus in the associated projective space.

Now we claim that we also have 〈(x, y) �−→ (x, yα); α ∈ K − {0}〉 as a col-
lineation group of any André spread. To see this, we note that

y = xqm; m(qt(q−1)−1)/(q−1) = δ
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is mapped under (x, y) �−→ (x, yα) to

y = xqmα; m(qt(q−1)−1)/(q−1) = δ = (mα)(q
t(q−1)−1)/(q−1),

since q−1 divides
(
qt(q−1) − 1

)
/ (q − 1). Hence, it follows that we have a ‘regulus

hyperolic cover’. Thus, we obtain the following theorem and its corollary.

7 Theorem. Any André spread of order qt(q−1) and kernel containing GF (q)
admits a regulus hyperbolic cover.

8 Corollary. Any André spread of order qt(q−1) and kernel containing GF (q)
produces a flat flock of a Segre variety St(q−1)−1,t(q−1)−1 over GF (q).

We now consider the converse. We first establish that the ‘carriers’ of a
regulus hyperbolic cover are normally uniquely defined in generalized André
planes.

9 Theorem. Let π be a non-Desarguesian and non-Hall generalized André
plane of finite order qn. If q > 2 and π admits a regulus hyperbolic cover then
the set of two common components is uniquely defined.

Proof. By Foulser [6], if π is not either Desarguesian or Hall then the full
collineation group leaves invariant a unique set of two components. Hence, if
there is a regulus hyperbolic cover, there is a corresponding regulus-inducing
homology group of order q − 1. If q > 2, then q − 1 > 1, implying that the
two fixed components under the regulus-inducing homology group are uniquely
defined. This then implies that the regulus hyperbolic cover is also uniquely
determined. QED

Now assume that an André spread of order qn and kernel containing GF (q)
corresponds to a flat flock of a Segre variety. Assume that the plane is not De-
sarguesian or Hall. Then, there is a homology group of order q − 1 as above,
and q − 1 > 2 by assumption. Furthermore, there is a homology group of or-
der (qn − 1)/(q − 1). By the previous theorem, we may assume that the axes
and centers of both homology groups are the same (note there are ‘symmetric’
homology groups of both orders).

Assume that every André plane π of this order has a regulus-inducing ho-
mology group. Then, there exists an André spread where exactly one André
partial spread is replaced. Since the plane is not Hall, then n > 2. There are
qn+1− (qn−1)/(q−1) remaining components of π. Suppose that this replaced
partial spread is moved by an element σ of the regulus-inducing homology group
of order q − 1. Since the components of π are either of the form y = xq

i
m or

y = xn, it follows that the regulus-inducing group must leave invariant the set of
all components of the general form y = xq

i
m; that is this group must leave the

replaced net invariant. Since this affine homology group of order q−1 must leave
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this net invariant then q−1 divides (qn−1)/(q−1) = 1+n−1+
∑n−1
j=1 (q

j −1),
implying that q − 1 divides n. Hence, we obtain the following result:

10 Theorem. Every André plane of the class of André planes of order qn

and kernel containing GF (q) corresponds to a flat flock of a Segre variety in
Sn−1,n−1 over GF (q) if and only if q − 1 divides n.

11 Remark. It is possible to determine exactly the number of isomorphic
planes within the class of André planes of order qn and kernel containing GF (q).
Roughly speaking, we have (q − 1) choices for δ and n choices for the nets Aiδ.
Hence, potentially, there are (q − 1)n possible planes. Thus, as a rough count,
there are approximately (q− 1)t(q−1) corresponding flat flocks of Segre varieties
St(q−1)−1,t(q−1)−1.

4 Generalized André planes

We now vary the subfield required in the construction of André nets and
construct a tremendous number of generalized André planes of order qq−1 and
kernel containing GF (q) that produce flocks of Segre varieties.

The idea is to construct André nets of degree
(
qt(q−1) − 1

)
/ (qz − 1) with

kernel containingGF (q) for a set of subfieldsGF (qz) ofGF (qq−1) that admit the
homology group of order q−1. We require that (q−1) divides (qt(q−1)−1)/(qz−1).
Since (q − 1) divides

(
qt(q−1) − 1

)
/(q − 1). But, this requirement is satisfied

provided z divides t.
Hence, take a subset of fields {GF (qti); ti | t for i = 1, 2, . . . , k }. For

each such field, consider an André net Aδj where δj ∈ GF (qtj ) and choose a

replacement net Ai(δj )
δi

. Assume that the André nets chosen are mutually disjoint.

Now if we replace by ∪kj=1A
i(δj)
δj

, we obtain a generalized André plane that
admits the homology group of order q − 1 mentioned previously; the regulus-
inducing homology group. Hence, we obtain generalized André planes that are
not necessarily André planes whose spreads are unions of GF (q)-reguli sharing
two components. We formalize this as follows.

12 Theorem. Let π be an André plane of order qt(q−1) and kernel con-
taining GF (q). Using a set {GF (qti); ti | t for i = 1, 2, . . . , k }, choose k
mutually disjoint André nets Aδj corresponding to the subfields GF (qti) where

δi ∈ GF (qti). Then, choose any replacement net Ai(δj )
δj

where i(δj) is an integer
between 0 and ti − 1. Let N denote the net defined by the components of π not
in one of the chosen André nets.

Then ∪kj=1A
i(δj)
δj

∪N is a generalized André plane and corresponds to a flat
flock of a Segre variety in Sq−2,q−2 over GF (q).
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13 Remark. In Johnson [9], there are some constructions of non-André
replacements of André nets. Any of these with the restrictions of the previous
theorem will produce another class of generalized André planes that correspond
to flat flocks.
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