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Abstract. We provide a new proof to the known result on rigidity of Iwasawa nilpotent
Lie groups [5, 12]. More precisely, we use Tanaka’s prolongation theory for establishing the
rigidity type of those nilpotent groups. This note aims to complement [8], where we use the
point of view of Tanaka prolongations for studying rigidity in the general setting of nilpotent
stratified Lie groups. When the group is of Iwasawa type, a special formalism occurs, which is
related to the theory of semisimple Lie groups, namely the formalism of root systems. We use
this language in order to classify the rigidity types.
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1 Introduction

In [8], we consider the question of rigidity of stratified nilpotent Lie groups. This is the
study of those diffeomorphisms on such a group whose differential preserves the horizontal
bundle, that is the left invariant subbundle corresponding with the generating layer in the
algebra. A classical problem is to investigate the family of contact mappings. Rigidity is the
property that the family of local contact mappings form a finite dimensional space. In more
precise terms this means that the dimension of the space of vector fields which generate local
contact maps is finite. In [8] we apply an algebraic method due to Tanaka [10] as a unified
technique to determine rigidity or nonrigidity of various classes of Carnot groups, such as H-
type groups, Iwasawa groups, Métivier groups [6], groups satisfying the rank one condition [7].
Due to the special properties of Iwasawa nilpotent Lie groups coming from the formalism of
the root systems, we decided to dedicate this separated note to these cases.
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2 Notation and Preliminaries

Let g be a simple Lie algebra with Killing form B and Cartan involution θ. Let k ⊕ p be
the Cartan decomposition of g. Fix a maximal abelian subalgebra a of p and denote by a′ its
dual. For α ∈ a′, set

gα = {X ∈ g : [H,X] = α(H)X},

where H ∈ a. When α 6= 0 and gα is not trivial, α is said to be a restricted root of g with
respect to a, and gα is the root space of α. We denote by Σ the set of the restricted roots and
call it the root system of g. Choose an ordering ≻ on a′, thus defining the subsets Σ+ and
∆ = {δ1, . . . , δr} of positive and simple positive restricted roots. It is well-known that there
is exactly one root ω, called the highest root, that satisfies ω ≻ α (strictly) for every other
root α. Since we shall always work with the restricted root spaces, we forget the adjective
“restricted” when refering to roots. Every root α ∈ Σ+ can be written as α =

∑r
i=1 niδi with

uniquely defined non-negative integers n1, . . . , nr, and the positive integer ht(α) =
∑r

i=1 ni

is called the height of α. The root space decomposition of g is g = m ⊕ a ⊕
⊕

α∈Σ gα, where
m = {X ∈ k : [X,H] = 0, H ∈ a} . Writing Σ− = −Σ+, one has that Σ = Σ+ ∪ Σ− and the
Iwasawa nilpotent Lie algebra

n =
⊕

γ∈Σ−

gγ ,

is stratified in the usual sense, that is [ni, nj ] = ni+j , where ni =
⊕

ht(γ)=i g−γ , i = −ht(ω),
. . . ,−1. To any Iwasawa nilpotent Lie algebra n there is a root system Σ associated.

The subspace n−1 generates the whole algebra n via Lie brackets, and it identifies with a
subspace of the tangent space at the identity to N . By left translation, n−1 defines a subbundle
of the tangent bundle called the horizontal bundle which we denote by H. A contact map is
a diffeomorphism from an open subset of N into N whose differential preserves H. Contact
vector fields are vector fields on N that generate one parameter families of contact mappings.
A contact vector field V ∈ X(N) satisfies [V,H] ⊂ H. The group N is rigid if the Lie algebra
of contact vector fields has finite dimension. We call N nonrigid otherwise. The condition
[V,H] ⊂ H yields a system of partial differential equations for the coefficients of V . The space
of solutions of this system has been studied in [5] and [12]. In this article, unless otherwise
stated, n will always be an Iwasawa nilpotent Lie algebra.

3 Tanaka prolongation

Let n = n−s ⊕ · · · ⊕ n−1 be a stratified nilpotent (not necessarily Iwasawa) Lie algebra.
The Tanaka prolongation of n is the graded Lie algebra Prol(n) given by the direct sum
Prol(n) =

⊕
k∈Z

gk(n), where gk(n) = {0} for k < −s, gk(n) = nk for −s ≤ k ≤ −1, and for
each k ≥ 0, gk(n) is inductively defined by

gk(n) =
{
u ∈

⊕

p<0

gp+k(n)⊗ gp(n)
∗ | u([X,Y ]) = [u(X), Y ] + [X,u(Y )]

}
,

with g0(n) consisting of the strata preserving derivations of n. If u ∈ gk(n), where k ≥ 0, then
the condition in the definition becomes the Jacobi identity upon setting [u,X] = u(X) when
X ∈ n. Furthermore, if u ∈ gk(n) and v ∈ gℓ(n), where k, ℓ ≥ 0, then [u, v] ∈ gk+ℓ(n) is defined
inductively according to the Jacobi identity, that is

[u, v](X) = [u, [v,X]]− [v, [u,X]].
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Define the subalgebra

h =
⊕

k≥−1

hk ⊂ Prol(n, g0)

where the subspaces hk ⊂ gk are defined as follows: set

n̂ = n−s ⊕ · · · ⊕ n−2

and for k ≥ −1 define

hk = {u ∈ gk | [u, n̂] = {0}} . (1)

It follows that [hk, g−1] ⊂ hk−1 for k ≥ 0.

