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Abstract. In this paper, we present a new characterization of lower semicontinuity of vector-
valued mappings and apply it to the solvability of vector optimization problems in Banach
spaces. With this aim we introduce a class of vector-valued mappings that is more wider than
the class of vector-valued mappings with the “typical” properties of lower semi-continuity
including quasi and order lower semi-continuity. We show that in this case the corresponding
vector optimization problems have non-empty sets of efficient solutions.
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Introduction

In this paper, we present a new concept of lower semicontinuity for vector-valued mappings.
We consider the case when the mappings take values in a real Banach space Y partially ordered
by a closed convex pointed cone Λ. In the vector-valued case there are several possible ways
to extend the “scalar” notion of lower semicontinuity (see, for example, [1, 2, 3, 6, 9, 11,
12]). Let us mention the lower semicontinuity, quasi lower semicontinuity, and order lower
semicontinuity. Usually, in many papers the typical assumption is that the interior of the
ordering cone Λ is non-empty. However, in many interesting and important cases, this property
does not hold. For instance, in the case when Y = Lp(Ω), where Ω is an open bounded subset
of Rn, p ∈ [1,+∞), and Λ is the natural cone of non-negative elements of Y , we have IntΛ = ∅.
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So, in this paper we make no additional assumptions on the cone Λ and its interior. On the other
hand, there are many vector optimization problems with non-empty sets of efficient solutions,
for which the corresponding vector-valued mappings satisfy none of the lower semicontinuity
concepts mentioned above.

In view of this a new characterization of semicontinuity for such mappings is the main
scope of this paper. We introduce, the so-called Λτ -lower semicontinuity property for vector-
valued mappings in Banach spaces (with respect to the τ -topology of Y ) which implies the
previous ones. We apply this concept to the study of the vector optimization problems.

Let us describe the contents of the paper. Section 1 provides in details the main notation
and ingredients needed in this work. In Section 2, we give the statement of the vector optimiza-
tion problem in Banach spaces and the definition of its efficient solutions. Section 3 contains
a short review of the main definitions of lower semicontinuity of vector-valued mappings, in-
troduced in [3, 6, 7, 13], and some well-known facts concerning these notions. In Section 4, we
introduce a new concept of lower semicontinuity for vector-valued mappings with respect to
different topologies of Banach spaces, and compare this notion with the previous ones. The last
section contains our main result concerning the solvability of the vector optimization problem.
All main notions and assertions are illustrated by numerous examples.

1 Preliminaries and notation

Throughout this paper, X and Y are two real Banach spaces. We assume that X is
reflexive. Let θY be the zero-element of Y . We suppose that these spaces, as topological spaces,
are endowed with some topology τ , which usually is associated either with the strong topology
(τ := s) or with the weak topology (τ := w). For a subset Y0 of Y , we denote by Intτ Y0,
clτ Y0, and ∂τY0 the interior of Y0, the closure of Y0, and its boundary in Y with respect to
the τ -topology of Y , respectively. By default τ is always associated with the strong topology
of the corresponding space. In this case, we will omit the index if no confusion may occur. Let
Λ ⊂ Y be a closed convex cone, which is supposed to be pointed, that is, Λ ∩−Λ = {θY }. No
assumption is required on the interior of Λ.

The cone Λ defines a partial order on Y denoted by �. For any elements y, z ∈ Y , we will
write y � z whenever z ∈ y + Λ and y ≺ z for y, z ∈ Y , if z − y ∈ Λ \ {θY }. We say that a
sequence {yk}

∞
k=1 ⊂ Y is non-increasing and we use the notation yk ց whenever, for all k ∈ N,

we have yk+1 � yk.
We say that an element y∗ ∈ Y0 is Λ-minimal for the set Y0 ⊂ Y , if there is no y ∈ Y0

such that y ≺ y∗, that is,
Y0 ∩ (y∗ − Λ) = {y∗}.

