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Abstract. Viglino[13], introduced the family of C-compact spaces, showing that every con-
tinuous function from a C-compact space into a Hausdorff space is a closed function and that
this class of spaces properly contains the class of compact spaces. In the present paper, we
study these spaces by considering α-open sets introduced by Njastad [11]. We also characterize
their fundamental properties.
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Introduction

It is well known that the image of a compact space under a continuous function into a
Hausdorff space is closed. If we denote by P the property that every continuous function
from a topological space into a Hausdorff space is closed then the problem is whether under-
lying topological space having the property P is always compact. Viglino [13] resolved this
problem in 1969 in the negative and substantiated his argument with an example. He simul-
taneously introduced a new class of topological space for which property P held. He called
these spaces as C-compact. Since then, a tremendous number of papers such as Viglino[13],
Sakai[12], Herringaton et.al.[7], Viglino[14], Goss & Viglino[6] and Kim[8] have appeared on
C-compact spaces. The notion of α-open set was introduced by Njasted [11] in 1965. Since
then, these sets are being used in investigating separation covering and connectivity properties
such as Njasted[11], Biswas[2], Andrijevic[1], Caldas et.al.[3], Devi et.al.[4], Mashour et.al.[10],
Maheshwari & Thakur[9] and Goss & Viglino[5].

In the present paper, we venture to generalize C-compact spaces by using α-open set and
shall term them as C-α-compact spaces.

1 Preliminaries

Throughout this paper X and Y represents non-empty topological spaces on which no
separation axioms are assumed, unless otherwise stated. For any subset A of X, cl(A) and
int(A) respectively represents the closure and interior of A. Now we recall some definitions
and results, which we have used in the sequel.
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Definition 1. Viglino[13] A topological space X is called C-compact if for each closed
subset A ⊂ X and for each open cover U = {Uλ| λ ∈ Λ} of A, there exists a finite subcollection

{Uλi
| 1 ≤ i ≤ n} of U such that A ⊂

n
∪
i=1

cl(Uλi
).

Definition 2. Njastad[11] A subset A of a topological space X is called α-open if A ⊆
int(cl(int(A))). The complement of an α-open set is called an α-closed. Equivalently, a set F
is α-closed in X if cl(int(cl(F ))) ⊆ F . The family of all α-open (respectively α-closed) sets in
X is denoted by αO(X) (respectively αC (X).

Definition 3. Caldas et.al.[3] The intersection of all α-closed sets containing a subset
A ⊂ X is called the α-closure of A and is denoted by clα(A).

Definition 4. Devi et.al.[4] A topological space X is said to be α-regular if for every
closed set F and a point x /∈ F , there exists disjoint α-open sets A and B such that x ∈ A
and F ⊂ B. A set U is α-regular open if intα(clα(U)) = U .

Definition 5. Mashour et.al.[10] A map f : X → Y is said to be
α-continuous if the inverse image of every open subset of Y is α-open in X.

Remark 1. Mashour et.al.[10] Continuity implies α-continuity but not conversely.

Remark 2. Mashour et.al.[10] Every open mapping (closed mapping) is α-open (α-closed)
but the converse is not true.

Definition 6. Maheshwari & Thakur[9] A topological space X is called α-compact if
every α-cover of X has a finite subcover.

2 C -α-compact spaces

Definition 7. A topological space X is said to be C-α-compact if for each closed subset
A ⊂ X and for each α-open cover U = {Uλ| λ ∈ Λ} of A, there exists a finite sub collection

{Uλi
| 1 ≤ i ≤ n} of U , such that A ⊂

n
∪
i=1

clα (Uλi
).

Lemma 1. A topological space X is C-α-compact iff for each closed subset A ⊂ X and
for each α-regular open cover {Uλ| λ ∈ Λ} of A, there exists a finite subcollection {Uλi

| 1

≤ i ≤ n} such that A ⊂
n
∪
i=1

clα(Uλi
).

Proof: Let X be C-α-compact and let {Uλ| λ ∈ Λ} be any cover of A by α-open sets. Then
V = {intα(clα(Uλ))} is a α-regular open cover of A and so there exists a finite subcollection

{intα (clα(Uλi
)) : 1 ≤ i ≤ n} of V such that A ⊂

n
∪
i=1

clα{intα(clα(Uλi
))}. But for each i, we have

clα {intα(clα(Uλi
))} = clα(Uλi

). Therefore, A ⊂
n
∪
i=1

clα(Uλi
) implying that X is C-α-compact.

Theorem 1. A α-continuous image of a C-α-compact space is
C-α-compact.