In [10], Tanaka shows that the rigidity of a stratified nilpotent Lie group can be determined
by studying the Tanaka prolongation of the Lie algebra. More precisely, the algebra of contact
vector fields on N is finite dimensional if and only if Prol(n) is finite dimensional. In fact more
is true [10, Corollary 2, page 76]: the group N is rigid if and only if hk = 0 for some integer
k ≥ −1. Tanaka’s theory provides some relatively simple tests for rigidity, at least at the levels
h−1, h0, and h1, moreover it also provides a definition of rigidity type as the smallest integer
k greater or equal to −1 such that hk = {0}. If n is nonrigid, we shall say that it is of infinite
type.

4 Rigidity

Root systems are classified by means of their Dynkin diagrams (see [1] for an insight). The
nonisomorphic standard root systems are An, n ≥ 1, Bn, n ≥ 2, Cn, n ≥ 3, Dn, n ≥ 4. Beside
these, there are the exceptional systems E6, E7, E8, F4, G2 and the reducible system BCr,
r ≥ 1. The subindex counts the number of simple roots generating the system. Whenever α
is a root, 2α is never a root, unless α ∈ BCr. To every root system there is associated one or
more real simple Lie algebras, each coming with the relative Iwasawa nilpotent component.
We classify the rigidity types of all Iwasawa nilpotent Lie algebras using this correspondence.
Let n be such a nilpotent Lie algebra with root system Σ.

Proposition 1. If Σ is one of the following: An, n ≥ 4, Bn, Cn, n ≥ 3, Dn, n ≥ 4, E6,
E7, E8, F4, G2, BCr, r ≥ 2, then n is rigid with rigidity type −1. If Σ = A3, then it is of type
0.

Proof. Let ∆ = {δ1, . . . , δr} be a system of simple roots of Σ and write ∆− = −∆. We fix a
basis of g−δj for every j = 1, . . . , r and thus a basis of n−1. Then we choose a basis for every
root space relative to a negative root. This yields a stratified basis of n. It is well known that
if the sum of two roots α and β is still a root, then for every vector X in gα there exists a
vector Y in gβ such that [X,Y ] 6= 0, and viceversa. In order to show that h−1 = {0}, it is then
sufficient to prove that every negative simple root can be summed to at least another root of
height less or equal than −2.

In the cases An, n ≥ 4, Bn, n ≥ 3, Cn, n ≥ 3, Dn, n ≥ 5, E6, E7, E8, F4, investigation
of the Dynkin diagrams shows directly that every (negative) simple root can be summed to a
root of height minus two. In particular, this implies that every vector in the chosen basis for
n−1 does not commute with at least one vector in n−2.

If Σ = D4, then the same remark above holds for all vectors in the root spaces relative to
δ1, δ3 and δ4. We conclude that h−1 = {0} by observing that δ2 can be summed to δ1 + δ2 +
δ3 + δ4.

If Σ = G2, then δ1 can be summed to δ1 + δ2 and δ2 can be summed to 3δ1 + δ2.
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If Σ = BCr with r ≥ 2, then it contains the root system Br. So if r ≥ 3, then the
considerations made above for the case when the root system is of type Br show that n is of
type −1. If r = 2 then Σ+ = {δ1, δ2, δ1 + δ2, 2δ1, 2δ1 + δ2, 2(δ1 + δ2)}. So δ1 can be summed to
δ1 + δ2 and δ2 can be summed to 2δ1, thus showing that the corresponding n is of type −1.

Finally if Σ = A3 then ∆ = {δ1, δ2, δ3} and h−1 = g−δ2 , because δ2 can be summed to
δ1 and δ3 only. We show that h0 = 0. Pick D ∈ h0. From (1) and the remark thereafter,
Dn−1 ⊂ g−δ2 and D = 0 on nj with j ≤ −2. Suppose that DX 6= 0 for some X ∈ n−1. Assume
first that X ∈ g−δ2 . Then there exists Y ∈ g−δ1 such that [DX,Y ] 6= 0. This implies that

0 = D[X,Y ] = [DX,Y ] + [X,DY ] = [DX,Y ],

because 2δ2 is not a root, and so we get a contradiction. Therefore Dg−δ2 = 0. Choose now
X ∈ g−δ3 with DX 6= 0. If Y ∈ g−δ1 is such that [DX,Y ] 6= 0, then [DX,Y ] is in g−δ1−δ2 .
On the other hand, [X,DY ] is in g−δ2−δ3 and so the contradiction D[X,Y ] 6= 0 arises, and we
conclude that Dg−δ3 = 0. Finally, take X ∈ g−δ1 and pick Y ∈ g−δ3 such that [DX,Y ] 6= 0.
Then D[X,Y ] = [DX,Y ] + [X,DY ], where the two summands belong to disjoint root spaces,
thus giving a contradiction and proving h0 = {0}. QED

The remaining cases need to be studied explicitly, since their behavior with respect to the
rigidity question may change, even for algebras corresponding to the same root system.

