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1 Introduction and Preliminaries

The concept of weakly compatible is defined by Jungck and Rhoades [3]. In this pa-
per we take weakly compatible to prove common fixed point theorems. Recently, Aamri and
Moutawakil [1] introduce the concept of A-distance and E-distance in uniform space. With the
help of these A-distance and E-distance we prove common fixed point for weakly compatible.

Definition 1. Two self maps T and S of a metric spaceX are said to be weakly compatible
if they commute at there coincidence points, i.e. if Tu = Su for u in X, then TSu = STu.

By Bourbaki [2], we call uniform space (X,ϑ) a non empty set X endowed of an uniformity
ϑ, the latter being a special kind of filter on X×X, for all whose elements contain the diagonal
∆ = {(x, x)|x ∈ X}. if V ∈ ϑ and (x, y) ∈ V, (y, x) ∈ V , x and y are said to be V -close and a
sequence (xn) in X is a Cauchy sequence for ϑ if for any V ∈ ϑ, there exists N ≥ 1 such that
xn and xm are V -close for n,m ≥ N . An uniformly ϑ defines a unique topology T (ϑ) on X
for which the neighborhoods of x ∈ X are the sets V (x) = {y ∈ X|(x, y) ∈ V } when V runs
over ϑ.

A uniform space (X,ϑ) is said to be Hausdorff if and only if the intersection of all V ∈ ϑ
redices to the diagonal ∆ of X i.e. if (x, y) ∈ V for all V ∈ ϑ implies x = y. This guarantees the
uniqueness of limits of sequences. V ∈ ϑ is said to be symmetrical if V = V −1 = {(y, x)|(x, y) ∈
V }. Since each V ∈ ϑ contains a symmetrical W ∈ ϑ and if (x, y) ∈W then x and y are both
W and V -còlose, then for our purpose, we assume that each V ∈ ϑ is symmetrical. When
topological concepts are mentioned in the context of a uniform space (X,ϑ), they always refer
to the topological space (X,T (ϑ)).

Definition 2. Let (X,ϑ) be a uniform space. A function p : X ×X −→ R+ is said to be
an A-distance if for any V ∈ ϑ there exists δ > 0 such that if p(z, x) ≤ δ and p(z, y) ≤ δ for
some z ∈ X, then (x, y) ∈ V .
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Definition 3. Let (X,ϑ) be uniform space. A function p : X × X −→ R+ is said to be
an E-distance if p is an A-distance and p(x, y) ≤ p(x, z) + p(z, y), for every x, y, z ∈ X.

Definition 4. Let (X,ϑ) be uniform space and p be an A-distance on X.
(I) X in S complete if for every p-Cauchy sequences {xn} there exists x ∈ X such that
limp(xn, x) = 0.
(II) X is p-Cauchy complete if for every p-Cauchy sequences {xn} there exists x ∈ X such
that limxn = x with respect to τ(ϑ).
(III) f : X −→ X is p-continuous if limp(xn, x) = 0 implies limp(f(xn), f(x)) = 0.
(IV) f : X −→ X is T (ϑ)-continuous if limxn = x with respect to T (ϑ) implies limf(xn) =
f(x) with respect to τ(ϑ).
(V) X is said to be p-bounded if δp(X) = sup{p(x, y)|x, y ∈ X} <∞.

Lemma 1. Let (X,ϑ) be uniform space and p be an A-distance on X. Let {xn}, {yn} be
arbitrary sequences in X and {αn}, {βn} be sequences in R+ and converging to 0. Then, for
x, y, z ∈ X, the following holds
(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for all n ∈ N, then y = z. In particular, if p(x, y) = 0
and p(x, z) = 0, then y = z.
(b) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn for all n ∈ N, then {yn} converges to z.
(c) If p(xn, xm) ≤ αn for all m > n, then {xn} is a Cauchy sequences in (X,ϑ).

Let ψ : R+ −→ R+ be continuous and satisfying the conditions
(i) ψ is nondecreasing on R+,
(ii) 0 < ψ(t) < t, for each t ∈ (0,∞).

Theorem 1. Let (X,ϑ) be a Hausdorff uniform space and p be an A-distance on X. Let
f and g are two weakly compatible defined on X such that
(I) f(X) ⊆ g(X)

(II) p(f(x), f(y))) ≤ ψ[max{p(g(x), g(y))},

1/2[p(g(x), f(x)) + p(g(x), f(y))], 1/2[p(g(y), f(y)) + p(g(y), f(x))]}]

If f(X) or g(X) is a S complete subspaces of X, then f and g have a common fixed point.

Proof. Let x0 ∈ X and choose x1 ∈ X such that f(x0) = g(x1). Choose x2 ∈ X such
that f(x1) = g(x2). In general f(xn) = g(xn+1). Then let the sequence yn+1 such that

yn+1 = f(xn) = g(xn+1) . . . (1)

Now there arise two cases:
Case 1 If yn = yn+p for n ∈ N, we have z = yn = g(xn) = f(xn) = g(xn+1 = yn+1. Now
taking u = xn, then f(u) = g(u) and by weakly compatibility fg(u) = gf(u). Now

d(f(z), z) = d(f(z), f(u))

≤ ψ[max{p(g(z), g(u))}, 1/2[p(g(z), f(z)) + p(g(z), f(u))],

1/2[p(g(u), f(u)) + p(g(u), f(z))]}]

≤ ψ[max{p(z, f(z))}, 1/2[p(gf(u), fg(u)) + p(gf(u), fg(u))],

1/2[p(f(u), f(u)) + p(z, f(z))]}]

