On angular bisectors in normed linear spaces

Horst Martini

Faculty of Mathematics, Chemnitz University of Technology horst.martini@mathematik.tu-chemnitz.de

Senlin Wui

 $\label{lem:def:Department} Department \ of \ Applied \ Mathematics, \ Harbin \ University \ of \ Science \ and \ Technology \ \texttt{senlin_wu@hotmail.com}$

Received: 29.04.2009; accepted: 20.10.2009.

Abstract. We prove that a Minkowski space is Euclidean if it has the weak bisector property. This confirms a conjecture of R. W. Freese, C. R. Diminnie, and E. Z. Andalafte.

Keywords: angular bisector, angular measure, characterization of inner product spaces, Minkowski plane, Minkowski space, norm, weak bisector property

MSC 2000 classification: primary 46B20, secondary 46C15, 52A21

By X we denote the Minkowski space (i.e., the finite dimensional real Banach space) with $origin\ o,\ norm\ \|\cdot\|$, and $unit\ sphere\ S_X:=\{x\in X:\ \|x\|=1\}$. When X is a Minkowski plane, i.e., a two-dimensional Minkowski space, S_X is also called the $unit\ circle$ of X. Basic references for the geometry of Minkowski spaces are [5], [4], and the monograph [8]. For $x\neq -y$, the intersection of the cone $\{\lambda x+\mu y:\ \lambda,\mu\geq 0\}$ and S_X is called the $(undirected)\ arc$ between x and y and denoted by $S_X(x,y)$, and the length of $S_X(x,y)$ is denoted by $\delta_X(x,y)$. For brevity, we use the shorthand notation $\hat x=\frac{x}{\|x\|}$ for any point $x\neq o$.

For any three non-collinear points p, x, $y \in X$ we call the convex set bounded by the rays $[p, x\rangle$ and $[p, y\rangle$ the angle xpy (denoted by $\angle xpy$) with p as apex. For two linearly independent points x, $y \in S_X$ the authors of [2] defined the measure of $\angle xpy$ by

$$A(x,y) := \cos^{-1} \left[\frac{1}{2} (2 - \|\hat{x} - \hat{y}\|^2) \right].$$

The ray [o,z) with $z \in \angle xoy$ is called the angular bisector of $\angle xoy$ provided A(x,z) = A(y,z) (the uniqueness of z in this framework follows from [3, p. 170, Corollary]). R. W. Freese, C. R. Diminnie, and E. Z. Andalafte in [3] proved that a Minkowski space X is Euclidean if X has the angle bisector property, where X is said to have the angle bisector property if for all linearly independent $x, y \in S_X$ the point $z = \widehat{x+y}$ satisfies $A(x,z) = A(y,z) = \frac{1}{2}A(x,y)$. In [6] a stronger result was proved (see Theorem 4.2 there): If for all linearly independent $x, y \in S_X$ the point $z = \widehat{x+y}$ satisfies A(x,z) = A(y,z), then the underlying Minkowski plane is Euclidean. The authors of [3] also asked whether the weak bisector property, which is formulated in the following, still implies that the underlying space is Euclidean.

ⁱThe research of the second named author is supported by a grant from the Harbin University of Science and Technology (grant number 2009YF028) and by Deutsche Forschungsgemeinschaft.

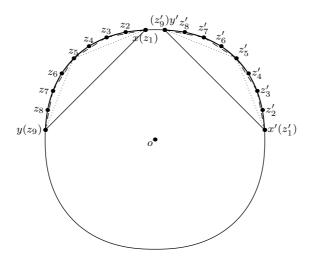


Figure 1. Proof of Theorem 1.

Weak bisector property: For any two linearly independent points $x, y \in S_X$ there exists a point $z \in \angle x$ and having the property A(x, z) = A(y, z) which satisfies $A(x, z) = \frac{1}{2}A(x, y)$.

Once more we mention that in view of [3, p. 170, Corollary] this point z is unique, up to positive multiples. The aim of this paper is to give an affirmative answer to this question, namely by

Theorem 1. A Minkowski space X of dimension at least 2 is Euclidean if it has the weak bisector property.

To prove this result we need the following lemma:

Lemma 1 (See Corollary 2.5 in [7]). Let X be a Minkowski plane. If there exists a function $\varphi: [0,2] \to [0,4]$ such that for any $u,v \in S_X$ we have $\delta_X(u,v) = \varphi(\|u-v\|)$, then X is Euclidean.

Proof of Theorem 1: Since a Minkowski space of dimension at least 2 is Euclidean if and only if each of its two-dimensional subspaces is Euclidean (see [1]), we may assume, without loss of generality, that X is a Minkowski plane. By Lemma 2, we only need to show that the length of any undirected arc of S_X is determined by the length of the corresponding chord.

