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Abstract. Given a locally affine geometry I' of order 2 and a flag-transitive subgroup
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upper residue of a line of I' by a homogeneous representation in a 2-group. We shall prove
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the classification of flag-transitive c-extended P- and T-geometries.
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1 Introduction

This paper is a continuation of a previous paper [14], by C. Wiedorn and
myself. In [14], developing an idea of Stroth and Wiedorn [17] (but exploited also
in [4], [9] and [8]) we built up a general theory of local parallelisms, geometries
at infinity and shrinkings for geometries with string diagrams (called poset-
geometries in [14]). We applied that theory to a number of examples taken
from the literature, with special emphasis on the investigation of flag-transitive
c-extensions of P- and T-geometries (Fukshansky and Wiedorn [3] and Stroth
and Wiedorn [17]; see also Stroth and Wiedorn [18] for examples not considered
in [3] and [17]). In particular, in Proposition 7.8 of [14] we put in full evidence the
role that a combined analysis of shrinkings and structures at infinity had in [17].
However, by that method, we can only get control over c-extended P-geometries
of rank n > 4 where, by repeating the shrinking procedure n — 3 times, we end
up with the c. P-geometry for 3'Sg, which has the tilde geometry as its structure
at infinity. In all but one of these geometries the structures at infinity are 7T-
geometries, whence known objects (see Ivanov and Shpectorov [6]). So, we can
compare feasible geometries at infinity with feasible shrinkings. The latter have
rank n—1 and, if we work inductively, have already been classified at a previous
step. In this way, one can classify the rank n case, too.

In the remaining cases allowed by the hypotheses of [17] things go differently.
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Apart from two c-extended P-geometries of rank 4 related to Us(2) and 2 Ug(2),
in all remaining cases the (n — 3)th repeated

shrinking is either the c.P-geometry for 26: S5 or 2°: S5 or the ¢.T-geometry
for 26:3'S6. In these cases the geometries at infinity, albeit locally projective,
belong to diagrams that have never been considered in the literature. So, they
are not so useful to get informations on the c-extended geometry I' we want
to describe. However, it turns out that I' now arises from a representation of a
point-residue of I'. (Note that the above mentioned geometries for 26:55, 2°: S5
and 26:3'Sg are indeed affine expansions of abelian representations of the dual
Petersen graph and the tilde geometry, respectively.) This result is obtained
in [17] by a detailed group-theoretical analysis, but one might ask for a more
geometric approach. Let C be the class of c-extended P- or T-geometries of rank
> 3 satisfying the hypotheses of [17] and such that, by repeatedly applying the
shrinking procedure to them, we eventually get the c.P-geometry for 26: S5 or
25: S5 or the c.T-geometry for 2°:3'Sg. By definition, C contains the shrinkings
of all of its members of rank > 4. Let I' be a member of C of rank n > 4
and suppose that we have already proved that every > € C of rank n — 1
is the affine expansion of a representation of a point-residue of . Then the
shrinking of I', being a member of C of rank n — 1, is the affine expansion of a
representation of the upper residue of a line of I'. If this is sufficient to claim
that I itself arises from a representation of a point-residue of I', then I itself is
determined, provided that we know all representations of the point-residues of
I" (as it happens for the point-residues allowed by the hypotheses of [17]).

In this paper, inspired by a lemma of Stroth and Wiedorn [17, Lemma 6], we
shall prove two theorems that can do the above job. Referring to Section 5 for
their precise statements, here we only give a rough exposition of their content.
Let I be a flag-transitive geometry of rank n > 4, with diagram and order as
follows, where X denotes a class of partial linear spaces, no matter which.

0 c 1 2 n—3 n—2 X n-—1
1 2 2 2 2

Let ¥ be the shrinking of I' and {p,l, P} be a {0,1,2}- flag of I". Suppose
that I' satisfies the Intersection Property and X is the affine expansion of a
representation of Res™ (/) in a 2-group. Then, under certain hypotheses on the
stabilizers of [, p and P in Aut(I"), the group Aut(I") is essentially a semi-direct
product of a representation group for Res(p) by the stabilizer of p in Aut(T).
The paper is organized as follows. In Section 2 we recall some basics on
geometries with string diagram and the definition of locally affine and locally
projective geometries. In Section 3 we recall the essentials on shrinkings, but we
only consider locally affine geometries, in order to avoid complications unnec-
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essary in this paper. In this way, however, we do not go very far beyond [17].
In Section 4 we discuss representations of locally projective geometries of or-
der 2 and their affine expansions. Most of what we say in Section 3 is taken
from [12], [14, Section 2.8] and [18, Section 2], but a couple of results are also
proved that do not appear in any of the above references. The main theorems
of this paper are stated in Section 5 and proved in Section 6. In Section 7
(Theorem 60) we show how those theorems can be applied to the geometries
considered in [17]. We gain a remarkable simplification of the arguments of [17].
We also make a little progress with respect to [17], giving a characterization of
the c-extended P-geometry for Js 2 (Theorem 61), which is not included in
the classification of [17] since, contrary to the hypotheses of [17], it involves the
P-geometry for 3'Mao as a residue.

2 Basics on geometries with string diagram

2.1 Terminology and notation

We follow [11] for basic notions of diagram geometry. In particular, all ge-
ometries are residually connected and firm, by definition. Let I" be a geometry
of rank n, with string diagram and types 0, 1,...,n—1 given in increasing order
from left to right, as in the following picture:

0o & 1 A 2 n—2X,_1n-1
where the labels X7, Ao, ..., X,,_1 denote classes of rank 2 geometries, no matter

which. In the sequel, we take the writing x € I' as a shortening of the phrase
“x is an element of I'” and we denote by t(z) the type of an element x € I'.
Given two elements z,y € I', we write © < y (respectively x < y) when x and y
are incident and t(x) < t(y) (resp. t(x) < t(y)). When = < y we will freely use
expressions as “z is below y”, “y is above x”, “y contains x”, “x belongs to y”,
and others in this style. The elements of type 0, 1 and 2 are called points, lines
and planes, respectively. Two points (lines) are said to be collinear (coplanar)
if they belong to a common line (plane). The elements of type 3 will also be
called 3-spaces.

0o X 1 X 2 X3 3

points lines planes 3-spaces

The elements of type i are called i-elements and we denote by IV the set of
i-elements of I'. For a subset J C I := {0,1,...,n — 1}, we put I/ := UjesT7,
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the set of elements of type ¢ incident to x. When ¢ = 0,1,2 we also use the
following notation: P(x) :=I'%(z), L(z) := T'(x) and P(z) := I'*(z).

If J C I, the J-truncation Trj(T') of T is the geometry induced by I' on
'\ The residue of an element = € T' will be denoted by Resp(z) (also Res(z)
when no ambiguity arises). If 0 < ¢(x) < n — 1, the lower residue Resy. (x) of x
(the upper residue Resf(z)) is the poset-geometry induced by I' on the set of
elements below (above) z.

2.2 The intersection property

The Intersection Property ((IP) for short) can be formulated in various
equivalent ways (see [11, Chapter 6]). We choose the following formulation: we
say that a geometry I" with string diagram satisfies (IP) if the both the following
hold for any two elements X,Y € I':

(IP1) if P(X)NP(Y) # 0 then P(X)NP(Y) = P(Z) for some Z € T.
(IP2) if P(X) C P(Y) then X < Y.

In particular, if (IP2) holds then no two distinct elements of I" have the same
set of points. In this case, if P(X) = {x1,z9,...,2} we may write X =
{z1,z9,...,2m}, but we will use this shortened notation only for lines.

By [11, Lemma 7.25], when I' is locally affine or locally projective (see the
next subsection), (IP) can be formulated in the following way, easier to check
in practice:

(LL) no two distinct lines of I" are incident with the same pair of points and the
same property holds in Res'(X), for every X € T of type t(X) < n — 2
(where n = rank(I")).

2.3 Pre-parallelisms, structures at infinity and parallelisms

Let T' be a geometry with string diagram and rank(I') = n > 2. A pre-
parallelism of T' is an equivalence relation 7 on I'? such that no two ele-
ments of [0 of different type correspond in 7. (Pre-parallelisms are called
type-compatible equivalence relations in [14].) Given a pre-parallelism 7 of T',
when two elements X,Y € I'>? correspond in 7, we write X7Y and we say that
X and Y are parallel in 7 (also m-parallel). The class of 7 containing X will be
called the parallel class of X in m and will be denoted by X™.

The structure at infinity T' /7 of (I, 7) is the incidence structure of rank n—1
over the set of types {0, 1,...,n — 2}, defined as follows: For i =0,1,...,n—2,
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the elements of I'/7 of type i are the parallel classes of the (i 4+ 1)-elements of
I' and two parallel classes X™ and Y™ are declared to be incident in I'/7 when
some member of X7 is incident in ' to some member of Y™. The function p,
sending X € I'>? to X7 is a surjective morphism from Tro(T") to I'/7. We call
it the projection of I onto I' /7. We warn that I' /7 is not a geometry in general,
but it is a geometry in many interesting cases.

An automorphism of (I',m) is an automorphisms of I' that permute the
classes of 7. The automorphisms of (I', 7) form a subgroup of Aut(I"), denoted
by Aut(T', 7). Clearly, Aut(I', ) induces in I'/7 a subgroup of Aut(I'/~).

Following Buekenhout, Huybrechts and Pasini [1], we say that a pre-paral-
lelism 7 of I' is a partial parallelism of T' if it satisfies the following: For any
choice of X, Y, X', Y’ € " with X7 X', Y7Y’and X <Y, if P(X")NP(Y') # ()
then X’ <Y".

Let 7 be a partial parallelism. Then no two distinct m-parallel elements of
I'>0 have any point in common (see [14]). Therefore, given a point p and an
element X of type t(X) =i > 0, at most one element of I'(p) is 7-parallel to
X. That element, if it exists, will be denoted by 7(p, X). A partial parallelism
7 is said to be a parallelism if 7(p, X) exists for any X € I'>? and any point p.

1 Proposition (Pasini and Wiedorn [14, section 2.5]). Let m be a
pre-parallelism of I'. Then:

(1) 7 is a partial parallelism if and only if, for every point p, the projection
pr of T onto T'/m induces an isomorphism from Resp(p) to the structure
induced by I'/m on the set pr(Resr(p)).

(2) m is a parallelism if and only if, for every point p, the projection p, induces
an isomorphism from Resp(p) to T'/m.

2.4 Locally affine and locally projective geometries

Given integers ¢ > 1 and n > 2, a locally affine geometry of order g and
rank n is a geometry I'" with diagram and orders as follows, where the label Af
denotes the class of affine planes and X is a given class of rank 2 geometries, no
matter which:

0 Af 1 2 n—3 n—2 X n-1

qg—1 q q q q

(We do not assume that I" admits order at the type n — 1.) It follows from the
diagram that Res(z) = AG(n — 1, ¢q), for z € ™1, The class of affine planes of
order 2 is also denoted by the following symbol:
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2:
c X

1 2 2 2 2

A locally projective geometry of order g is a geometry with diagram and orders
as follows:

X

3 Shrinkings

3.1 The local parallelism of a locally affine geometry

Let T be a locally affine geometry of rank n > 3. As Res(A) is an affine
geometry of rank n — 1 for A € I'"~!, a unique parallelism 74 is defined in
Res(A). These parallelisms form a coherent system, namely:

(LP) For any element X € I'<"~! of type #(X) > 1 and any (n — 1)-elements
A,B > X, w4 and 7p induce the same parallelism on Res™ (X).