We denote with Λ-Min(Y0) the family of all such elements. We say that an element y∗ ∈ Y0

is the Λ-ideal minimal point of the set Y0, if y
∗ � y for every y ∈ Y0. By analogy we can

introduce the sets of Λ-maximal and Λ-ideal maximal elements of the set Y0.
Let us introduce two singular elements −∞ and +∞ in Y . We assume that these elements

satisfy the following conditions:

1)−∞ � y � +∞, ∀y ∈ Y ; 2) +∞+ (−∞) = θY .

We use the notation Y = Y ∪ {±∞}. Then +∞ is the Λ-greatest element of the set Y , and
the element −∞ is its Λ-smallest element. We denote with Y • a semi-extended Banach space:
Y • = Y ∪ {+∞}. Following [14] we say that for a subset A ⊂ Y an element a ∈ Y is called a
least upper bound of A when for every y ∈ Y the following property

a � y if and only if b � y for every b ∈ A
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holds true. As usual, we denote by sup A the least upper bound of A. Similarly, the greatest
lower bound of A, whenever it exists, inf A, is defined by

for every y ∈ Y, y � inf A if and only if y � z for every z ∈ A.

Then the next concept is the crucial point in our approach.

Definition 1. We say that a set A is the efficient Λ-infimum of the set Y0 ⊂ Y with respect
to the τ -topology (or shortly Λτ -infimum) if A is the collection of all Λ-minimal elements of
the τ -closure Y0 in the case when this set is non-empty, and A is equal to {−∞} in the opposite
case.

Hereinafter we denote the efficient Λτ -infimum for Y0 by InfΛ,τ Y0. Thus, in view of the
definition given above, we have

InfΛ,τ Y0 :=

{
Λ-Min(clτ Y0), Λ-Min(clτ Y0) 6= ∅,
−∞, Λ-Min(clτ Y0) = ∅.

We conclude this preliminaries by pointing out some basic definitions. Let X∂ be a subset
of the Banach space X, and f : X∂ → Y be some mapping. In what follows we always associate
the mapping f : X∂ → Y with its natural extension f̂ : X → Y • to the whole space X, where

f̂(x) =

{
f(x), x ∈ X∂ ,
+∞, x /∈ X∂ .

Given a map f : X → Y •, its domain is denoted by Dom f and defined by

Dom f = {x ∈ X | f(x) ≺ +∞} .

Further we assume that Dom f 6= ∅. A mapping f : X → Y • is said to be bounded below if
there exists a z ∈ Y such that z ≤ f(x) for all x ∈ X.

Definition 2. A subset A of Y is said to be the strong efficient Λ-infimum (resp. the
weak efficient Λ-infimum) of a mapping f : X −→ Y • and is denoted by InfΛ,s

x∈X f(x) (resp.

by InfΛ,w
x∈X f(x)), if A is the efficient Λs-infimum (resp. Λw-infimum) of the image f(X) of X

in Y , that is,

InfΛ,s
x∈X f(x) = InfΛ,s { f(x) | ∀x ∈ X }

(resp. InfΛ,w
x∈X f(x) = InfΛ,w { f(x) | ∀x ∈ X }).

Remark 1. It is clear now that if a ∈ InfΛ,s
x∈X f(x) then

cl { f(x) | ∀x ∈ X } ∩ (a− Λ) = {a}

provided Λ-Min [cl { f(x) | ∀x ∈ X }] 6= ∅.

Let {yk}
∞
k=1 be a sequence in Y . Let us denote by Lτ{yk} the set of all its cluster points with

respect to the τ -topology of Y , that is, y ∈ Lτ{yk} if there is a subsequence {yki
}∞i=1 ⊂ {yk}

∞
k=1

such that yki

τ
−→ y in Y as i→ ∞. If InfΛ,τ Lτ{yk} = −∞, we assume that {−∞} ∈ Lτ{yk}.
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If SupΛ,τ Lτ{yk} = +∞, we assume that {+∞} ∈ Lτ{yk}. Let x0 ∈ X be a fixed element. In
what follows for an arbitrary mapping f : X −→ Y • we make use of the following sets:

Lτ
s (f, x0) :=

⋃
{xk}

∞
k=1

∈Ms(x0)

Lτ{f(xk)},

Lτ
w(f, x0) :=

⋃
{xk}

∞
k=1

∈Mw(x0)

Lτ{f(xk)},

where Ms(x0) and Mw(x0) are the sets of all sequences {xk}
∞
k=1 ⊂ X such that xk → x0

strongly in X and weakly in X, respectively.