Note first that for any $x, y \in S_X$ there exists a unique point $z \in S_X$ with $z \in \angle xoy$ and A(x,z) = A(y,z), and that ||x-z|| = ||y-z|| is determined only by ||x-y||. Indeed, from the assumption of the theorem it follows that

$$\cos^{-1}\left[\frac{1}{2}(2-\|\hat{x}-\hat{z}\|^2)\right] = A(x,z) = \frac{1}{2}A(x,y) = \frac{1}{2}\cos^{-1}\left[\frac{1}{2}(2-\|\hat{x}-\hat{y}\|^2)\right],$$

which implies that

$$\|\hat{x} - \hat{z}\| = \sqrt{2 - \sqrt{4 - \|\hat{x} - \hat{y}\|^2}}.$$

Now, for any points $x, y, x', y' \in S_X$ with ||x - y|| = ||x' - y'||, we show that $\delta_X(x, y) = \delta_X(x', y')$. For any integer $n \geq 1$ we have two subsets $\{z_1, \dots z_{2^n+1}\}, \{z'_1, \dots z'_{2^n+1}\} \subset S_X$

such that the following holds (note that the points z_i etc. are found again in view of [3, p. 170, Corollary]):

(1)
$$\{z_1, \dots z_{2^n+1}\} \subset S_X(x, y)$$
 and $\{z'_1, \dots z'_{2^n+1}\} \subset S_X(x', y')$,

$$(2) \ \ A(z_1,z_{2^{n-1}+1}) = A(z_{2^n+1},z_{2^{n-1}+1}) = A(z_1',z_{2^{n-1}+1}') = A(z_{2^{n+1}}',z_{2^{n-1}+1}'),$$

(3)

$$\begin{array}{lcl} A(z_1,z_{2^{n-2}+1}) & = & A(z_{2^{n-2}+1},z_{2^{n-1}+1}) \\ & = & A(z_1',z_{2^{n-2}+1}') = A(z_{2^{n-2}+1}',z_{2^{n-1}+1}') \end{array}$$

and

$$\begin{array}{rcl} A(z_{2^{n-1}+1},z_{2^{n-1}+2^{n-2}+1}) & = & A(z_{2^{n}+1},z_{2^{n-1}+2^{n-2}+1}) \\ & = & A(z_{2^{n-1}+1}',z_{2^{n-1}+2^{n-2}+1}') \\ & = & A(z_{2^{n}+1}',z_{2^{n-1}+2^{n-2}+1}') \end{array}$$

. .

Continuing with similar arguments, we finally obtain that

$$||z_i - z_{i+1}|| = ||z_j - z_{j+1}|| = ||z'_i - z'_{i+1}|| = ||z'_j - z'_{j+1}||$$

holds for any $1 \le i, j \le 2^n$.

Hence

$$\delta_X(x,y) = \sup_{n \ge 1} \left\{ \sum_{i=1}^{2^n} \|z_i - z_{i+1}\| \right\} = \sup_{n \ge 1} \left\{ \sum_{i=1}^{2^n} \|z_i' - z_{i+1}'\| \right\} = \delta_X(x',y'),$$

and this supremum of sums converges to the arc length since $||z_i - z_{i+1}||$ converge to zero. This follows since that sum is bounded from above by the arc length between x and y, and we have 2^n summands for $n \to \infty$. The proof is complete.

Remark 1. The weak bisector property in Theorem 1 can be replaced by the following condition: There exists a real function ϕ such that for any two linearly independent points $x, y \in S_X$, the point $z \in \angle xoy$ having the property A(x,z) = A(y,z) satisfies $A(x,z) = \phi(A(x,y))$.

References

- [1] D. Amir, Characterizations of Inner Product Spaces, Birkhäuser, Basel, 1986.
- [2] C. R. DIMINNIE, E. Z. ANDALAFTE, R. W. FREESE, Angles in normed linear spaces and a characterization of real inner product spaces, Math. Nachr., 129 (1986), 197–204.
- [3] R. W. Freese, C. R. Diminnie, E. Z. Andalafte, Angle bisectors in normed linear spaces, Math. Nachr., 131 (1987), 167–173.
- [4] H. MARTINI, K. J. SWANEPOEL, The geometry of Minkowski spaces a survey. Part II, Expositiones Math., 22 (2004), 93–144.
- [5] H. Martini, K. J. Swanepoel, G. Weiss, *The geometry of Minkowski spaces a survey.* Part I, Expositiones Math., **19** (2001), 97–142.
- [6] H. MARTINI, SENLIN WU, Radial projections of bisectors in Minkowski spaces, Extracta Math., 23 (2008), 7–28.

110 H. Martini, S. Wu

[7] H. MARTINI, SENLIN WU, Halving circular arcs in normed planes, Period. Math. Hungar., 57 (2008), 207–215.

[8] A. C. Thompson, Minkowski Geometry, Encyclopedia of Mathematics and Its Applications, Vol. 63, Cambridge University Press, Cambridge, 1996.