We call the family «y := {ma} g4ern—1 the local parallelism of T'. The members of
7 are equivalence relations on certain subsets of I N T'<"~1  As relations are
sets of pairs, we can form the union Uy := U(ma | A € T 1) of the members of
~. The relation U~ is reflexive and symmetric, but it is not transitive, in general.
We call its transitive closure the closure of v and we denote it by |v]. Clearly,
|v| is a pre-parallelism of Tr,,_1(I"), but possibly not a partial parallelism. Also,
for every A € I'™~1, the natural parallelism 7 4 is a (possibly proper) refinement
of the relation |v]4 induced by [v] on Res(A).

A pre-parallelism 7 of I is called an extension of « if w induces 74 in Res(A)
for every A € T™!. If moreover 7 is a partial-parallelism, then we say that it is
a strong extension of v. We say that v is extensible if it admits an extension. If
admits a strong extension, then we say it is strongly extensible. Note that, if 7 is
an extension of 7, then || is a refinement of the pre-parallelism induced by 7 on
Tr,—1(T"). We say that a pre-parallelism 7 of T is a completion of ~ if it induces
|7] on Tr,—1(I"). Completions always exist, even if v is non-extensible. All of
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them are joins |y| U~,_1, where 7, _1 is an equivalence relations on I'"~!. The
completion obtained by choosing the identity relation as 7,_; is the minimal
completion of . We denote it by [y]. The canonical completion of -y, denoted
by (v), is obtained by choosing v, 1 as follows: Two elements A, B € I~}
correspond in 7,1 if and only if, for every X € Res(A4) NT>Y we have X |v|Y
for at least one Y < B, and the same holds if we permute the roles of A and
B. We call I'/[y] and T'/(v) the finest and the canonical structure at infinity of
(I, 7). By Pasini and Wiedorn [14, Theorem 3.11], if y is extensible then both
I'/[v] and I'/(7) are geometries, locally projective when n > 3.

Since [y] and () are uniquely determined by 7, which in its turn is uniquely
determined by I', we have Aut(I') = Aut(I',[y]) = Aut(T, (v)). Clearly, the
identity automorphism ¢ of I' induces a surjective morphism from I'/[y] to I/ (7).
Similarly, if 7 is a refinement of () (or a completion or an extension of ) then
¢ induces a surjective morphism from I' /7 to I'/(7y) (respectively, from I'/[y] to
I'/m). In particular, I'/(7) is a homomorphic image of I'/[7].

3.2 Shrinkings

Given a locally affine geometry I' of rank n > 3, let v = {ma}aern-1 be its
local parallelism. Given an element X of type 1 < ¢(X) < n — 1, we denote
by 7x the parallelism induced by 74 on Res™ (X), for A € I'""!(X). By (LP),
mx does not depend on the choice of A € IT""!}(X) and, for any Y > X, 7y
induces 7y on Res™ (X). Let X be the incidence structure of rank n — 1 defined
as follows:

Elements. The O-elements of 3 (also called ‘points’ of ) are the lines of T.
Fori=1,2,...,n—2, the i-elements of 3 are the pairs (X, L) with X € I'"*! and
L a class of the equivalence relation induced by 7x on the set £(X) = I''(X).

Incidence. A point ! of ¥ and an element (X, L) are declared to be incident

when | < X and [ € L. Two elements (X, L) and (Y, M) with ¢(X) < t(Y) are
incident when X <Y inI"and L C M.

The structure X is not connected, in general. However,

2 Proposition (Stroth and Wiedorn [17], Pasini and Wiedorn [14]).
Let X be a connected component of X.. Then X is a geometry. Furthermore:

(1) If n > 3 then X is locally affine, with the same order as T.
esy (/) = Res or every line l o elonging to .. More explicitly, the
2) R l R fE ) f line l of T bel Y. M licitly, th

mapping sending X € Res{t (1) to the pair (X, L), where L is the unique
class of mx containing l, is an isomorphism from Rest (1) to Resx/(l).
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(8) The lines of T' belonging to ¥ form a class of the equivalence relation |v];
induced by || on T'L.

(4) If T' satisfies the Intersection Property (IP), then 3 also satisfies (IP).

The connected components of ¥ are called shrinkings of I'. Given a class A
of [v]1, let ¥ be the shrinking of I having A as the point-set. Given a subgroup
G < Aut(T'), let G be the set-wise stabilizer of A. Clearly, G, stabilizes ¥ as a
whole, acting on it as group of automorphisms. Let K be kernel of that action.
(Note that K is contained in the element-wise stabilizer K, of A but, if 3 does
not satisfies (IP), then Ky might be smaller than Kj.) The claims gathered in
the next proposition easily follow from Proposition 2 (2):

3 Proposition. Given a line l € A, let Gy be the stabilizer of | in G and
K" be the element-wise stabilizer of Res{ (1). Then G; < Gy, Ky, < K;" and
K,' /Ky, is the element-wise stabilizer of Resx(l) in Gx /Ky, namely G, acts on
Resy (1) in the same way as on Resj: (1).

4 Corollary. If G is flag-transitive in ', then Gy /Ky, is flag-transitive in
3.

When n > 3, ¥ is locally affine of rank n — 1 > 3. So, we can consider a
shrinking of ¥, too. Continuing in this way, we obtain a series of repeated shrink-
ings 31 =3,%9,..., %, 9, of rankn—1,n—2,...,2. When I' is flag-transitive,
every member of this series is uniquely determined up to isomorphism. In this
case we call 3J; the ith-shrinking of I'. In particular, > = 31 is the first shrinking
of I'. The (n — 2)th-shrinking is actually the last one but, in general, it saves
almost no track of the structure of I'. So, people generally stop the shrinking
process at step n — 3. Accordingly, we call 3, _3 the ultimate shrinking of T'.

4 Representations and affine expansions
of locally projective geometries of order 2

4.1 Representations

Throughout this section R is a given group and A is either a locally projec-
tive geometry of order 2 and rank n > 2 or a geometry of rank n = 2 where
every line has exactly 3 points. We assume that A satisfies the ‘weak intersection
property’ (IP2). Following Ivanov and Shpectorov [6], we say that a mapping
p:AY — Ris a representation of A in R if it satisfies the following:

(R1) p(z)? =1 for every point x € A%

(R2) if l = {z,y, 2} is a line of A, then p(z) = p(x)p(y);
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(R3) R = (p(z))geao-

We extend p to A by putting p(X) := (p(2)),ep(x) for every X € A. (Note that,
in this way, when 2 € A° the symbol p(x) can be read in two ways, either as
an element of R or as the group generated by that element, but this ambiguity
will cause no confusion in the sequel.) By (R1) and (R2), p(X) is an elementary
abelian 2-group of order < 2+, for every X € A’. In particular, if [ is a line
then p(l) is elementary abelian of order 1,2 or 4. (Note that p(z) = 1 is allowed
in (R1).) The image p(A) of A by p is the poset {p(X)}xea of the p-images
of the elements of A, equipped with the inclusion relation. Clearly, p induces a
homomorphism of posets from A to p(A). In the sequel we also use the letter p
to denote this homomorphism; the context will make it clear if we refer to the
representation or to the homomorphism induced by it.

We say that p is locally faithful if p(x) # 1 for every x € AY. In this case, p({)
is elementary abelian of order 4, for every line I € Al. Hence p(z) # p(y) for any
two collinear points z,y € AY and p(X) is elementary abelian of order 2°+!, for
every X € A’. Nevertheless, p might be non-injective, as it might map distinct
non-collinear points onto the same involution of R. If p is injective then we say
that p is faithful. In view of (IP2), p is faithful if and only if the homomorphism
p: A — p(A) is an isomorphism.

Let Aut(p) be the set-wise stabilizer of p(A) in Aut(R). We say that an
automorphism g of A lifts to Aut(p) if pg = agp for a (unique) oy € Aut(p). The
automorphisms of A that lift to Aut(p) form a subgroup Aut,(A) of Aut(A)
and the mapping pau : Aut,(A) — Aut(p) that maps g € Aut,(A) to its
lifting oy is a homomorphism from Aut,(A) into Aut(p). Following Ivanov and
Shpectorov [6], we say that a subgroup G < Aut(A) is p-admissible if G <
Aut,(A). If Aut,(A) = Aut(A) then p is said to be homogeneous.

Following [6], we say that a representation p : A — R is universal if the
relations embodied by (R1) and (R2) give a presentation of R. Universal repre-
sentations are unique modulo isomorphisms and every representation of A is a
homomorphic image of the universal one. More explicitly, if p; : A — R; and
p2 1 A — Ro are representations of A and p; universal, then py = @p; for a
unique homomorphism ¢ : Ry — Ry. If moreover ps is also universal, then ¢ is
an isomorphism. As a consequence, universal representations are homogeneous.

A representation p : A — R is abelian if R is abelian (whence it is an ele-
mentary abelian 2-group). An abelian representation is universal (as an abelian
representation) if R is the abelian group presented by the set of relations (R1),
(R2). Universal abelian representations are also homogeneous and

every abelian representation of a given geometry A is a homomorphic image
of the universal abelian representation of A.
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Remark. A representation is an embedding in the sense of [14] and [12]
if and only if it is faithful. If R is elementary abelian, then p is a projective
embedding in the sense of Ronan [15] if and only if it is locally faithful.

4.2 Affine expansions

Given A as in the previous subsection, let p : A — R be a faithful repre-
sentation of A. The affine expansion of A to R by p is the geometry Ex,(A)
of rank n + 1 defined as follows: The 0-elements of Ex,(A) (also called points
of Ex,(A)) are the elements of R and, for every i = 1,2,...,n, the i-elements
of Ex,(A) are the right cosets p(X)r for r € R and X € A*"!. The incidence
relation is the natural one, namely inclusion. (We warn that many authors, as
Stroth and Wiedorn [18] for instance, call affine expansions affine extensions.)

Throughout the rest of this section we put I' := Ex,(A), for short. If
X € A", then p induces a faithful representation px of Resx (X) into p(X). As
Vx := p(X) is elementary abelian of order 21 and Res, (X) = PG(i,2), px
realizes Res\ (X) as PG(Vx) in Vy, the latter being regarded as a GF(2)-vector
space. So, Ex, (Res, (X)) = AG(i + 1,2). On the other hand, Resp (p(X)r) =
Ex, (Res, (X)) for every r € R. Hence Resy (p(X)r) = AG(i + 1,2). Thus, T’
is locally affine, of order 2 and rank n + 1. Clearly, the residues of the points of
I' are isomorphic to A. Moreover, I' inherits (IP2) from A.

The relation ‘being cosets of the same subgroup’ is a parallelism of I". We call
it the natural parallelism of I'. Throughout the sequel, we denote the natural
parallelism of I' by the symbol 7,. As the point-residue of I' are isomorphic to
A, Proposition 1 (2) implies the following:

5 Proposition. I'/7, = A.

Denoted by « the local parallelism of I', 7, is an extension of . However,
7 is non-strongly extensible in general. So, in general, 7, is not a completion of
v and A = I'/7, is a proper homomorpic image of I'/(y). More explicitly, the
following holds:

6 Proposition (Pasini and Wiedorn [14, Prop. 2.4]). Fork <n —1
and an element X € AF, put R[X] := (p(Y))yearti(x)y- Then the classes of |4]
contained in the m,-parallel class {p(X)r}rcr bijectively correspond to the right
cosets of R[X] in R.

In particular, given a point p € A and an element ry € R, the induced
sub-geometry of I formed by the cosets p(X)rrg for X > p and r € R[p)| is the
shrinking of T containing the line p(p)ro € T'L.