Definition 3. We say that a subset A ⊂ Y ∪ {±∞} is the Λ-lower sequential limit of the
mapping f : X −→ Y • at the point x0 ∈ X with respect to the product of the strong topology
of X and the τ -topology of Y , and we use the notation A = lim infΛ,τ

x→x0
f(x), if

lim infΛ,τ
x→x0

f(x) :=

{
Lτ,s
min(f, x0, X), Lτ,s

min(f, x0, X) 6= ∅,

InfΛ,τ Lτ
s (f, x0), Lτ,s

min(f, x0, X) = ∅,
(1)

where

Lτ,s
min(f, x0, X) = Lτ

s (f, x0) ∩ InfΛ,τ
x∈X f(x).

Remark 2. Note that in the scalar case (f : X −→ R) the sets

InfΛ,
x∈X f(x) and InfΛ,τ Lτ

s (f, x0)

are singletons. So, if Lτ
s (f, x0) ∩ InfΛ,τ

x∈X f(x) 6= ∅, then

Lτ
s (f, x0) ∩ InfΛ,

x∈X f(x) ≡ InfΛ,τ Lτ
s (f, x0),

and therefore the choice rules in (1) coincide and give the classical definition of the lower limit.

By analogy, we can introduce the notion of the Λ-lower sequential limit of f : X −→ Y •

at x0 ∈ X with respect to the product of the weak topology of X and the τ -topology of Y . In
this case we have

lim infΛ,τ
x⇀x0

f(x) :=

{
Lτ
w(f, x0) ∩ InfΛ,τ

x∈X f(x), Lτ
w(f, x0) ∩ InfΛ,τ

x∈X f(x) 6= ∅,

InfΛ,τ Lτ
w(f, x0), Lτ

w(f, x0) ∩ InfΛ,τ
x∈X f(x) = ∅.

In particular, if τ is associated with the strong topology of Y , then following our previous
conventions, we will use the notation

lim infΛ,s
x⇀x0

f(x) :=

{
Ls
w(f, x0) ∩ InfΛ,s

x∈X f(x), Ls
w(f, x0) ∩ InfΛ,s

x∈X f(x) 6= ∅,

InfΛ,s Ls
w(f, x0), Ls

w(f, x0) ∩ InfΛ,s
x∈X f(x) = ∅.

To illustrate the crucial role of the conditions

Lτ
s (f, x0) ∩ InfΛ,τ

x∈X f(x) 6= ∅ and Lτ
s (f, x0) ∩ InfΛ,τ

x∈X f(x) = ∅

of Definition 3, we give the following example.



On existence of efficient solutions to vector optimization problems 29

Figure 1. The image of X∂ in Example 1

Example 1. Let X = Y = R2, X∂ = X1
∂ ∪X2

∂ ,

X1
∂ =

{
x ∈ R2 | (x1 − 6)2 + (x2 − 6)2 ≤ 25, x1 + x2 ≤ 7

}
, (2)

X2
∂ =

{
x ∈ R2 | x1 + x2 > 7, x1 + x2 ≤ 8, x1 ≥ 1, x2 ≥ 1

}
, (3)

and let Λ = R2
+ be the cone of positive elements. Then the strong and weak topologies in X

and Y coincide. We define a vector-valued mapping f : X∂ → Y as follows:

f(x) =






x, x 6∈ X0,[
6
2

]
, x ∈ X ′

0 ∪ {A,C} ,
[
2
6

]
, x ∈ X ′′

0 ∪ {B,D} ,

(4)

where A =
[
1
7

]
, B =

[
1
6

]
, C =

[
6
1

]
, D =

[
7
1

]
, X0 = X ′

0 ∪X
′′
0 ∪ {A,B,C,D},

X ′
0 =

{
x ∈ X∂ | (x1 − 6)2 + (x2 − 6)2 = 25, 1 < x1 ≤ x2

}
,

X ′′
0 =

{
x ∈ X∂ | (x1 − 6)2 + (x2 − 6)2 = 25, x2 < x1 < 6

}
.