If Σ = A2, then n is an H-type Lie algebra by [4]. More precisely there are exactly
four algebras with root system A2. We know by [9] that H-type algebras are rigid when the
dimension of the centre is greater than two, hence they are of infinite type if and only if
the centre is of dimension two. Looking at [4, Proposition 4.1] we then conclude that there
are two nonrigid nilpotent algebras relative to A2, namely the three dimensional Heisenberg
algebra and its complexification. The remaining two algebras are the nilpotent components
in the Iwasawa decomposition of sl(3,H), where H denotes the quaternions, and the Iwasawa
decomposition of e(6,−26). By [8, Theorem 4], these nilpotent algebras are of type 1.

If Σ = A1, then n is the abelian Lie algebra Rn, which is trivially of infinite type.
If Σ = B2, then ∆ = {δ1, δ2} and Σ+ = {δ1, δ2, δ1 + δ2, δ1 + 2δ2}. So n has step three and

the following three cases occur [4]:

δ1 δ2 δ1 + δ2 δ1 + 2δ2
1 n n 1

2 2 2 2

3 4 4 3

where each number indicates the dimension of the root space relative to the root in the same
column. The nilpotent Lie algebras described in the first row correspond to the simple Lie
algebras so(2, 2 + n). If n = 1, then n is the Engel Lie algebra, which is well known to be of
infinite type [11, 7, 8]. If n > 1, then using [2, Proposition 4.3] we can set bases g−δ1 = RX,
g−δ2 = span{Y1, . . . , Yn} so that [X,Yi] 6= [X,Yj ] for every i 6= j and [X,Y1], . . . , [X,Yn] are a
basis of g−δ1−δ2 . Moreover h−1 = g−δ1 . We show that h0 = {0}. If D ∈ h0 then Dn−1 ⊂ g−δ1

and for every i = 1, . . . , n we have

0 = D[X,Yi] = [DX,Yi] + [X,DYi] = [DX,Yi],

since 2δ1 is not a root. It follows that DX = 0. If DYi = λiX then for every i 6= j we have

0 = D[Yi, Yj ] = λi[X,Yi]− λj [X,Yj ],

which yields λi = 0 for every i. It follows that h0 = {0} and n is of type 0.
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The second row of (4) corresponds with the complexified Engel Lie algebra, which is
nonrigid (see e.g. [8, Theorem 3]).

The third row of (4) corresponds with the nilpotent component of the simple Lie algebra
sp(2, 2). In this case we compute explicitly a basis of n and the bracket relations. We do this
relying on the fact that g−δ2 + g−δ1−δ2 + g−δ1−2δ2 is a H-type algebra [3, Theorem 3.8]. This
and the proof of Proposition 4.3 in [4] give n−1 = span{X1, . . . , X7}, n−2 = span{Y1, . . . , Y4},
n−3 = span{Z1, Z2, Z3} and the bracket table is

X1 X2 X3 X4 X5 X6 X7 Y1 Y2 Y3 Y4

X1 0 0 0 0 −Y1 −Y2 −Y3 Z1 Z2 Z3 0
X2 0 0 0 0 −Y2 Y1 −Y4 Z2 −Z1 0 Z3

X3 0 0 0 0 −Y4 −Y3 Y2 0 Z3 −Z2 Z1

X4 0 0 0 0 −Y3 Y4 Y1 Z3 0 −Z1 −Z2

X5 Y1 Y2 Y4 Y3 0 0 0 0 0 0 0
X6 Y2 −Y1 Y3 −Y4 0 0 0 0 0 0 0
X7 Y3 Y4 −Y2 −Y1 0 0 0 0 0 0 0
Y1 −Z1 −Z2 0 −Z3 0 0 0 0 0 0
Y2 −Z2 Z1 −Z3 0 0 0 0 0 0 0 0
Y3 −Z3 0 Z2 Z1 0 0 0 0 0 0 0
Y4 0 −Z3 −Z1 Z2 0 0 0 0 0 0 0

Given these bracket relations, a direct but rather long calculation shows that h0(n) = {0}.
If Σ = BC1, then n is H-type by [2]. Except for the 2n+1-dimensional Heisenberg algebra

which is nonrigid, the remaining cases are H-type algebras with center of dimension 3 and 7,
and so they are rigid of type 1 by [8].
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