7 Corollary (Pasini and Wiedorn [14, Cor. 2.2]). 7, is a completion
of v if and only if R = R[X] for every X € A"~2.
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We shall now describe Aut(I',m,). Note first that, in general, Aut(I',7,) <
Aut(T"). The action of R on itself by right multiplication induces on I" a subgroup
Tr of Aut(I', 7,). We call T the translation group of (I, 7,) (also the translation
group of the affine exzpansion I'). Clearly, Tr acts regularly on I'’. For an element
r € R, we denote by ¢, the element of Ty corresponding to r. By (R3), T =
(t p(x))zeno- Also, for r € T9, we denote by L, the stabilizer of r in Aut(T', w,) and
by K, the element-wise stabilizer of Resp(r) in Aut(T"). So, L, N K, is the kernel
of the action of L, in Resp(r). In view of the isomorphism Resr(r) = I'/7,
L, N K, is also the kernel of the action of L, in I'/m, = A.

8 Proposition.
(1) L, N K, =1 for any r € T°.
(2) Tr is the kernel of the action of Aut(I',w,) on I'/m,.
(3) Nawm) (Tr) = Aut(L', m)).

PROOF. Let k € H, := L, NK,. Then k € L, for every s € I'? collinear with
r, since the lines of I' have size 2. As k acts trivially on I'/7,, k also belongs to
H,. The connectedness of I' now implies that & € H, for every r € I'?. Claim (1)
is proved. Turning to (2), let K be the kernel of the action of Aut(I', 7,) on I /m,,.
By (1), K acts semi-regularly on I'Y. On the other hand, K contains T, which
is transitive on I'’. Hence K = Tk.

We shall now prove (3). As Tr < Aut(I',7,), we only must prove that
Npw(m) (Tr) < Aut(I,7,). By way of contradiction, suppose that g normal-
izes Tg but does not preserve m,. Then, for some i = 1,2,...,n there are
i-elements Xl,XQ,Yl,}/Q of I' such that g(Xl) = XQ, g(}/l) = YQ, X17TPY1 but
Xo and Y3 are not m,-parallel. Let ¢ € Tp map Y7 onto X;. Then tgt~tg~1
maps Xo onto an element Z := t(Y3) which, being 7,-parallel to Y5, cannot be
m,-parallel to X5. On the other hand gt~ lg~! € Ty, as g normalizes Tx. Hence
tgt 1g~! =t; € Tx. Therefore Z = t1(X5) must be m,-parallel to Xo. We have
reached a contradiction.

9 Corollary. Suppose that K, = 1 and that L, induces on A its full auto-
morphism group. Then Aut(I') = Aut(T', 7,).

By Proposition 8, Aut(I',7,) is the semi-direct product of T and L, for
r € T9. The group Aut(p) acts naturally on I' as a subgroup of L,, where u
stands for the point of I' corresponding to the unit element 1 € R. In general,
L, is larger than Aut(p). However:

10 Corollary. If p is homogeneous then L, = Aut(p). If moreover K, =1,
then Tr Aut(p) = Aut(I', m,) = Aut(I).
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Let p; : A — R be another faithful representation of A and ¢ be a mor-
phism from p to p;, namely a homomorphism ¢ : R — R; such that ¢p = p;.
Then the mapping Ex(p) : I' — I'1 := Ex,, (A) sending p(X)r to p1(X)e(r) is a
covering. The universal cover of Ex,(A) is the affine expansion of the universal
representation of A (Pasini [12, (3.3)]).

4.3 A characterization of affine expansions

Let I' = Ex,(A). For every X € A<"~!  the subgroup p(X) < R, regarded
as a subgroup of the stabilizer in Aut(T") of the point 1 € I'?, is contained in the
element-wise stabilizer of Res;t (p(X)). This remark entails a characterization of
affine expansions:

11 Proposition. Let ' be a locally affine geometry of order 2, satisfying
(IP2). For a point py € %, put A := Resr(pg) and suppose that Aut(T') admits
a subgroup R with the following properties:

(1) R acts regularly on T'%;

(2) there exists a faithful representation p : A — R such that, for everyl €
L(po), p(l) belongs to the element-wise stabilizer of Res: (1) in Aut(T').

Then I = Ex,(A) and R is the translation group of the expansion I'.

PROOF. By (1), for every point 2 € I' there exists a unique element 7, € R
such that r,(pg) = x. We shall first prove the following:

N (X) = r;l(X) for every X € I'’? any two points 2,y € P(X).  (°)
Assume first that 2 and y are collinear. Put m = {z,y} and | = r;!(m). By
the regularity of R on I r, = r;p(l). Hence ry_l(X) = p(l)r;1(X). How-
ever, either r;1(X) = [ or r;1(X) € Resf (). By (2), p(l) stabilizes r}(X).
So, 7, 1(X) = r;1(X). Claim (°) follows from this and the connectedness of
Resy (X) when ¢(X) > 1. Clearly, r; ' (X) € Resr(po). Put a(z) = ry for z € TV
and a(X) = p(r; 1(X))r, for X € T>Y. By(2), this definition is consistent. It is
straightforward to check that « is an isomorphism from I' to Ex,(A). QED

5 Main results

In this section I' is a given finite locally affine geometry of rank n > 4
and order 2. We assume that I' is flag-transitive and satisfies the Intersection
Property (IP).
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Henceforth, G < Aut(I") is a given flag-transitive automorphism group of
I'. For an element X € I', we denote by Gx the stabilizer of X in G. The
element-wise stabilizer of Res(X) (respectively, Res™ (X), Res™ (X)) in Gx will
be denoted by Kx (resp. K}, Ky ). For X,Y € I"we put Gxy = GxNGy. Note
that, for a point-line flag {p,l}, K, < K; = Kl+ NG, and G)p;/K; is the group
induced by Gp; on Res(p,l) = Res™(I). Clearly, |G, : Gp,| =2 > |K;" : K. So,
Gpi/K; has index 2 in G/K;. Also, G, K, /K;" = G, /K. If |K}" : Kj| = 2,
then G]DJKZJF/KZJr = Gl/KlJr whereas, ileJr = K then GZ/KZJr = 1/ K contains
Gp,/K; as a subgroup of index 2. Note also that, for a plane P >, Gp/Kp is
isomorphic to either A4 or Sy, the latter being always the case when n > 4.

We put C; := Npep)Kp where, according to the conventions stated in
Subsection 2.1, P(l) stands for the set of planes on [. In other words, Cj is
the stabilizer in G, of all lines on p coplanar with [. (Indeed, by (IP), if a
subgroup of G),; stabilizes all lines on p coplanar with [, then it also stabilizes
all planes P > [.) Also, C is the stabilizer of all lines coplanar with [, no matter
if they contain p or not. Clearly, K}, < C; and, by (IP), C; < K. The following
conditions, stated for a given point-line flag {p,[}, will be assumed in our two
main theorems.

(A1) |K;": K| =2, namely G, /K, = G//K;".
(AQ) C) < K.
(A3) |C): K| < 2.

We will also assume the following, where ¥(I) denotes the shrinking of I' con-
taining the line [ as a point:

(B1) X(I) = Ex.(Res™ (1)) for a suitable faithful representation ¢ : Res™(l) — E,
where E is a 2-group.

In view of the conditions we are going to consider next, we need to state a few
preliminary conventions. Let A(l) be the point-set of ¥(I), namely the parallel
class of [ in the closure of the local parallelism of I'. The set-wise and the element-
wise stabilizers of A(l) in G will be denoted by Gy and Kx;, respectively.
Clearly, Gy,;)/Kx) is a subgroup of Aut(X(l)). Chosen an isomorphism « :
Ex.(Rest (1)) — (1), let 7@ be the a-image of the natural parallelism 7. of
Ex.(Res™ (1)), namely: two elements X and Y of () correspond in 7 precisely
when their pre-images a~1(X) and o }(Y) correspond in m.. Then 7% is a
parallelism of ¥(I) and extends the local parallelism o of ¥(I). However, in
general, 7% is not a completion of o (see Corollary 7), hence Aut(X(l),n<)
might be a proper subgroup of Aut(X3(l)). We assume that, nevertheless,
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(BQ) GZ(Z)/KE(I) S Aut(E(l),wO‘).

£

By (B2), we can define the action Gy of Gy on Res™ (1), the latter being
regarded as the geometry at infinity %(I)/7g of (X(1), 7). As Gi < Gy, an

action Gi° < Gy of Gy on Y(l)/m¢ is also defined. The following is our final

assumption on X (I):

(B3) G =G5,

The next lemma, to be proved in Subsection 6.1, is useful for a better under-
standing of the hypotheses of the following two theorems, which are the main
results of this paper.

12 Lemma. Assume that conditions (A2) and (A3) hold. Then |K,| < 2
and one of the following occurs:

(I) K,=C;=1.
(II) K, =1 and |C)| = 2.
(II1) |Kp| =2 and C; = K,, x K, where q is the point of | different from p.

13 Theorem (Outer Representation). Assume that the pair (T, G) sat-
isfies (A1)-(A3), (B1)-(B3) and the following condition, where p and | are as
above and P € P(l):

(C) KinZ(Gp) < (.
Moreover, when C; # 1 we also assume the followings:
(D1) Cg,(Cr(G1)) = G-

(D2) Let X < G, be such that |Gp; - X| = |K;: KN X| =2 and either Gp; =
X x K, (when |Ky| = 2) or C; < X (when K, =1). Then (X%) < G).

Then there exist a subgroup R, < G and a faithful representation p, : Res(p) —
R, such that G = R,G, (namely, R, is transitive on the point-set of I'). More-
over all the following hold, where G, is the normalizer of p, in Gy, namely

Gy = {9 € Ng,(Ro) | po(1)? = po(g(l)) for all linesl > p}.
(1) Gp has index <2 in G, and it acts flag-transitively on Res(p).
(2) If C; =1 then G, = Gp.
(3) If |K,| = 2, then G, = K, x G,.
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(4) If G, < Gy, then Res(p) admits another representation p : Res(p) — Rj <
G, isomorphic to p,, Gy also normalizes p}; and G, \ G, permutes p, with

Po-

(5) If RoN G, =1 then I' = Ex, (Res(p)) and R, is the translation group of
the affine expansion I'.

14 Theorem (Inner Representation). Assume that the pair (I',G) sat-
isfies (A2), (A3), (B1)-(B3) and that C; # 1. When K, = 1, we also assume
that (I', G) satisfies hypothesis (C) of Theorem 13. Then there exist a normal
subgroup R; < G, and a locally faithful representation p; : Res(p) — R; such
that the action of G, on R; by conjugation coincides with the action induced by
p. Moreover:

(1) If K, # 1 then p; is faithful.

(2) Let K, =1, but assume that (I',G) satisfies (D1) of Theorem 13. Then p;
18 faithful.

We will prove theorems 13 and 14 in Section 5. The next corollary will be
proved at the end of Section 5:

15 Corollary. ﬁuppose that (T, G) satisfies the hypotheses of Theorem 13
and let p,, R, and Gy, be as in that theorem. Suppose moreover that G, /K, is
simple. Then the followings hold:

(1) Either R,NG, =1 and I = Ex,, (Res(p)), or G, < R, and G = R,K,.

(2) Assume that C; # 1 and let R; be as in Theorem 14. Then R; = G, (= G,
if Kp =1) and G = R,R; K.