Let us find the Λ-lower sequential limit of f : X∂ −→ Y at two points: firstly at x0 = A,
and after at x0 = C. To begin with, we note that

InfΛ,s
x∈X f̂(x) = X ′

0 ∪X
′′
0 ∪ {B,C}

(see Fig.1). Then, in the case when x0 = A, we have

Ls
s(f̂ , x0) =

{
A,

[
6

2

]}
.

Hence, since Ls
s(f̂ , x0) ∩ InfΛ,s

x∈X f̂(x) = ∅, by Definition 3, we conclude that

lim infΛ,s
x→x0

f̂(x) = InfΛ,s Ls
s(f̂ , x0) =

{
A,

[
6

2

]}
.
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At the same time, if we take x0 = C, then Ls
s(f̂ , x0) =

{
C,
[
6
2

]}
. Hence,

lim infΛ,s
x→x0

f̂(x) = Ls
s(f̂(x0)) ∩ InfΛ,s

x∈X f̂(x) = {C} .

2 The statement of the vector optimization problem

Let X∂ be a non-empty bounded weakly closed subset of the reflexive Banach space X.
Let F : X∂ → Y be a given mapping. The vector optimization problem we consider can be
stated as follows:

Minimize F (x) with respect to the cone Λ
subject to x ∈ X∂ .

}
(5)

In view of this we will associate the vector optimization problem (5) with the following triplet

〈X∂ , F,Λ〉 , (6)

where the set X∂ is called the set of admissible solutions to the problem (5).

Definition 4. We say that x0 ∈ X∂ is a Λs-efficient solution of the problem (5) if x0
realizes the strong efficient Λ-infimum of the mapping F : X∂ → Y , that is,

F (x0) ∈ InfΛ,s
x∈X∂

F (x).

Definition 5. An element x0 ∈ X∂ is said to be a Λw- efficient solution to the problem
(5) if x0 realizes the weak efficient Λ-infimum of the mapping F : X∂ → Y , that is,

F (x0) ∈ InfΛ,w
x∈X∂

F (x).

We denote by Solw(X∂ ; F ; Λ) and Sol(X∂ ; F ; Λ), respectively, the sets of all weak efficient
solutions and all strong efficient solutions to the above vectorial problem. So, by definition, we
have

Sol(X∂ ; F ; Λ) =
{
x0 ∈ X∂ | F (x0) ∈ InfΛ,s

x∈X∂
F (x)

}
,

Solw(X∂ ; F ; Λ) =
{
x0 ∈ X∂ | F (x0) ∈ InfΛ,w

x∈X∂
F (x)

}
.

Remark 3. It is clear that Definitions 4 and 5 are identical in the case when the set
F (X∂) = {F (x) | ∀x ∈ X∂ } is convex. To specify these definitions more exactly, we say that
the vector optimization problem 〈X∂ , F,Λ〉 has a Λ(τ,µ)-efficient solution x0 ∈ X∂ if x0 is
a Λτ -efficient solution and xk → x0 in the µ-topology of X whenever F (xk) → F (x0) with
respect to the τ topology of Y , that is, every τ -minimizing sequence is µ-convergent.

Remark 4. It should be emphasized the difference between the notion of Λτ - efficient
solutions to the vector optimization problem (5) and the “classical” definition of the weak
efficient solutions. Let us recall that an element x∗ ∈ X∂ is said to be a weakly efficient
solution to the problem (5) if IntΛ 6= ∅ and F (x∗) is a minimal element of the set

F (X∂) := { y ∈ Y | y = F (x) ∀x ∈ X∂ }
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Figure 2. Efficient solutions of the vector optimization problem

with respect to the cone {θY } ∪ IntΛ, i.e., if there is no y ∈ F (X∂) such that F (x∗) 6= y and
F (x∗)− y ∈ IntΛ (see [5]).