Proof: Let A be a closed subset of Y and let V be an α-open cover of A. By α-continuity
of f , f −1(A) is an α-closed subset of X and is such that P = {f −1 (V ): V ∈ V} is a cover
of f −1(A) by α-open sets. By C-α-compactness of X, there exists finite collection say; {Pi: 1

≤ i ≤ n} of P such that f −1 (A) ⊂
n
∪
i=1

{clα (f −1 (Vi): 1 ≤ i ≤ n}. Now by α-continuity of

f , A ⊂
n
∪
i=1

{clα (Vi): 1 ≤ i ≤ n}. Thus Y is a C-α-compact space.
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3 α-Hausdorff and C -α-compact spaces

X is said to be an α-Hausdorff space if for any pair of distinct points x and y in X, there
exists α-open set a U and V in X such that x ∈ U , y ∈ V and U∩ V = φ.

Definition 8. A set U in a topological space X is an α-neighborhood of a point x if U
contains an α-open set V , such that x ∈ V .

Definition 9. Let X be a topological space and A be a subset of X then an element
x ∈ X is called α-adherent point of A if every α-open set G containing x contains at least one
point of A, that is, G ∩ A 6= φ.

Definition 10. Let X is a non-empty set. A non-empty collection B of non-empty subset
of X is called a basis for some filter on X if

(1) φ /∈ B

(2) If B1, B2 ∈ B then there exist a B ∈ B such that B ⊂ B1 ∩B2.

Definition 11. Let B be a filter base on a set X then the filter F is said to be generated
by B if F = { A : A ⊂ B,B ∈ B }.

Definition 12. A filter base F is said to be α-adherent convergent if every neighborhood
of the α-adherent set of F contains an element of F .

Theorem 2. For any α-Hausdorff space X. The following properties are equivalent.

(1) X is C-α-compact.

(2) For each closed subset A ⊂ X and for each family f of closed set of X with ∩{F ∩A: F ∈

f } = φ, there exists finite collection say; {Fi : 1 ≤ i ≤ n } of f with
n
∩
i=1

{(intαFi)∩A:

1 ≤ i ≤ n} = φ.

(3) If A is a closed subset of X and f is an open filter base on X whose element have
non-empty with A, then f has a α-adherent point in X.

Proof (i) ⇒ (ii) Let A be a closed subset of a C-α-compact space X and f be a family of
closed subset of X with ∩{F ∩A: F ∈ f } = φ ⇒ A ⊂ X ∼ ∩{F : F ∈ f } or A ⊂ ∪{X ∼ F :
F ∈ f }. Therefore {X ∼ F : F ∈ f } is an open cover of A. Since every open set is a α-open
set, therefore G = {X ∼ F : F ∈ f } is a α-open cover of A and so by C-α-compactness of X,

there exists a finite subfamily say; {X ∼ Fi : 1 ≤ i ≤ n and Fi ∈ f } of G such that A ⊂
n
∪
i=1

{clα (X ∼ Fi) : 1 ≤ i ≤ n} ⇒ A ⊂ X ∼
n
∩
i=1

{(intαFi): 1 ≤ i ≤ n}. Therefore
n
∩
i=1

{(intαFi)∩A:

1 ≤ i ≤ n} = φ.
(ii) ⇒ (iii) Suppose that there exist a closed set A and let G be an open filter base having

non-empty trace with A such that G has no α-adherent point. Now f = {(clαG): G ∈ G } is
a family of closed set such that ∩{(clαG): G ∈ G } ∩ A = φ ( But clαG is a superset of G
so clαG ∈ G. Therefore ∩{(clαG) ∩ A: G ∈ G } is a trace of A and by hypothesis G has no
α-adherent point, therefore ∩{(clαG)∩A: G ∈ G }= φ) so there is a finite subfamily of f , say

{Fi= clαGi: 1 ≤ i ≤ n} with
n
∩
i=1

{(intαFi)∩A: 1 ≤ i ≤ n}= φ or A ⊂
n
∪
i=1

{ X ∼ intα (clαGi):

1 ≤ i ≤ n}. Therefore
n
∩
i=1

{ Gi ∩ A: 1 ≤ i ≤ n}= φ. Since G is a filter base therefore there

must exist a G ∈ G such that G ⊂
n
∩
i=1

{Gi: 1 ≤ i ≤ n}. So G ∩A = φ, a contradiction.