6 Proof of theorems 13 and 14

We shall prove Lemma 12 first (Subsection 6.1). In the proof of Theorems 13
and 14, we shall discuss each of the cases (I), (II) and (IIT) of Lemma 12 sepa-
rately. However, some preliminary work can be done before to split our discus-
sion according to those cases. We shall do that in Subsections 6.1 and 6.2. The
proof of Theorems 13 and 14 will take Subsections 6.3, 6.4, 6.5, 6.6 and 6.7.
We will consider case (I) of Lemma 12 first (subsection 6.3). After that, we will
turn to case (III), constructing the inner representation in Subsection 6.4 and
the outer representation in Subsection 6.5. Case (IT) will be examined for last,
in subsections 6.6 and 6.7. Corollary 15 will be proved in Subsection 6.8.
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6.1 Proof of lemma 12 and more on Cj;, K; and Kfr

Throughout this subsection we only assume that (', G) satisfies (A2) and
(A3) for a given point-line flag {p,l}. We shall state a few preliminary results
before to tackle the proof of Lemma 12.

16 Lemma. Given a plane P € T2, Gp induces Sy on Res™ (P).

PROOF. By (A2) and the flag-transitivity of G, for every line m of P, K,
contains elements that fix m point-wise but permute the two points of P exterior
to m. Hence the group Gp/K, induced by Gp on the point-set X of P contains
all transpositions of X. Namely, Gp/K, = Sy. QED

17 Corollary. G, is transitive on the set of ordered pairs of coplanar lines
through p.

Proor. This immediately follows from Lemma 16. QED

18 Lemma. If m is a line through p coplanar with I but distinct from I,
then C,, NC) = K.

PRrOOF. Suppose the contrary, namely C; N C,, > K,. Then C; = C,, by
(A3). Corollary 17 and the connectedness of Res(p) now imply that C,, =
for every line m on p. Hence Cj fixes all lines on p. By (IP), C; = K, contrary
to the initial assumption C; N C,, > K.

PROOF OF LEMMA 12. We are now ready to prove Lemma 12. By (A3),
either C; = K, or |C; : K,| = 2. Suppose first that C; = K,. No mention
of the particular point p of [ is made in the definition of Cj. So, if | = {p,q}
we also have C; = K,. It follows that K, = K, for any two collinear points
p,q. The connectedness of I' forces K, = 1, and we have case (I). Suppose
that |C; : Kp| = 2 and K, # 1 and let | = {p,q}. Then K, # K,. Hence
K, < K, K, = (Kp, K,) < C). Assumption (A3) now forces K,K, = C; and
|KpyK, - Ky| = |Kp : (K,NK,)| = 2. Let r be a third point, coplanar with [, and
m = {p,r}, n = {q,r} be the lines joining r with p and ¢q. Then C,, = K, K, and
Cn = KyK,. Also, C,,,NCy, = K,, by Lemma 18. Therefore K, K, NK K, = K,.
Hence K,,N K, < K,. Accordingly, K,NK, < K,NK,. By symmetry, K,NK, =
K, N K,. Let ® be the graph with the lines of I' as vertices, where two lines
are adjacent when they are coplanar and meet in a point. Then ® is connected,
by the residual connectedness of I'. Hence K, N K, = K, N K, for any line
li = {p1, 1 }. Therefore, K,NK, = 1. Hence |K,| = |K,K, : K;| = |C} : K;| =2
and C; = K, x K. QED

19 Lemma. Let X be a subgroup of Gy, transitive on P(l).

(1) If either X < G, or K, =1, then Ck,(X) = C).
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(2) If X £ Gp and |K,| = 2, then Ck,(X) = {1,ij} < Cj, where i and j are
the involutions of K, and K, respectively (and | = {p,q}).

In particular, Ck,(Gp1) = C; in any case. If K, =1 then Cg,(G;) = C;. When
|K,| = 2, then Ck,(Gy) ={1,1ij}.

PRrROOF. Let g € K;\ C;. Then ¢ acts non-trivially on Res™(P), for some
plane P € P(l). Explicitly, ¢ fixes both points of [ and permutes the remaining
two points of P. Let S be a 3-space on P. As g € K, g stabilizes S and the three
planes of S through [. It is now easy to see that g acts trivially on exactly one of
those three planes, say P’, and P’ # P. On the other hand, as X is assumed to
be transitive on P(l), X contains an element f mapping P onto P’. Clearly, g
cannot centralize f. Hence g ¢ Ck,(X). Therefore, Ck,(X) < Cj. On the other
hand, C; < G). Hence (1) holds when |C;| < 2. Assume that |K,| = 2. Both K,
and K, are central in G ;. Hence G); also centralizes C; = K, x K. On the
other hand, if g € G; \ G, then g permutes p and ¢, and we have (2).

By Lemma 19, an action of K;/C; on G is also defined. The following can be
proved by the same argument used for (1) of Lemma 19.

20 Lemma. Cg, /¢, (Gpy) = 1.

As () is also normal in K", we can consider the quotient K l+ /C}. Clearly,
k% € C) for every k € K l+ . By this remark we immediately obtain the following:

21 Lemma. Kl+/Cl is an elementary abelian 2-group.

For k € K;/C), put w(k) = {P € P(l) | k € K5/C;}. (Note that C; < K,
for every P € P(1)).

22 Lemma.

(1) If k # 1, then w(k) is a geometric hyperplane of the point-line system
(P(1),T%(1)) of Res™ ().

(2) m(kikz) = (w(k1) Nm(ka)) U [P\ (m(k1) U (ka))].
(3) Ifk?l 75 ,ICQ then 7T(k1) 75 7T(k2).

ProoOF. Let k € K;/Cy, k # 1. Then P(k) # P(l). Let S be a 3-space on .
As k fixes both points of [, it acts trivially on either exactly one or each of the
three planes of S on I. So, claim (1) holds. If K /C) contains either both k;
and k9 or none of them, then it also contains k3 = k1k3. On the other hand, if
K /Cy contains only one of ki or ka, then it does not contain k3. Equality (2)
follows from these remarks. Finally, let 7(k;) = 7 (k). Then k;'k; € Kp/C)
for every P € P(1), namely ky 'k; = 1.
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Conversely, for P € P(l), put 7*(P) := (K;NKp)/Cp = {k € K;/C; | P €
m(k) }. The mapping 7* sending P € P(l) to #*(P) is a locally faithful rep-
resentation of Res'(l) in the dual of K;/Cj, the latter being regarded as a
GF(2)-vector space, as we may in view of Lemma 21. More explicitly:

23 Lemma.
(1) |K;/Cy: 7*(P)| =2 for every P € P(l).

(2) If Py, Pa, Py are the three planes through | in a given 3-space S > 1, then
7T*(P3) D) 7T*(P1) N W*(PQ) and 7T*(P1) =+ W*(Pg).

Proor. If ki,ko € KZ/CZ \ K;/Cl, then kikoy € K;/Cl Hence |Kl/Cl :
™ (P)| < 2. If #*(P) = K;/Cj, namely Ky, = K, then K; = ﬁXeP(l)K;( = ()
by the transitivity of G); on P(l). So, K; = C}, contrary to (Al). Claim (1) is
proved. Given Py, P, P3 in the same 3-space, the inclusion 7*(P;) N 7*(P) C
7*(Ps) is obvious. It remains to prove that 7*(P;) # 7*(P,). Suppose to the
contrary that 7*(P;) = n*(P,) = H, say. Then P3 € w(h) for every h € H,
as {Py, P>, P3} is a line of Res™(l) and P, P, € w(h), which is a subspace
of the point-line system of Res™(l) (Lemma 22 (1)). On the other hand, let
k € K;/C;\ H. Then 7(k), being a hyperplane of Res™(l), meets the ‘line’
{P1, Py, P3} non-trivially. However, 7(k) contains neither P; nor P». Hence P3 €
w(k). It follows that P3 € w(k) for all k € K;/Cj, namely 7*(P3) = K;/C;. This
contradicts (1). QED

Let A1(l) be the set of lines parallel to [ in the local parallelism of I'. That is,
A1 (1) is the neighborhood of [ in the collinearity graph of ¥(1), with [ € A;(1) by
convention. The following lemma, albeit quite trivial, is crucial for the sequel.

24 Lemma. Nyep, ) Km < C).

We finish this subsection by showing that assuming condition (C) of Theo-
rem 13 is equivalent to assume that K; N Z(Gp) = 1.

25 Lemma. C¢,(Gp) = 1, for every plane P > 1.

PrROOF. Let z € C¢,(Gp). By the flag-transitivity of Gp on Res™(P), z €
Cc,,(Gp) for every line m of P. By Lemma 18, z € K, for every point ¢ of P.
Hence z =1, by Lemma 12. QED

6.2 Lemmas on Gy and Ky

In this subsection we assume that (I', G) satisfies (B1)-(B3). As in the para-
graph before (B2), a is a given isomorphism from Ex.(Res"(l)) to 3(I). Let
T := Tg‘fl be the a~!-image of the translation group Tx of Ex.(Res™(l)). For
every plane P € P(l), put tp := at.a~!, where e is the involution of (P). Then
T = (tp)pep); as E = (e(P))pepq)- Moreover, T is regular on the point-set
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A(l) of ¥ and normal in Aut(X(1), 7). In fact, by Proposition 8, T" is the kernel
of the action of Aut(X(1),7%) on X(I)/7% = Res™ (1).

26 Lemma. T is a normal subgroup of Gx;)/Kxy. Hence Gy /Ky is
a semi-direct product of T' by GY = Gj°.

Proor. By (B2), Gx(/Kx() normalizes T'. It remains to prove that 7' <
Gyy/Ksq)- Given P € P(l), let g € G map [ onto the line [; of P parallel to
l. By (B3), there is an element f € G; that acts on X(I)/7% in the same way
as g. So, gf ! maps [ onto I; and acts trivially on ¥(I)/7%. By Proposition 8,
gf~! induces tp on X(I). Hence tp € Gyy/Ksq)- Therefore T < Gy /Ks)-
The second claim of the lemma follows from the first one and the regularity of
T on A(l).

27 Corollary. Kfr = Ky-

PROOF. Clearly, Ky < Kl+ . Conversely, as K;r acts trivially on Resl+ =
3(1)/m¢ and, by (B2), K; /Ky preserves 72 by (B2), K, also acts trivially
in Res™ (m) for every line m € A(l) coplanar with [ in I'. Namely, K}, = K;" for
every such line m. By the connectedness of %(1), K;g =K l+ for every m € A(l).
Hence Kfr = Ky QED
Let T be the pre-image of T in the projection of G's;;) onto Gsy;)/ K5y ;) and put
Z = Ckyy, (T). Clearly, Z(Gxw) < Z < Z(Ks()) and, since both Ky;) and
T are normal in Gy, the latter normalizes Z. In particular, if |Z| < 2, then
Z = Z(Gsqy)-

28 Lemma. Suppose that (I',G) satisfies (A3). Then T is a 2-group and
ZNK; <C. If moreover K;” # 1 (as when (I, G) satisfies (A1) or (A2)), then
1#£ 7.

PrOOF. T is a 2-group by (B1) and K" is a 2-group by lemmas 12 and 21.
Hence T is a 2-group by Corollary 27. Clearly, Z N K; < K,, for every line
m € A1(1). Hence Z N K; < C; by Lemma 24. Finally, if K;" # 1 then Z # 1, as
both Ky = Kfr and T are 2-groups.

6.3 Outer representation when C; =1

In this subsection we assume that (I, ) satisfies (A1)-(A3), (B1)-(B3) and
(C) of Theorem 13, and that K,, = Cj, = 1 for a given point-line flag {po,lo}.
We shall use the following shortened notation: Gg := G),, G1 = Gy, Go1 :=
Gt Ko i= Kpy, K1 = Ky, Ki := K7, C = Cyy, 3 := %(lp) and A := A(lp).

As C = 1 by assumption, K;” = Ky is an elementary abelian 2-group
(Lemma 21). Hence Z = Ck,,(T).