≤ ψ{p(z, f(z))} < p(z, f(z)))
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which is contradiction. It implies f(z) = z. Again, z = f(z) = fg(u) = gf(u) = g(z). So, z is
common fixed point of f and g.
Case 2. Let yn 6= yn+p for all n ∈ N. We have that

limyn = limfxn = limgxn+1 = z

For this z ∈ g(X) there exist ω in X such that z = g(ω). Now by condition (II) of theorem we
have

p(f(ω), g(ω)) ≤ p(f(ω), f(xn)) + p(f(xn), g(ω))

≤ ψ[max{p(g(ω), g(xn))}, 1/2[p(g(ω), f(ω)) + p(g(ω), f(xn))],

1/2[p(g(xn), f(xn)) + p(g(xn), f(ω))]}] + p(f(xn), g(ω))

≤ ψ[max{p(z, z)}, 1/2[p(g(ω), f(ω)) + p(g(ω), g(ω))],

1/2[p(z, z) + p(g(ω), f(ω))]}] + p(z, z), as n→ ∞

≤ ψ{p(g(ω), f(ω))} ≤ p(g(ω), f(ω))

It implies that fω = gω. The assumption that f and g are weakly compatible implies fg(ω) =
gf(ω). Also ff(ω) = fg(ω) = gf(ω) = gg(ω). Suppose that p(f(ω), ff(ω)) 6= 0. From (II), it
follows

p(f(ω), f(ω)) ≤ ψ max[{p(g(ω), gf(ω)), 1/2[p(g(ω), f(ω)) + p(g(ω), ff(ω))],

1/2[p(gf(ω), ff(ω)) + p(gf(ω), f(ω))]}]

≤ ψ{p(f(ω), ff(ω))} < p(f(ω), ff(ω))

which is a contradiction. Thus p(f(ω), ff(ω)) = 0.
Suppose that p(f(ω), f(ω)) 6= 0, then also by (II)

p(f(ω), f(ω)) ≤ ψ max[{p(g(ω), g(ω)), 1/2[p(g(ω), f(ω)) + p(g(ω), f(ω))],

1/2[p(gf(ω), f(ω)) + p(g(ω), f(ω))]}]

≤ ψ{p(f(ω), f(ω))} < p(f(ω), f(ω))

which is a contradiction. Thus p(f(ω), f(ω)) = 0. Since p(f(ω), f(ω)) = 0 and p(f(ω), ff(ω)) =
0, lemma 1(a) gives ff(ω) = f(ω).
Hence g(f(ω)) = f(f(ω)) = f(ω) and z = f(ω) is common fixed point of f and g.

QED

Theorem 2. Let (X,ϑ) be a Hausdorff uniform space and p be an E-distance on X. Let
f and g are two weakly compatible defined on X such that
(I) f(X) ⊆ g(X)

(II) p(f(x), f(y))) ≤ ψ[max{p(g(x), g(y))},

1/2[p(g(x), f(x)) + p(g(x), f(y))], 1/2[p(g(y), f(y)) + p(g(y), f(x))]}]

If f(X) or g(X) is a S complete subspaces of X, then f and g have a unique common fixed
point.

Proof. Since E distance in A distance therefore f and g have a common point. Suppose
z1 and z2 are common fixed points of f and g, then f(z1) = g(z1) = z1 and f(z2) = g(z2) = z2.
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If p(z1, z2) 6= 0, then by (II)

p(z1, z2) = p(f(z1), f(z2)) ≤ ψ max[{p(g(z1), g(z2)),

1/2[p(g(z1), f(z1)) + p(g(z1), f(z2))],

1/2[p(g(z2), f(z2)) + p(g(z2), f(z1))]}]

= ψ {p(z1, z2)} < p(z1, z2) ⇒ p(z1, z2) = 0.

Consequently by (p2) we have p(z1, z1) ≤ p(z1, z2) + p(z2, z1) ⇒ p(z1, z2) = 0. Now, we have
p(z1, z1) = 0 and p(z − 1, z2) = 0 therefore z1 = z2.

QED

Theorem 3. Let (X,ϑ) be a Hausdorff uniform space and p be an A-distance on X. Let
f and g are two weakly compatible defined on X such that
(I) fr(X) ⊆ gs(X)

(II) p(fr(x), fr(y))) ≤ ψ[max{p(gs(x), gs(y))},

1/2[p(gs(x), fr(x)) + p(gs(x), fr(y))], 1/2[p(gs(y), fr(y)) + p(gs(y), fr(x))]}]

where r and s are positive integers. If f(X) or g(X) is a S complete subspaces of X, then f
and g have a common fixed point.

Proof. Same as theorem 1. QED

Theorem 4. Let (X,ϑ) be a Hausdorff uniform space and p be an A-distance on X. Let
f and g are two weakly compatible defined on X such that
(I) fr(X) ⊆ gs(X)

(II) p(fr(x), fr(y))) ≤ ψ[max{p(gs(x), gs(y))},

1/2[p(gs(x), fr(x)) + p(gs(x), fr(y))], 1/2[p(gs(y), fr(y)) + p(gs(y), fr(x))]}]

where r and s are positive integers. If f(X) or g(X) is a S complete subspaces of X, then f
and g have a unique common fixed point.

Proof. Same as theorem 2. QED

Example. Let X = [0, 1] and d(x, y) = |x − y|. Self mappings f and g are defined as
fx = x2 if x ∈ [0, 1/2) & = 1/2 if x ∈ [1/2, 1] and gx = 0 if x ∈ [0, 1/2) & = x if x ∈ [1/2, 1].
Now, consider the functions p and ψ as: ψ(x) = x2 and p(x, y) = 0 if y ∈ [0, 1/2) & = y if
y ∈ [1/2, 1]. All conditions of Theorem 2 are satisfied and 1/2 is common point of f and g.
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