It is easy to show that each Λτ - efficient solution is a weak efficient solution to this problem,
but the converse is not true in general. Indeed, let x0 be any element of Sol(X∂ ; F ; Λ). We
assume that the cone Λ has a non-empty interior. Then F (x0) ∈ Λ-Min (cls F (X∂)). Hence,
F (x0)−y 6∈ Λ for all y ∈ cls F (X∂). So, F (x0)−F (x) 6∈ Λ for all x ∈ X∂ . It immediately leads
us to the conclusion:

F (x0)− F (x) 6∈ IntΛ, ∀x ∈ X∂ .

Thus x0 is a weak efficient solution to the problem (5), and we obtain the required: Sol(X∂ ;F ; Λ)
belongs to the set of weak efficient solutions.

The main question is to obtain an existence theorem of the Λτ -efficient solutions for a
vector optimization problem 〈X∂ , F,Λ〉, that is, to find sufficient conditions which guaran-
tee the relation Solτ (X∂ ; F ; Λ) 6= ∅. The main interest here is in the proof of the relation
Solτ (X∂ ; F ; Λ) 6= ∅ without using scalarization process of vector optimization problem (5).
We begin with the following obvious result (see, for instance, [15]):

Theorem 1. If Λ-Min {F (x) | ∀x ∈ X∂ } is compact with respect to the strong topology
of Y then Sol(X∂ ; F ; Λ) 6= ∅.

However, the strong compactness property of subsets in Banach spaces is a very restrictive
assumption. So, we recall some additional notions and results from the non-smooth analysis
of vector-valued mappings.

3 Lower semicontinuity for vector-valued mappings

It is well known that the concept of lower semicontinuity property, that was introduced
for scalar functions by R. Baire, is a fundamental notion of mathematical analysis. Thanks
to efforts of D. Hilbert and L. Tonelli, the main field of its application is the Calculus of
Variations and the scalar minimization theory. A very natural and challenging question is,
therefore, to determine a concept of lower semicontinuity for vector-valued mappings. However,
in the vector-valued case there are several possible extensions of the “scalar” notion of lower
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semicontinuity (see, for example, [1, 2, 3, 6, 11, 12]). We recall now a few main definitions of
lower semicontinuity of a vector-valued mapping with respect to the strong topologies of X
and Y , introduced in [3, 6, 7, 13].

Definition 6. [13] A mapping F : X → Y • is said to be lower semicontinuous (lsc) at
x0 ∈ X, if for any neighborhood V of F (x0) in Y , there is a neighborhood U of x0 in X such
that F (U) ⊂ V + Λ ∪ {+∞}.

Definition 7. [6] A mapping F : X → Y • is said to be sequentially lower semicontinuous
(s-lsc) at x0 ∈ X, if for any b ∈ Y satisfying b � F (x0) and for any sequence {xk}

∞
k=1 of X

which converges to x0, there exists a sequence {bk}
∞
k=1 (in Y ) converging to b and satisfying

bk � F (xk), for any k ∈ N.

Remark 5. For x0 ∈ X, the Definition 7 can be expressed as follows. For each sequence
{xk}

∞
k=1 converging to x0, there exists a sequence {bk}

∞
k=1 converging to F (x0) such that

bk � F (xk) for all k ∈ N.
Note also that, Definitions 6 and 7 coincide whenever X and Y are metrizable spaces (it

has been proved in [6]).

Definition 8. [3] A mapping F : X → Y • is said to be quasi lower semicontinuous (q-lsc)
at x0 ∈ X, if for each b ∈ Y such that b � F (x0), there exists a neighborhood U of x0 in X
such that b � F (x) for each x in U .