29 Lemma. |Z| =2, ZNK; =1 and Z = Z(Gx). Moreover, Mer K} = 1.
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PrOOF. We have |Z| =2 and Z N K; = 1 by Lemma 28 and Z = Z(Gy)
because |Z| = 2. The last claim of the lemma follows from Lemma 24 and the
transitivity of 7' on the point-set A of X. QED

We denote by zy; the unique involution of Z.

30 Lemma. The involution zx, is the only element of Kx, that permutes the
two points of 1, for every linel € A.

PrOOF. Clearly, zx, has the above property, as it switches the two points of
lp and is centralized by T', which is transitive on A. Conversely, suppose that
z € Ky satisfies the above property. Then zzy, € K for every line [ € A. Hence
zzs; = 1 by the third claim of Lemma 29. QED

As zyy is uniquely determined by 3 and the latter is uniquely determined by
any of the lines [ € A, we can also write z; instead of zx, for [ € A. With this
notation, we can state the following:

31 Lemma. [z, 2y,] =1 for any two coplanar lines [,m on py.

PROOF. Let P be the plane on [ and m. By applying Lemma 30 to ¥(m) we
see that z,, permutes [ with the line [; of P parallel to [. Hence, it permutes z;

and z;,. However, (1) = 3(l1), whence z; = z;,. Therefore 2, commutes with
Zl. QED

Given a plane P on pg, let I, m,n be the three lines of P through py and put
hp = z1Zmzn. In view of Lemma 31, this definition is consistent, namely it
does not depend on which order is put on the triple {l,m,n}. Note also that,
if we replace pg with any other point p; of P, and l1,m1,n; are the lines of P
through p; parallel to [, m and n, then 2, = 2, 2p,, = 2, and 2, = 2z, whence
hp = 21, Zm, %n, -

32 Lemma. hp € K.

PRrROOF. By Lemma 23, 7*(P) is a hyperplane of K;. Pick k € K; \ 7*(P).
Then k permutes m and n. Accordingly, z¥ = z,, namely

ko™ =z znk. (1)

(Recall that all elements involved here are involutions.) On the other hand,
2y, permutes | with [1, whence it stabilizes Y(I). Hence z,, normalizes Ky =
K;(z;). Therefore,

k' = 2k (2)

for a suitable k; € K; and e € {0,1}. On the other hand, as k¥ ¢ K, and z,
permutes [ with /1, we also have

ke K, \ Kp. (3)
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If e =0, (2) and (3) imply k1 € (KN K},) \ Kp, which is a contradiction, since
K;NK;, C Kp. Therefore e = 1, that is:

k'™ = z1kq. (4)

By comparing (1) with (4) we obtain that zk1 = zp2,k, namely zz,2z, =
kik~!'. Hence hp € K;, as k1k~! € K.

33 Corollary. hp = 1.

PRrROOF. As Gp permutes [, m, n, it centralizes hp. Hence hp = 1 by Lemma
32, assumption (C) and Corollary 25.

34 Lemma. For any two lines I, m on pg, if 21 = 2, then Il =m.

PRrROOF. Put p1 = z/(pg). Then | = {po,p1}. So, if 2; = z,, then | and m
have the same points, whence | = m by (IP).

We can now construct a representation p, : Res(po) — Ro := (21)1e(p)> Where
L(pp) is the set of lines on pg. We put p,(l) = z for every | € L(pg). By
Corollary 33, p, is indeed a representation, faithful by Lemma 34.

35 Lemma. R, is transitive on the point-set of I' and Gog normalizes R,.

PrOOF. The second claim is obvious. We shall prove the first claim by in-
duction on the distance d(p,po) of a point p from pg in the collinearity graph
of T'. Suppose first that d(p,pop) = 1. Then p = z/(pg) where I = {p,po}. If
d(p,po) = d > 1, let ¢ be a point at distance d — 1 from pg and collinear with p.
Then ¢ = r(po) for a suitable r € R, by induction. The point r~!(p) is collinear
with pg. Hence r~1(p) = 2(po) for I = {po, 7~ (p)}. Finally, p = rz(po)-

By Lemma 35, R, <G = R,Gy. In this case, all claims of Theorem 13 are proved.
(Claim (5) follows from Proposition 11.)

6.4 Inner representation when |K,| =2

In this subsection we assume that (I', G) satisfies (A2), (A3) and (B1)-(B3),
and that |K,,| = |C}, : K| = 2 for a given point-line flag {po,lo}. We use the
same shortened notation as in Subsection 6.3, thus writing C for C},, G for Gy,
and so on. Moreover, for a point p we denote by 4, the involution of K. So, if
lo = {po, qo}, the element u;, := ip,i4, is the unique involution of C' centralized
by Gy (see Lemma 19 (2)). When K;~ > K7, w, is also the unique involution of
C centralized by K" and neither iy, nor iy, centralizes the elements of K"\ K.
By comparing these remarks with Lemma 28, we obtain the following:

36 Lemma. C > Z > (u,) = Z(Gy). [for > Ky, then Z = (uy,).

The previous lemma shows that w, is uniquely determined by Y. The latter
is uniquely determined by any of the lines [ € A, w; = u;, for any [ € A.
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37 Lemma. Given a plane P on pg, letl, m,n be the three lines of P through
po. Thenluy, up] =1 and wup,u, = 1.

PRroOOF. Let {po,p,q,r} be the point-set of P, where l = {po,p}, m = {po, ¢}
and n = {po,r}. Then w; = iyi, and u, = ipyiq. In order to show that
[u, um] = 1 we only need to prove that [i,,i,] = 1. This can be done as fol-
lows: p and ¢ are collinear, as the lines [ and m are coplanar. Therefore, if
n1 = {p,q}, we have C,,, = K, x K, hence [i,,i,] = 1. We shall now prove
that wu,u, = 1. By definition, wu,u, = ipipipyiqip,ir- As shown above,
the involutions iy, ip, i¢, i pairwise commute, as the points pg,p,q,r are mu-
tually collinear. Hence wjtmtn, = ipyipiqir = iy, , where l; = {q,r}. However,
l1 € A(l). Therefore u;, = u;. So, wjumu, = 1. QED

38 Lemma. For any two lines I, m on po, if u; = uy then l =m

PRrROOF. Let I = {po,p} and m = {pg, ¢}. Then u; = ip,ip and wy, = ipiq. If
U; = Uy, then i, = iy, whence p = ¢q. Consequently, [ = m.

We define the representation p; : Res(po) — Ri := (z1)icr(p,) Dy putting
pi(l) = w for every | € L(pg). Lemmas 37 and 38 imply that p; is indeed a
faithful representation. As u; € Gy for every [ € L(py), the group R; is contained
in Gy. Clearly, it is normal in Gg, as claimed in Theorem 14.

6.5 Outer representation when |K,| =2

We keep the hypotheses and the notation of Subsection 6.4, but now we
assume that (I', ) also satisfies (A1), (C), (D1) and (D2). By Lemma 36, Z =
<Ul0>. Put 7 = CKZ/Z(T)

39 Lemma. |Z| =2 and ZN (K,/Z) = 1.

PROOF. We have Z # 1 as both Kx/Z and T are 2- groups. Moreover,
Z N (K1/Z) < C/Z by Lemma 24. So, either ZN(C/Z) =1 and |Z| = 2, or
C/Z < Z. Assume the latter. Given P € P(lp), let I = {p,q} be the line of P
parallel to lo = {po, qo} and ¢ be a representative of tp in T'. So, C! = ;. On the
other hand, C* = C, as we have assumed that C'/Z < Z. Hence C' = C;. With
no loss, we may assume that ¢ maps py onto p and go onto g. Hence K = K,
and, since C/Z < Z, K!Z = KoZ. Therefore Ipo 1S equal to either 4, or i,u; =
ip(ipiq) = iq. However, this is impossible, since pg is collinear with either of p
and ¢, and K, # K, if z,y are collinear points. Hence Zn (K /Z) =1. QED

Let Z be the pre-image of Z in the projection of Ky onto Ky /Z. By the
above, |Z| = 4, with Z N K; = Z. Let iyx, js be the two elements of Z \ Z.
The group Z might be either elementary abelian of order 2% or cyclic of order
4. However, in any case, ixjy = Uj, = ipyig- Lhe group 7 is characteristic
in T < Gy,. Hence it is normalized by Gy, and, since |Z : Z| = 2, the group
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az = CGE(Z) has index 2 in Gg. Put 601 == G01 N az, 51 = G1 N az,
Kl =K ﬂaz, Kz = Kx». ﬂaz andT:@gﬂT.
40 Lemma. We have CZ = Dy, with Z(CZ) = Z.

PROOF. The group C'Z has order 8 and contains at least three involutions,
namely iy, %q, and Uy, = ipyig,, the latter being in the center of C'Z. On the
other hand, ix; and jy belong to Kfr \ K71, hence they permute i,, with ig,. It
follows that C'Z = Dg. Clearly, Z(CZ) = Z.

41 Eo_rogary._We_th)e_Kl :Kl x Ky a@l Gﬂ = Go1 x Ky. Moreover,
K =K\Z, G =GCnZ T/Ky 2T/Ky =T, Gy /Ks, = Gy /Kx,.

PrOOF. By Lemma 40, KoNGg; = 1. All claims of the corollary follow from
this remark.

42 Lemma. Cg_ (T)=27

PROOF. Suppose that T centralizes k € K. Modulo replacing k with kiy,,
we may assume that k € K. However, T/Kyx = T by Corollary 40. Hence,
for every plane P € P(lg), tp has a representative t € T. So, k' = k, hence
k € K! = K;, where [ is the line of P parallel to ly. As P is an arbitrary
plane on ly, k € Micp, ) K1 and Lemma 24 forces k € C. Hence k € Z, as
Kl NnC=12.

43 Lemma. The elements iy and jx are involutions.

PROOF. Suppose they are not. Then i := iy, and j := jx, have order 4, j = ¢3

and ij = i2 = j? = u := uy,. The elements of Ky also have order 2 or 4, since
Ky = K 1Z by Corollary 41, |Z| = 4 and K1/Z is an elementary abelian 2
group, by Lemma 21. Let U, be the set of elements of K; of order 2 different
from u and Uy be the set of elements of K of order 4. Similarly, let V5 be the
set of elements of Fi \ K1 of order 2 and Vj the set of elements of Fr \ K1 of
order 4, but different from i and j. If x € Uy then xi € V4. Let x € Uy. Then
2?2 € Z = K1 NC, namely 22 = u. As i> = u we obtain that (2i)? = u? = 1,
whence xi € Va. Therefore, |Us| = |Vi| and |Us| = |Va|. Let Wy be the set of
elements of Ff of order 2 different from u and Wj the set of elements of Fr
of order 4 different from ¢ and j. Then Wy = Uy U Vo and W4 = Uy U Vy. By the
above, |Wa| = [Wy|. So, if n := [Wa| = |Wy| and 2¢ := [K[ |, we have

n=(2¢-4)/2=2""1_2 ©)

In particular, n is divisible by 4 only if d = 2. Suppose d > 2 and consider the
orbit of T on Ff As T fixes each of the elements u, i and 7, it stabilizes W5 and
W4. Moreover, by Lemma 41, no element of Wy U Wy is fixed by T. However,
by (°), n/2 is odd whereas T is a 2-group. Hence at least one orbit of T on W5
has size 2. The same holds for the orbits on Wy. Let O1 = {k, h} be one of those
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orbits. Suppose that h = ku. For every plane P € P(ly), tp has a representative
t € T. As Oy = {k, ku}, either k' = k or k' = ku. Modulo replacing k with ki
(as we may, since T centralizes i) we may assume that k& € K1. So, the relation
k' = ku implies that k € K!. Lemma 24 now forces k € C. (Compare the proof
of Lemma 42.) Hence k = u, as K1 N C = Z. We have reached a contradiction.