(iii) ⇒ (i) Assume that X is not C-α-compact then there is a closed subset A and a
covering U of A consisting of α-open subset of Xsuch that for any finite subfamily {Ui: 1

≤ i ≤ n} of U , A 6⊂
n
∪
i=1

{clαUi: 1 ≤ i ≤ n}. Now G = [X ∼
n
∪
i=1

{clαUi: 1 ≤ i ≤ n and Ui ∈ U}]
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is an open filter base having non-empty trace with A, so by (iii) there is an α-adherent point

of G in A, let it be x. Thus x ∈ clα [X ∼
n
∪
i=1

{clαUi: 1 ≤ i ≤ n}] say; for each G ∈ G or x ∈

[X ∼
n
∪
i=1

{Ui: 1 ≤ i ≤ n}]. Therefore, U is not a covering of A, a contradiction .

Theorem 3. A α-Hausdorff space X is C-α-compact iff every open filter base F is α-
adherent convergent.

Proof: Let F be an open filter base of the C-α-compact space X. Let A be α-adherent
set of F . Let G be an open-neighborhood of A. Since A is the α-adherent set of F , we have
A = ∩{clαF : F ∈ F}. Since G is an open-neighborhood of A, we have A ⊂ G and X ∼ G is

closed. Clearly {X ∼ clαF : F ∈ F} is an α-open cover of X ∼ G and so X ∼ G ⊂
n
∪
i=1

{clα

(X ∼ clα Fi): 1 ≤ i ≤ n}. This implies
n
∩
i=1

{clα (X ∼ clαFi): 1 ≤ i ≤ n} ⊂ G. Further X ∼

clαFi ⊂ X ∼ Fi or
n
∩
i=1

{Fi: 1 ≤ i ≤ n} ⊂
n
∩
i=1

{clα (X ∼ clαFi): 1 ≤ i ≤ n}. Thus
n
∩
i=1

{Fi: 1

≤ i ≤ n} ⊂ G, that is, open-neighborhood G of A contains a point of F .

Conversely, let X be a non C-α-compact space and let A be any closed subset of X. Choose
an α-open cover U of A such that A is not contained in the α-closure of any finite union of
elements in U . Without loss of generality we may consider U to be closed under finite unions.
Obviously then F = {X ∼ clαG: G ∈ U} is an open filter base in X. Let x be an α-adherent
point of F . This clearly implies that x /∈ A. So the α-adherent set of the open filter base F is
contained in X ∼ A, but no element of F is contained in X ∼ A.

Theorem 4. A α-Hausdorff space X is C-α-compact iff for each closed subset C of X
and α-open cover C of X ∼ C and a open-neighborhood U of C, there exists a finite collection

{Gi ∈ C: 1 ≤ i ≤ n} such that X = U ∪
n
∪
i=1

{clαGi: 1 ≤ i ≤ n}.

Proof: Since U is an open-neighborhood of C, therefore C ⊂ U ⊂ cl(C), or X ∼ U ⊂ X ∼
C where X ∼ U is a α-closed set. Further, as C is a α-open cover of X ∼ C. Therefore C is
a α-open cover of the α-closed set X ∼ U too. Now by C-α-compactness of X, there exists

a finite subfamily {Gi: 1 ≤ i ≤ n} of C such that X ∼ U ⊂
n
∪
i=1

{clαGi: 1 ≤ i ≤ n}. Which

implies X = U ∪
n
∪
i=1

{clαGi: 1 ≤ i ≤ n}.

Conversely; Let A be a closed subset of X, G be an α-open cover of A, Therefore A ⊂ ∪{G:
G ∈ G} = H (say), obviously H is α-open, therefore X ∼ H = C (say), is α-closed and
C ⊂ X ∼ A. since X ∼ A is α-open. Therefore we can take X ∼ A = U is an open-

neighborhood of C, thus by the given statement X = U ∪
n
∪
i=1

{clαGi: 1 ≤ i ≤ n}. Hence X is

C-α-compact.

Theorem 5. Every α-continuous function from a C-α-compact space to a α-Hausdorff
space is closed.

Proof: Let f be α-continuous function from a C-α -compact space X to a α-Hausdorff
space Y . Let C be a closed set in X and let p /∈ f (C). Now for every x ∈ f (C), x 6= p
and hence choose a open-neighborhood Nx such that p /∈ clα (Nx), obviously { f −1(Nx):

x ∈ f (C)} is a α-open cover of C. Let {xi: 1 ≤ i ≤ n} be such that C ⊂
n
∪
i=1

{clα f −1 (Nxi):

1 ≤ i ≤ n}, because X is C-α-compact space. Thus by the α-continuity of f , Y ∼
n
∪
i=1

{ clα

(Nxi): 1 ≤ i ≤ n} is a α-neighborhood of p disjoint from Y . Hence C is closed, so α-continuous
function f from C-α-compact space X to a α-Hausdorff space Y is closed.
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4 Study of functionally compact spaces and C -α
-compact spaces

A Hausdorff space X is said to be a functionally compact space if for every open filter
base U in X, the intersection A of the elements of U is equal to the intersection of the closure
of the elements of U , then U is a base for the neighbourhood of A.