Definition 9. [7] A mapping F : X → Y • is said to be order lower semicontinuous (o-lsc)
at x0 ∈ X, if for each sequence {xk}

∞
k=1 ⊂ X converging to x0 for which there exists a sequence

{εk}
∞
k=1 ⊂ Y converging to θY such that the sequence {F (xk) + εk}

∞
k=1 is non-increasing, there

exists a sequence {gk}
∞
k=1 ⊂ Y converging to θY such that

F (x0) ≤ F (xk) + gk for all k ∈ N,

in symbols, xk → x0 and F (xk) + o(1) ց=⇒ F (x0) ≤ F (xk) + o(1).

A mapping F is lsc (resp., q-lsc, o-lsc) if F is lsc (resp., q-lsc, o-lsc) at each point of X.
Let us give some well-known facts concerning these notions.

(1) Whenever X is metrizable and Y = R, the s-ls continuity coincides with the classical
lower semicontinuity property. In this case, a function F : X → R is s-lsc at every point
x0 if, and only if its epigraph

epiF := { (x, y) ∈ X × Y | y ∈ F (x) + Λ }

is closed in X × R.

(2) A mapping F is lsc at x0 if and only if lim
x→x0

inf
a∈Λ

‖F (x0) + a− F (x)‖Y = 0.

(3) A mapping F is q-lsc at x0 if and only if for each b ∈ Y , the set

{F � b} := {x ∈ X | F (x) � b }

is closed in X.

(4) A lsc mapping at x0 is both q-lsc and o-lsc at this point.
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(5) A q-lsc mapping is o-lsc at this point if either F : X → Y • is bounded below and the
dimension of Y is finite, or the pair (Y,Λ) has the monotone bounds property (BMP),
i.e., any sequence {yk}

∞
k=1 ⊂ Y converging to θY has a subsequence {yki

}∞i=1 for which
there exists a non-increasing sequence {yi}

∞
i=1 ⊂ Y converging to θY such that yki

≤ yi
for all i ∈ N (see [7]).

(6) Every lsc mapping has a closed epigraph (see [4]), but the converse is not true as the
following counterexample in [12] shows: the mapping F : R → R2 defined by

{
F (x) = (−1, 1/|x|), for x 6= 0,
F (x) = (0, 0), otherwise,

is not lsc at 0 while its epigraph (with respect to the cone Λ = R2
+) is closed. At the

same time, as immediately follows from Definitions 8 and 9, this mapping is both q-lsc
and o-lsc at 0.

(7) The notion of lsc, q-lsc, and o-lsc coincide for the case when Y = R, but not in general.
Indeed, as shown in the previous example, the mapping F : R → R2 is both q-lsc and
o-lsc but not lsc at 0. On the other hand, without BMP, the implication q-lsc =⇒ o-lsc
is false as well. Let us take Y = R2 and Λ =

{
(x, 0) ∈ R2 : x ≥ 0

}
. Then the mapping

F : R → R2 defined by

F (x) =

{
(0, 0) if x = 0,
(|x|, |x|+ 1) otherwise

is q-lsc but not o-lsc at x = 0.

(8) If epiF is closed then F is quasi-lsc. The converse is true if the interior of Λ is non-empty.

We end up this section by the examples of a vector-valued mapping for which both the
quasi-ls continuity property and the order-ls continuity property do not hold at some point
x0. Moreover, as we will see later, this point is a Λs-efficient solution to the corresponding
vector optimization problem. This is the main reason to introduce a new notion of lower
semicontinuity weaker than the others three.

Example 2. [10] Let X = R, Y = R2, and let Λ = R2
+ be the cone of positive elements.

To state a vector optimization problem 〈X∂ , F,Λ〉, we define the set of admissible solutions
X∂ and the mapping F : X∂ → Y as follows:

X∂ =
{
x ∈ R1 | −3 ≤ x ≤ −1

}
, (7)

F (x) =

[
−x
2

]
, for all x 6= −1, F (−1) =

[
2
1

]
. (8)

Let x0 = −1. Then

F (x0) =

[
2

1

]
, lim infΛ,s

x→x0
F̂ (x) =

{[
2

1

]
,

[
1

2

]}

(see Fig. 3). Let us take b =
[
1,5
3

]
. Obviously b � F (x0) and there is no neighborhood of the

point x0 such that b � F (x) for all x from this neighborhood. Hence, this mapping is not q-lsc
at the point x0. On the other hand, every sequence {xk}