Therefore h # ku. This shows that there is another orbit of size 2, obtained
from O; by multiplication by u, say Oy = {ku, hu}. So, the orbits of T on Wy
of size 2 are partitioned in pairs, two orbits in the same pair being permuted
by multiplication by uw. The same holds for the orbits on Wy, but now we may
forget about them. Let s be the number of orbits of 7 on W of size 2 and X be
the union of those orbits. By the above, s is even. Hence |X| = 2s is multiple
of 4. The set Wy \ X is partitioned in orbits of size 2" for suitable exponents
r > 1. Thus, 4 divides n. Therefore d = 2, contrary to our assumption. QED

44 Lemma. The group Gy := (é(?ﬁ acts flag-transitively on Res(pp).

PROOF. Gy acts as Gg; in Res+(l0). In order to obtain the conclusion, we
only must show that, if Go p := Go N Gp for a given plane P € P(ly), then
@071: induces S3 on the triple X := {lo,l1,l2} of lines of P through py. By
Lemma 23, K7 contains an element k that fixes Iy and permutes [; with [5. As
K| = Ky x K1, we can assume that k € K. Let ¢ € GoN Gp be such that
g(lp) = 1. Then k9 € @0713 permutes [y with l5. It is now clear that 50713 acts as
S3 on X. QED

45 Corollary. 50 N G01 = 601 and ‘GO :§0| = 2.

PrOOF. Clearly, 601 < é@ﬂGl and, as ‘G()l : 601| = 2, either 60G01 = 601
or Go1 < Go. Moreover, Gy is transitive on L£(pg). Hence |Go| = |L(po)| - [Go N
g()l‘ < ‘ﬁ(p0)| . ‘G01| = |G_0| On the gther hand, 60 < Gp by (D2). Hence
Go N Go1r # Gor. Therefore Gy N G = Goy. QED

We shall now consider the action of Gy = (@gf) by conjugation on the set
T of ordered pairs (ixy ), jx()) for [ > po. By Lemma 44, Gy is transitive on the
set of unordered pairs {is;;, jx ()} with I > po. Hence G has at most two orbits
on 7.

46 Lemma. G has exactly two orbits on T.

PROOF. Suppose to the contrary that (i%,j%) = (ju,ix) for some g € Gy.
Then ufo = wy,, since injy = . However,_(ulo> = CK1£G1) by Lemma 19.
Hence g € Gp1 by assumption (D1). So, g € Go1 = Go1 N Gy. However, iy and
jx are central in Gg;. We have reached a contradiction. QED

Let I and J be the two orbits of Gy on Z. Pick one of them, say I. For
every line [ > pg we put z; := ixg) and 2 = jxq), where (ixg),jsq)) € 1.
By Lemma 43, z an z; are involutions. They can be characterized as follows:
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(21,2]) is the unique pair of I formed by involutions of Ky,;) that permute the
points of every line of A(l). In particular, if [y € A(l) then 2, = z and 2} = 2].
47 Lemma. [z, zp] = [2], 25,] = 1 for any two distinct coplanar lines 1, m >
Po.
PrROOF. We only need to prove that [z, z2,] = 1. If [z,2,] # 1, then
ZmZZm = 2] = zu. Similarly, 212,2; = U 2m,. Therefore zizpu = 212212 =
U Zm 2Zm. Hence u; = u,y,, which is a contradiction.

48 Lemma. Give a plane P > pg, let [, m,n be the three lines of P through
po. Put hp := zpzmz and hp = 2,2}, 2] and K;:= K;NGy. Then hp and hp
belong to K; and they are centralized by Gy N Gp.

PROOF. The proof that hp € K; is similar to that of Lemma 32. We first
choose k € K\ K, Ask € G, it preserves I. Hence zf;'l = z,. Now we can
continue as in the proof of Lemma 32, but recalling that all elements involved
here, namely k, z,, 2z, and z;, belong to KZ(Z)' We leave details to the reader.
The second claim of lemma follows from the fact that Gy N Gp permutes the
lines I, m,n and stabilizes each of I and J.

49 Corollary. Given P,l,m,n as in Lemma 48, we have hp = hp = 1.

PROOF. We have already proved that uju,u, = 1 (see Lemma 37). On the
other hand, hp = z2m2, = 2wz Umzy U, = Npwum,u,. Hence hp = hp. It
remains to show that hp = 1. In view of (C), Corollary 25 and Lemma 48, we
only need to prove that Gp centralizes hp. By Lemma 47 and the second claim
of Lemma 48, hp is centralized by Gp := (Go N Gp, z). As |Gg : Go| = 2, we
have |Gp : Gp| < 2. In fact Gp = GpKjy. On the other hand, if k := ip, then
h’j; = h’». However, h, = hp. So, Gp centralizes hp.

By Corollary 49, the mapping p, : Res(po) — Ro = (21)ieL(p) 1S @ repre-
sentation of Res(pg). As in Lemma 34, z; # z,, if | # m. Hence p, is faithful.

As in Lemma 35, one can prove that R, is transitive on I'Y. Hence G' = R,Gy.
Clearly, Gy normalizes p, and Kq switches p, with p} : | — 2.

6.6 Inner representation when K, =1 and |(}| =2

Now (I',G) satisfies (A2)-(A3), (B1)-(B3) and (C), and we assume that
Ky =1 and |C| = 2 (notation as in the previous three subsections, relatively to
a given point-line flag {pg,lp}). By Lemma 28, Z has order 2 or 4.

50 Lemma. C < Z.

PROOF. Suppose to the contrary that ZNC = 1. Let Z = CKE/Z(TV). Then

Z # 1, as both Kx/Z and T are 2-groups. Moreover, Z < CZ/Z by Lemma 24.
Hence Z = CZ/Z. 1t follows that C'Z contains exactly two subgroups C* := C
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and C~ such that, for every [ € A, either C; = C* or C; = C~. For e € {+, -},
let A°={l€A|C,=C}. Then {AT, A"} is a partition of A, [p € AT and T
permutes AT with A~, whereas G stabilizes both A* and A™, as it centralizes
C = C*. Suppose that A" contains a line | # Iy coplanar with . As Gy is
transitive on P(lp), AT contains all lines of A coplanar with [. Hence, by the
transitivity of T' on A, any two coplanar lines of A belong to the same class
A®. This forces AT = A, which is a contradiction. Therefore, | € A~ for every
line [ # Iy coplanar with [y and, by the transitivity of 7" on A, any two distinct
coplanar lines of A belong to opposite classes. Consider now a 3-space S on [
and let l1, 12,13 be the lines of S parallel to Iy but distinct from ly. By the above,
l1,12,l13 € A=. On the other hand, I; and ls are coplanar, hence they belong to
opposite classes. We have reached a final contradiction.

Let u; be the involution of Cj. By Lemma 50, u; = w,, for every line [ € A.
Hence [uj, u,,] = 1 for any two coplanar lines I,m > py.

Given a plane P > pg, put hp = uju,u, where I, m,n are the three lines of
P through pg.

51 Lemma. hp € K.

ProOOF. The proof is similar to that of Lemma 32, but easier. Given k €
K\ 7*(P), we get uf, = u,, hence:

k' = upunk. (5)

On the other hand,
kUm = k1 (6)

for a suitable k; € K, as u,, stabilizes py and . By comparing (5) and (6) we
see that umu, = k1k~' € K;. Hence hp = wk1k~! € K;. QED
52 Corollary. hp = 1.

Proor. This follows from Lemma 51 by applying (C), as in the proof of
Corollary 33. QED

53 Lemma. Suppose that (D1) holds. Then, for any two lines l,m € L(po),
we have u; = Uy, only if | =m.

PROOF. Suppose that u; = wu,, and let ¢ € Gy map [ onto m. Then g
centralizes C; = C,,. By (D1), g € G;. Hence | = m.

We put R; := (u1)ies(py) and p;i(l) = u; for every line [ € L(po). By Corol-
lary 52, p; is a locally faithful representation of Res(pg). By Lemma 53, if (D1)
holds then p; is faithful.
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6.7 Outer representation when K, =1 and || =2

Again, Ky = 1 and |C| = 2, but now (I',G) is assumed to satisfy (Al)-
(A3), (B1)-(B3) and (C), (D1), (D2). By Lemmas 28 and 50, either Z = C' or
C < Z with |Z : C| = 2. The arguments of Subsection 6.5 work well for either
of these cases. In the latter case we only need to rephrase the second part of
Subsection 6.5, with Gy now playing the role of G.

When Z = C, the arguments of Subsection 6.5 apply but for two exceptions,
when we must prove that |K; : K| = 2 and that Gy is flag-transitive. Explicitly,
we consider Z := Cks, /Z(f) and its pre-image Z in K. As in Subsection 6.5,
7 has order 4 and one can prove that the elements of Z \ Z, say iy and jx, are
involutions. Put Gp; = Go1 N Gx, and K1 = G, N K. Clearly, C < K; and
|K1 . Kl‘ S 2.

54 Lemma. |K;: K| =2.

PROOF. Suppose to the contrary that K; = K. Then Z < Z(K{"). There-
fore the action of tp € T on Z does not depend on the choice of its represen-
tative in T On the other hand, the centralizer T of Z in T has index 2in T,
as Ck, (T I) = Z < Z. Hence T := Cp(Z) has index 2 in T. If tp €T for a
plane P € P(lp), then t%, € T for every g € Gop. Indeed, tp fixes each of ix; and
Js whereas g stabilizes {is, jxn} as a set. By the same argument, if tp € T'\ T
then t9, € T'\ T for every g € G01 As Gy is transitive on P(ly), either tp € T
for every P € P(lp) or tp € T'\ T for every such P. In the first case we have
T = T contrary to what we have established above. Hence tp € T\ T for
every P € P(ly). Consider now a 3-space S on [y and let P;, P, P3 the three
planes of S through ly. Then tp,tp,tp, = 1. On the other hand, as |T : T| = 2,
a product of three elements of T\ T is always # 1. We have reached a final
contradiction.

55 Lemma. The group Go := <50Glo> acts flag-transitively on Res(pp).

PrROOF. By Lemma 54, Go; acts as Go; in Res™(lg). As in the proof of
Lemma 44, we must show that, given a plane P € P(ly), the group Go p :=
GoNGp induces S3 on the triple X := {l,[1,l2} of lines of P through pg. In view
of this, we must prove that K contains an element k ¢ K5. Suppose it doesn’t.
Then K| C K3, and this happens for every P € L(ly), since Gp; is transitive
on P(l). Therefore K1 = C. Consequently, 7*(P) is trivial for every P € P(lp),
by Lemma 23 (1). Hence P(lp) only contains one plane, by Lemma 23 (2). But
this conclusion is absurd. Therefore K contains an element k ¢ K. Now we
can go on as in the proof of Lemma 44. We omit the details.

Having proved the previous two lemmas, we can continue just as in Sub-
section 6.5. Eventually, we get a faithful representation p, : Res(pg) — R, :=
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(21)1eL(po)- We leave details for the reader.