Theorem 6. Every C-α-compact space is functionally compact.

Proof: Let U be an α-open filter base in the C-α-compact space X. Let A = ∩(U : U ∈ U)
= ∩ (clαU :U ∈ U). Let G be an α-open set containing A. Then ∩ (clαU : U ∈ U) is a subset
of G, that is, ∩ (X ∼ clαU : U ∈ U). Now X ∼ G is a α-closed subset of the C-α-compact
space X. Therefore the α-open cover (X ∼ clαU : U ∈ U) of X ∼ G has a finite subfamily, say
(X ∼ clαUi: 1 ≤ i ≤ n) such that X ∼ G ⊂ ∪ (clα(X ∼ clαUi): 1 ≤ i ≤ n) ⊂ (X ∼ clαUi: 1
≤ i ≤ n), that is, ∩ (Ui: 1 ≤ i ≤ n) ⊂ G. Since U is a filter base there exists a U ∈ U such
that U ⊂ ∩ (Ui: 1 ≤ i ≤ n) and hence U ⊂ G and the space X is functionally compact.

Theorem 7. A α-Hausdorff space X is functionally compact iff for every α-regular closed
subset C of X and α-open cover B of X ∼ C and a open-neighborhood U of C, there exists a

finite collection {Bxi ∈ B: 1 ≤ i ≤ n} such that X = U ∪ [
n
∪
i=1

{clαBxi : 1 ≤ i ≤ n}].

Proof: For each x ∈ X ∼ C, since C is α-regular closed, there exists an α-open set Ax such
that clαAx ⊂ X ∼ C. Also there exists a Bx ∈ B such that x ∈ Bx. Let Gx = Ax ∩Bx. Then
Gx is an α-open set such that x ∈ Gx, clαGx ⊂ X ∼ C and there exists a Bx ∈ B such that
Gx ⊂ Bx. Also X ∼ C = ∪ {Gx: x ∈ X ∼ C} = ∪ {intα clα Gx: x ∈ X ∼ C} = ∪ {clα Gx:
x ∈ X ∼ C}. Suppose, if possible, that no finite collection of G is such that the α-closure of
its members cover X ∼ U . Now for any finite collection {Gxi : 1 ≤ i ≤ n} of G, ∩ {X ∼ clα
Gxi : 1 ≤ i ≤ n} 6= φ. Let V be the family of the all finite intersection of the family {X ∼ clα
Gx: x ∈ X ∼ C}. Now V is an α-open filter base such that ∩ {V : V ∈ V} = ∩ {X ∼ clα Gx:
x ∈ X ∼ C} = X ∼ ∩{clα Gx: x ∈ X ∼ C} = C and ∩ {clαV : V ∈ V} = ∩ {cl α(X ∼ clα
Gx): x ∈ X ∼ C} = ∩ {X ∼ intα clα Gx): x ∈ X ∼ C} = X ∼ ∪ {intα clα Gx): x ∈ X ∼ C}
= C. But there exists no V ∈ V such that C ⊂ V ⊂ U and this is a contradiction to the fact
that X is functionally compact. Hence there exists a finite collection {Gxi : 1 ≤ i ≤ n} and

hence {Bxi : 1 ≤ i ≤ n} such that X = U ∪ [
n
∪
i=1

{clαBxi : 1 ≤ i ≤ n}].

Conversely; Let U be an α-open filter base such that A = ∩ {U : U ∈ U} = ∩ {cl

αU : U ∈ U}. Let G be an α-open set containing A. Now for each x ∈ X ∼ A, there exists a
U ∈ U such that x 6∈ clαU . Now x ∈ X ∼ clαU and clα(X ∼ clαU) ∩ A = φ, because A ⊂ U
for each U ∈ U . Therefore, A is a α-regular closed set. {X ∼ clαU : U ∈ U} is an α-open cover
of X ∼ A. Therefore there exists a finite collection {X ∼ clα Ui: 1 ≤ i ≤ n} of {X ∼ clα U :
U ∈ U} such that X = G ∪ [∪{clα(X ∼ clα Ui): 1 ≤ i ≤ n}]. Thus X ∼ G ⊂ ∪ {clα(X ∼ clα
Ui): 1 ≤ i ≤ n}, that is, ∪{intα cl α Ui: 1 ≤ i ≤ n} ⊂ G, that is, ∪{Ui: 1 ≤ i ≤ n} ⊂ G. Since
U is an α-open filter base, there exists a U ∈ U such that U ⊂ {Ui: 1 ≤ i ≤ n} and hence
U ⊂ G. Thus X is functionally compact.
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