∞
k=1, which is converging to 0 and such

that 2 > xk 6= 0 for all k ∈ N, is o-admissible, that is, there exists a sequence {εk}
∞
k=1 ⊂ Y

converging to
[
0
0

]
such that the sequence {F (xk) + εk}

∞
k=1 is non-increasing (see Definition 9).
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Figure 3. The example of neither q-lsc nor o-lsc mapping

Moreover,
[
1
2

]
is its limit. However, in this case there is no sequence {gk}

∞
k=1 ⊂ Y converging

to
[
0
0

]
such that [

2

1

]
= F (x0) ≤ F (xk) + gk for all k ∈ N.

Hence, the order lower semicontinuity property for the mapping F is failed at the point x0.

The next example indicates the case when a vector-valued mapping F : X∂ → Y is not
quasi lower semicontinuous at any point of X∂ , whereas it possesses a Λτ -lower semicontinuity
property on the whole of the domain X∂ .

Example 3. Let X∂ be a bounded closed subset of a reflexive Banach space X, let
Y = R2, and let Λ = R2

+ be the cone of positive elements in R2. Let us consider the mapping
F : X∂ → R2 defined as follows

F (x) =

[
‖x‖

−‖x‖

]
, ∀x ∈ X∂ .

Then F (X∂) is a segment

D =

{
y ∈ R2 | y = α

[
m

−m

]
+ (1− α)

[
M

−M

]
, α ∈ [0, 1]

}
,

where m = min
x∈X∂

‖x‖ and m = max
x∈X∂

‖x‖. Since InfΛ,τ
x∈X∂

F (x) = D, it follows that each element

of X∂ is a Λτ -efficient solution to the corresponding problem 〈X∂ , F,Λ〉. However, because of
the fact that

lim inf
k→∞

‖xk‖ ≥ ‖x‖, ∀xk ⇀ x in X, (9)

the lower and quasi lower semicontinuity properties for F : X∂ → R2 are broken at all points
x ∈ X∂ .

At the same time for every x0 ∈ X∂ we have

Lτ
w(F̂ , x0) :=

⋃

xk⇀x0

Lτ{F̂ (xk)} ⊂ InfΛ,τ
x∈X∂

F (x),

and whence F (x0) ∈ InfΛ,τ
x∈X∂

F (x) due to the property (9). Thus, the objective function
F : X∂ → Y is sequentially Λτ -lower semicontinuous at each point of X∂ .
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4 Λτ -lower semicontinuity property

In this section, we introduce a new concept of lower semicontinuity for vector-valued
mapping with respect to the strong and weak topologies of the spaces X and Y . We compare
this notion with the previous ones and give some examples. Let F̂ : X → Y • denote the
natural extension of F : X∂ −→ Y to the whole space X.

Definition 10. We say that a mapping F : X∂ −→ Y is Λτ -lower semicontinuous (Λs-lsc)
at the point x0 ∈ X∂ (with respect to the strong topology of X) if

F (x0) ∈ lim infΛ,τ
x→x0

F̂ (x).

Definition 11. A mapping F : X∂ −→ Y is said to be weakly Λτ -lower semicontinuous
(Λτ -wlsc) at the point x0 ∈ X∂ if

F (x0) ∈ lim infΛ,τ
x⇀x0

F̂ (x).

Compare Definitions 10 and 11 with Definition 3.

A mapping F is Λτ -lsc (resp., Λτ -wlsc) if F is Λτ -lsc (resp., Λτ -wlsc) at each point of X∂ .
As immediately follows from Definitions 10 and 11, the following result is obvious.

Proposition 1. The weakly Λτ -lower semicontinuity of a mapping F : X∂ −→ Y implies
its Λτ -lower semicontinuity.

To characterize the properties of Λτ -lower semicontinuity more precisely, we begin with
the following assertion.