6.8 Proof of corollary 15

Assume that (T', G) satisfies the hypotheses of Theorem 13 and that C; # 1
and G,/ K, is simple. All claims of Corollary 15 easily follow from theorems 13
and 14, except the following:

56 Lemma. Let |K,| =2 and R,NG, # 1. Then R, > G,,.

PROOF. Suppose that R, # G,. Then, since G, & G,/K, is simple and
normalizes R,, and R,NG), # 1 by assumption, R,NG), = K,,. Hence R, = R},
as K, switches p, with p}. Hence u; = 22 € R,, for every line [ > p. Therefore,
for every such line [ = {p, ¢}, R, contains iy = w;ip. It follows that C; < R, for
every | € L(p). However, (C)icr(p) = Gp, since G,/ K, is simple by assumption.
Hence R, > G, contrary to the assumption that R, 2 ép. QED

7 Two applications of theorems 13 and 14

7.1 A survey of a class of c-extended P- and T-geometries

We recall that a P-geometry of rank n > 2 is a geometry for the following
diagram, where P is the dual of the Petersen graph (as in [5] and [6]):

P [ Y @ oo ¥ @ ®
(Fa) 9 9 9 9 1

We also recall that the generalized quadrangle W (2) admits a triple cover T,
called the tilde geometry, with Aut(T") = 3'Ss (Ronan and Stroth [16, page 67];
see also Pasini and Van Maldeghem [13] for more information on this geometry).
A T-geometry is a geometry belonging to the following diagram, where e=——e
stands for the tilde geometry:

T Py P Py P °
() 9 9 9 9 2

A c-extended P-geometry (a c-extended T-geometry) of rank n > 3 is a locally
affine geometry of order 2 where point-residues are P-geometries (T-geometries)
of rank n — 1. The following diagrams describe c-extended P- and T-geometries:
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c P
(C'Pnfl) @ @ @ — oo @ @ ®
2 2 2 2 1

c ~
(C'Tn—l) Y Y o ----- Y e L )
1 2 2 2 2 2

In the sequel, c-extended P- and T-geometries of rank n will also be called
c.P,_1- and ¢.T;,_1-geometries, for short.

Flag-transitive P- and T-geometries are classified (Ivanov and Shpectorov
[7]; see also Ivanov [5] and Ivanov and Shpectorov [6]). We summarize that
classification in the following table. We put the type of the geometry in the first
column of the table, with the convention that P, (respectively, 7,,) means ‘P-
geometry (T-geometry) of rank n’. The full automorphism group of the geometry
is recorded in the second column. In the third column we give the considered
geometry a name, for further reference. Isomorphism types of point-residues
are recorded in the fourth column. In the last column we note if the geometry
is a 2-quotient of another geometry of the list. If nothing is written in that
column, then the considered geometry is 2-simply connected. In the last row,
e(n) := (2" — 1)(2»! — 1)/3 and, when n = 3, T,,_1(3S¢) = T (the tilde
geometry).

Table 1. Flag-transitive P- and T-geometries of rank > 3

type group name residue
Ps 3 Aut(MQQ) P3(3M22) P
P3 Aut(Mgg) Pg(Mgg) P quot. of P3(3M22)
Py Moz Py(Mos) P3(Mao)
P4 323.002 P4(323002) P3 (3M22)
Py Cosy P4(COQ) P3(M22) quot. of P4(323COQ)
P4 J4 P4(J4) P3(3M22)
Ps 3BTVBM P53 BM)  Py(323Coy)
Ps BM Ps(BM) Py(Coy) quot. of P5(3%3™ BM)
T3 My T3(May) T
T3 He Tg(He) T
T4 001 T4(001) T3(M24)
15 M T5(M) Ty(Cor)
T, 35 'S5, (2)  T0,(356) T,-1(356)

Flag-transitive c.P,_1- and c¢.T;,_1-geometries exist where the upper residues of
the elements of '™~ are isomorphic to P3(3Maz), T3(3S6(2)) or T3(He). We refer
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to Stroth and Wiedorn [18] for a survey of examples of this kind. One of them, of
type ¢.Py and with point-residues isomorphic to Py(Jy), will be discussed at the
end of this section. However, for the moment, we only consider flag-transitive
c.P,_1- and ¢.T,,_1-geometries of rank n > 3 satisfying the following:

(%) the upper residues of the elements of I'™~* are isomorphic to P3(Mag) or
T3(May), according to whether I' is of type ¢.P,_1 or ¢.T),_1.

These geometries have been classified by Fukshansky and Wiedorn [3], who
did the c.Ps-case, and Stroth and Wiedorn [17], who did the rest. The next
table summarizes that classification. The table is organized in the same way
as Table 1, except that now, when nothing is written in the last column, the
geometry is (n — 1)-simply connected, but it might not be 2-simply connected.

Table 2. Flag-transitive c¢.P,_1- and ¢.T,,_1-geometries of rank n > 3, satisfying

(%)

type group name residue

c.Ps My EP3(Moy) P3(M>s)

C.P3 211 IAut(MQQ) EP3(211M22) P3(M22)

C.P3 210:Aut(M22) EP3(210M22) Pg(Mgg) quot. of EP3(211M22)
c.Ps 2U6(2)2 EP3(2U6(2)) P3(M22)

C.P3 U6(2)Z2 EPg(U@(Q)) Pg(Mgg) quot. of EP3(2U6(2))
c.Py Moy EPy(Moy) Py(M>3)

C.P4 001 EP4(001) P4(COQ)

c.Py 223:Coy  EPy(2BCo3) Py(Coy)

c.Py 222:Coy  EPy(2?2Co0s) Py(Coz) quot. of EPy(2%2Coy)
c.Ps M EP;(M) P5(BM)

c.Ps 2 (BM Zs) EP5(2BM2) P5;(BM)

c.Ps BM 2 EP;(BM?)  Ps(BM) quot. of EP5(2BM?)
C.T3 211 :M24 ET3(211M24) T3(M24)

C.T4 224 : 001 ET4(224001) T4(001)

c.Ts M2 ET5(M?) Ts(M)

As pointed out by Stroth and Wiedorn [18], if ' is as in lines 2, 3, 8, 9 or 11-
15 of Table 2, then I' is the affine expansion of a homogeneous representation
Res(p) for p € TY. In lines 2, 8, 11 and 13-15 that representation is universal.
(Note that the universal representation groups of Ps(BM) and T5(M) are the
non-split central extension 2" BM of BM and the group M itself, respectively;
see [6]).
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The structures at infinity of EP3(Mas), EP;(Co1) and EPs(M) are isomor-
phic to T5(May), T4(Co1) and T5(M), respectively. The structure at infinity of
EPy(Masy) is the direct sum of a single point and a geometry dually isomorphic
to the well known Cy.L-geometry for Moy (see Pasini and Wiedorn [14, Section

7.4]).

It is known (Meixner [10]) that only two simply connected flag-transitive
c.Py-geometries exist. They are infinite, with automorphism groups of the form
X : S5 and Y : Sg for suitable infinite groups X and Y (in fact, X is the uni-
versal representation group of the dual Petersen graph P). They admit several
(perhaps, infinitely many) flag-transitive finite quotients, but only three of them
will be considered in the sequel. We list them below, together with the unique
c.Th-geometry we will consider in this section.

type c. Py c.Py c. Py c.Ty
group 3'Sg 26 Sy 2585 26:3' S,
name FEP(3Ss) EP»(20S5) EP»(25S5) ET»(29356)

The geometry at infinity of EP,(3Ss) is isomorphic to the tilde geometry T'
(Pasini and Wiedorn [14, section 7.3]). EP2(2555) is the affine expansion of
the universal abelian representation of P, whereas EP,(2°S5) and ET5(29355)
arise from homogeneous but non-universal abelian representations of P and
T, respectively. The c¢.P,_1- and c.T;,_1-geometries of Table 2 form series of
shrinkings, as shown in the following table, where the symbol < stands for the
words ‘is a shrinking of”:

Table 3.
EP2(3S6) =< EP3(M24) =< EP4(M24)
EPQ(SS()-) =< EP3(M24) =< EP4(001) =< EP5(M)
EPy(25S5) < EP3(2Y M) < EPy(22%Cos) < EPs(2BM?)
EPy(2°S5) < EP3(21%My) < EPy(2?2Cos) < EP;(BM?)
? < EP3(Us(2))
ETy(203Ss) < ET3(2'Msy) < ETy(2*Coy) < ET5(M?)

The question marks in rows 5 and 6 are due to lack of information on the c.Ps-
geometries that arise as shrinkings of FP5(2Us(2)) and EP3(Ug(2)). Anyhow,
EP;(Ugs(2)) and EP5(2Ug(2)) will play almost no role in the sequel.
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7.2 Characterizations by ultimate shrinkings

The following is proved in [14, Proposition 7.8] (see also Stroth and Wiedorn
[17], where the same conclusions are obtained, but starting from n > 5 and
exploiting the classification obtained by Fukshansky and Wiedorn [3] for the
case of n = 4).

57 Proposition. Let I' be a flag-transitive c.P,_1-geometry satisfying (),
with n > 4. Suppose that the ultimate shrinkings of I' are isomorphic to
EPy(3S5¢). Then I is one of EP3(May), EPy(Msy), EPy(Coy) or EP5(M).

In the sequel (Theorem 60) we will show how to exploit theorems 13 and 14 to
classify flag-transitive ¢.P,_1- and ¢.T),_1-geometries satisfying (x), with n > 4
and, in the c.P,_i-case, with ultimate shrinkings not isomorphic to FP5(3Ss).
We do not claim to prove anything new here. Indeed, the statement we will
prove is a piece of the classification of [17]. We only offer a new proof.

We may assume n < 6, as no flag-transitive P,,_1- or T),_1-geometry of rank
n — 1 > 6 exists where (*) holds (see Ivanov and Shpectorov [6]). On the other
hand, we will not consider the case of n = 4 since hypothesis (C) of Theorem 13
cannot be proved in that case. So, we take that case as settled and we will freely
use the following:

58 Proposition. All flag-transitive c.P3- and c.T3-geometries satisfying (*)
are mentioned in Table 2.

(See Fukshansky and Wiedorn [3] for the c.Ps-case and Stroth and Wiedorn
[17, Lemma 10] for the c¢.T>-case.) The next lemma will also play a crucial role
in the proof of Theorem 60.

59 Lemma. Let I' be a flag-transitive c.Ps3-geometry and p € T°. Then
the element-wise stabilizer of Res(p) in Aut(T") is trivial. The same holds for
I = ET3(2 Myy).

The first claim of this lemma, on c.P3-geometries, is Lemma 1 of Fukshansky
and Wiedorn [3]. (Actually, (*) is assumed throughout [3], but that hypothesis
plays no role in the proof of this lemma.) The second claim is contained in [17,
Lemma 8].

60 Theorem. Let I’ be a flag-transitive geometry of type c.Py, c.Ps, ¢. Ty or
c.Ts, satisfying (x). Suppose moreover that, when T' is of type c.Py or c.Ps, its
ultimate shrinkings are not isomorphic to EP»(3Ss). Then I' is one of the fol-
lowings: EPy(2?3Cos), EPy(2%2Coy), EPs(2BM?), EPs(BM?), ETy(2**Co)
or ET5(M?).

Proor. Throughout this proof G is a given flag-transitive subgroup of

Aut(T"). Given a point-line flag {p,l} of ", we put I'y := Resr(p) and we denote
by ¥ the shrinking of I" containing . In order to apply theorems 13 and 14, we
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must know that I' satisfies (IP). However, this is easy to see. It is well known
that all flag-transitive P- and T-geometries satisfy (IP). Hence (IP) holds in
Res(p). Moreover, in all cases to be considered in the sequel, G),/K), acts prim-
itively on the set L£(p) of lines through p. Hence no two lines of I' can have the
same points. Thus, T' satisfies property (LL) of Subsection 2.2, which in this
context is equivalent to (IP).

Suppose first that T is of type ¢.Py. By (x), I'g is either Py(Ma3) or Py(Cos)
(see [6]). However, an easy counting argument shows that, if I'g = P;(Mas),
then [T° = 24 (Stroth and Wiedorm [17, Lemma 9]). By Proposition 58,
Y = EP3(Msyy) is the only possibility that fits with this situation. However,
EP3(Msy4) has shrinkings isomorphic to EP5(3Sg), which are excluded by the
hypotheses of the theorem. Hence I'g = P4(Coz). Accordingly, G,/K, = Co
and Gy /K, = 219: M2, As 2Ug(2)2 does not involve 210: My92 (see [2]),
must be isomorphic to either EP3(21 May) or EP3(219 May).

Now we shall check if I' and G satisfy the hypotheses of Section 4. Hypothesis
(A1) holds, because G,/K, = Coy is simple. By the informations given on
Coy in [2], €} = K, < Kj. Hence we are in case (I) of Lemma 12. Suppose
¥ =2 EP3(2' Myy), to fix ideas. As EP3(2'' M) is the affine expansion of the
universal representation of Ps(Ma2), hypotheses (B1) and (B2) of Section 4 hold.
In particular, (B2) holds by Corollary 10 and Lemma 59. Condition (B3) holds
because Gy, /K; & M2 is the full automorphism group of Res; ({). In order to
apply Theorem 13, we only must check hypothesis (C) of that theorem. In view
of that, we need to determine the structure of Gp for a plane P > [. Considering
that |G, : Gp,p| = |Gp : Gpi| - |Gpy : Gpip|/3 = 3586275 and that G p is an
extension of some 2-group by S3 x S5, we recognize that G, p = 24+10(53 X S5),
which is a maximal subgroup of G, = Coy. However, 24719(S3 x S5) is not the
centralizer of any involution of Cos. Hence it cannot centralize any non-trivial
element of Kj, which is elementary abelian (see also Lemma 21). Therefore,
G = R,Gp, where R, is a representation group for I'g = P4(Coz). According
to [6, Section 5.2], R, is either the C'og-submodule K% of the Leech lattice, or
its quotient A--. As Gy = KsT - Gpi/K; = (K; x (2))T - Gpi/K; = (21 x
()2 M992 centralizes the element z; € R,, R, = A% is the only possibility.
Hence I' = EP,(223C0y). Similarly, if ¥ 22 EP3(219Mas) then T = EP,(2%22Cos).

Let now I' be of type c.Ps. Then I'y =2 P5(BM) and G),/K, = BM, hence
condition (A1) holds. Gp;/K, = 217**Cos, K;/K, = 2} and C)/K, = 2.
So, both (A2) and (A3) hold. However, we are now in case (II) or (III) of
Lemma 12. In view of the previous step, ¥ is isomorphic to either EP;(223Cog)
or EP;(222C03). In any case, (B1), (B2), (B3) are satisfied. In particular, (B2)
follows from Corollary 10 and the fact that, as shown in the previous paragraph,
EPy(2%8C02) and EP,(2?2Co9) are as in Case (I) of Lemma 12. As C;/K,, is
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the center of K;/K, and the latter is a subgroup of G, p/K), for every plane
P > [, condition (C) of Theorem 13 trivially holds. Condition (D1) follows from
the fact that, according to the previous description of G);/K,, the latter is
the centralizer of Cj/K), in G,/K,. Finally, we check if (D2) holds. Note first
that G, /K, does not admit any subgroup of index 2. Hence in case (II) of
Lemma 12 (D2) holds simply because its hypotheses are empty. Suppose we are
in case (III) and Gp,; = K, x X for a suitable subgroup X < Gp;. Considering
the orders of G/ K, = 27**Coy and G,/K, = BM we see that G, contains
a Sylow 2-subgroup of G,. As G, splits as K, x X and |K,| = 2, G, also
splits as K}, x Y for a suitable subgroup Y. As |G, : Y| =2, [X : X NY]| < 2.
However, X = G,;/K, and the latter has no subgroups of index 2. Hence
X < Y. Therefore (X%) <Y (in fact, (X%) = Y). We can now apply (2) of
Corollary 15, obtaining that G is either a product R,R; of two representation
groups of 'y & P5(BM), or it contains such a product as a subgroup of index
2. Moreover, as R; is normal in G, and G,/K), is simple, either R; = G, or
|K,| =2 and G, = R; x K.

The representation groups of Ps(BM ) are known (see [6]): they are BM itself
and its central non-split extension 2°BM (which the universal representation
group). So, R; and R, are isomorphic to either BM or 2°BM. In case (II) of
Lemma 12 G, is isomorphic to BM and normalizes R,. In this case, R; = G, =
BM. In case (IIT), G, = K}, x Ng,(R,) = 2 x BM by claim (4) of Theorem 13.
In this case, as 2 x BM is not a representation group of Ps(BM), R; # Gy,
whence R; = Ng,(R,). So, in any case, R; is isomorphic to BM, it normalizes
R, and acts on R, by conjugation in the same ways as Aut(Ps(BM)). Therefore,
G can only have one of the following structures:

(2BM): BM, ((2BM):BM)2, BM:BM, (BM :BM)2.

In the last two cases, the semi-direct product R, : R; in fact entails a direct
product. Indeed, as Out(BM) = 1, for every f € R; there is exactly one g € R,
such that 29 = zf for every € R,. So, g~'f € Cq(R,). In the first two
cases, the centralizer R. of R; in R,R; contains the center of R, and R, R; is
a central product R, * R.. The factor 2 on top in case (1.2) is contributed by
K,, it centralizes R; but, according to claim (4) of Theorem 13, it replaces R;
with its twin R}. In fact, R} = R.. By Corollary 15, if G is (22 BM) : BM or
((2BM) : BM)2 then I = EP5;(2BM?) and G is either a central product of
two copies of 22BM or the extension of such a product by an involution that
interchange the two factors. If G is described as BM : BM or (BM : BM)2
then I' 2 EP5(BM?) and G is either BM x BM or BM (2.

Let T be of type ¢.Ty. Then ¥ = ET3(2'!'My,) and Ty = Ty(Co1). So,
Cp/K, = Coy and Gy /K, = 21 My, with K;/K, = 2!'. Hence C;/K,, = 1.
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Therefore (A1), (A2), (A3) hold, and Kj, = C; = 1 by Lemma 12. As ¥ arises
from the universal representation of T5(May), condition (B1) holds. (B2) follows
from Corollary 10 and Lemma 59. Condition (B3) holds because Gy, ;/K; is the
full automorphism group of Res™(1). Hypothesis (C) of Theorem 13 remains to
be proved. Likewise in the c.Pj-case, we recognize that G, p = 24712(S5 x 3S5),
which is maximal in Co; but does not centralize any involution. As K; now
is elementary abelian, (C) follows. (As the index of 2! My, in Co; is involved
in the computation of |G), : Gy p|, we warn that a misprint occurs at page
183 of [2], where that index is recorded as 8282375 instead of 8292375.) By
Theorem 13, G = R,G, for a representation group R, of T4(Co1). The Leech
lattice is the unique representation group for this geometry. Hence G = 224Co;
and I' = ETy(2%Coy).

Finally, let T" be of type ¢.T5. Now I'g = T5(M), G,/ K, = M, G,/ K, =
21100y with K;/K, = 217* and C)/K, is the center of K;/K,. So, (Al),
(A2), (A3) hold and we are in case (II) or (III) of lemma 12. Moreover, ¥ =
ETy(2%Coy) by the previous step, whence (B1) holds. (B2) follows from the
second claim of Proposition 58 and the fact that, as shown in the previous
paragraph, ETy(2?*Co;) is as in case (I) of Lemma 12. Condition (B3) holds
because G,/ K; is the full automorphism group of Res™ (). Condition (C) holds
because C;/K), is the center of K;/K, and (D1) holds because G, ;/K), is the
centralizer of C;/K), in G,/K,. No subgroup of index 2 exists in G, ;/ K. So, if
we are in case (II) of Lemma 12 the hypotheses of (D2) are empty, whence (D2)
holds. Suppose we are in case (III) and G,; = K, x X for a suitable subgroup
X < Gpy. As M has trivial Schur multiplier, G, = K, x Y for a copy Y of M
and (X@) <Y, by the same argument used in the c.Ps-case.

Corollary 15 (2) now implies that G is either a product R,R; of two repre-
sentation groups of I'g = T5(M), or it contains such a product as a subgroup of
index 2. Moreover, as R; is normal in G, and G,/ K, is simple, either R; = G, or
|Kp| =2 and G, = R; x K,,. It is known [6] that M is the unique representation
group of T5(M). Hence R, = R; = M and either G = M: M or G = (M : M)2.
As in the c.Ps-case one can see that R,R; = R, X R. where R. = M is the
centralizer of R, in R,R;. Hence either G = M x M or G = M 2. In any case,
I = ET5(M?).

7.3 A characterization of EP,;(J?)

We shall now consider a c.Pj-geometry that does not satisfy (x) of Subsec-
tion 7.1. The universal representation group of Py(Jy) is Jy itself (see Ivanov and
Shpectorov [6]). The affine expansion of this representation is a flag-transitive
c.Pj-geometry, denoted by EP;(J?) in the sequel. Put ' := EPy(J}) and
A = Py(Jy), for short. Let p be the representation of A in R := J;. So,
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I' = Ex,(A) and the translation group T of I' is isomorphic to J4. The group
G := Aut(T',7,) is a semidirect product G = TrG),, where G, = Jy is the sta-
bilizer in G of a point p of I'. However, by replacing G, with T' := Cg(TR),
we see that G = Tr x T = Jy x Jy (compare the discussion of the c.P5- and
¢.Ts-case in the proof of Theorem 60). Aut(I") contains an involution i ¢ G
that permutes Tr with 7" and we have Aut(I") = G(i) = J4 12 (see also Stroth
and Wiedorn [18]). Let [ be a line of I on p. The group R[l] = (p(P))pep()
(see Proposition 6) has the following structure: R[l] = 2?12 and p(l) = Z(R]l])
(compare [2, page 190]). The mapping p' sending P € P(I) to p(P)/p(l) is a
representation of Res;t (I) & P3(3Mas) in the abelian group R[l]/p(l) = 2'2. In
fact, p' is nothing but the (homogeneous) representation p¢ of P3(3Mas) in the
representation module V¢ of the enriched point-line system of P5(3Mas) (Ivanov
and Shpectorov [6, 4.4.2]). By Proposition 6, Ex (Res; (1)) is just the shrinking
Y(l) of T' containing . We shall prove that these features indeed characterize
EPy(J?).

61 Theorem. Let I' be a flag-transitive c.Py-geometry with point-residues
isomorphic to Py(Jy) and shrinkings isomorphic to the affine expansion of
P3(3Mas) by a homogeneous representation. Then T' = EPy(J?).

ProOOF. The proof is basically the same as for the c¢.T5-case of Theorem 60.
Note first that I" satisfies (IP) (this can be seen by the same argument as in the
proof of Theorem 60). Given a point-line flag {p,l} of I" and a flag-transitive
subgroup G < Aut(I'), we have G, /K, = 23r+223M222 with K;/K, = 23r+22.
Hence C)/K, = Z(K;/K),), conditions (Al), (A2), (A3) hold and we are in
case (II) or (III) of Lemma 12. Condition (B1) holds by assumption, (B2) follows
from Corollary 10 and Lemma 59 and (B3) holds because Gy, ;/K; = 3M92 is
the full automorphism group of Res™ (1). Conditions (C) and (D1) of Theorem 13
holds because C}/K), is the center of K;/K, and G,;/K), is the centralizer of
Ci/Kp. As G/ K, is simple, the hypotheses of (D2) are empty in case (II). In
case (I), we get G, = K, x G,, for a copy G, of Jy, because the Schur multiplier
of Jy is trivial. So, both theorems 13 and 14 can be applied, and we get the
conclusion. QED
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