Lemma 1. If a mapping F : X∂ −→ Y is q-lower semicontinuous at x0 ∈ X∂ with respect
to the τ -topology of Y and the strong topology of X, then F is Λτ -lower semicontinuous at this
point.

Proof. Let F : X∂ → Y be a q-lower semicontinuous mapping at the point x0 ∈ X∂ , and
let F̂ : X → Y • be its natural extension. Let {xk}

∞
k=1 be a sequence strongly converging to

x0, i.e., {xk}
∞
k=1 ∈ Ms(x0). Let us assume that there exist a subsequence {F (xki

)}∞i=1 and
an index i∗ ∈ N such that F (xki

) � F (x0) for all i ≥ i∗. Then, in view of the definition of

the quasi-lower semicontinuity, we just conclude that {+∞} ∈ Lτ
s (F̂ , x0). So, to characterize

the set lim infΛ,τ
x→x0

F̂ (x), we suppose that the corresponding image sequence {F (xk)}
∞
k=1 is

bounded above with respect to the cone Λ. In this case there can be found an index k∗ such
that

F (xk) � F (x0), ∀k ≥ k∗.

Hence, for any y∗ ∈ Lτ
s (F̂ , x0), we have F (x0) � y∗. It means that

{F (x0)} ∈ InfΛ,τ Lτ
s (F̂ , x0).

Thus, due to Definition 3, we deduce: F (x0) ∈ lim infΛ,τ
x→x0

F̂ (x). This concludes the proof.

As a consequence of this result and the properties of quasi-lower semicontinuity, we have:
if F is lsc then F is Λs-lsc. However, in general, for vector-valued mappings, Λs-ls continuity
does not imply q-lsc. Indeed, let us consider the mapping F : X∂ → Y defined in example 2.



36 P. Kogut, R. Manzo, I. Nechay

As it was shown before, this mapping is neither q-lsc nor o-lsc mapping at the point x0 = −1.
However, taking into account the fact that

F (x0) =

[
2

1

]
and lim infΛ,s

x→x0
F̂ (x) =

{[
2

1

]
,

[
1

2

]}
,

we just obtain the fulfillment of the inclusion

F (x0) ∈ lim infΛ,s
x→x0

F̂ (x).

Hence, F is a Λs-lower semicontinuous mapping at x0 = −1.

Lemma 2. If a mapping F : X∂ −→ Y is order-lower semicontinuous at x0 ∈ X∂ with
respect to the τ -topology of Y and the strong topology of X, then F is Λs-lower semicontinuous
at this point.

Proof. Let {xk}
∞
k=1 ⊂ X∂ be an o-admissible sequence strongly converging to x0 in X

for which the set {F (xk)}
∞
k=1 is relatively τ -compact in Y •. Then for {xk}

∞
k=1 there exists a

sequence {εk}
∞
k=1 ⊂ Y τ -converging to θY such that the sequence {F (xk) + εk}

∞
k=1 is non-

increasing. Hence, the corresponding image sequence {F (xk)}
∞
k=1 is bounded above, that is,

there are elements z ∈ Y and k∗ ∈ N such that F (xk) � z for all k ≥ k∗. Since the mapping
is o-lsc at x0, it follows that there exists a sequence {gk}

∞
k=1 ⊂ Y τ -converging to θY such

that F (x0) ≤ F (xk) + gk for all k ∈ N. Hence the sequence {F (xk)}
∞
k=1 is bounded below.

So, we may suppose that there exists an element y∗ ∈ Y such that F (xk) → y∗ with respect
to the τ -topology of Y . This fact can be written as F (xk) + oτ (1) = y∗ when k → ∞. Since
F is o-lsc at x0, that implies F (x0) � F (xk) + oτ (1) = y∗ + oτ (1), and since Λ is closed,
it follows that passing to the limit in the last inequality as k → ∞, we obtain F (x0) � y∗,

where y∗ ∈ Lτ
s (F̂ , x0)∩ Y . Since {xk}

∞
k=1 ⊂ X∂ is an arbitrary o-admissible sequence strongly

converging to x0, it follows that

F (x0) ∈ Lτ
s (F̂ , x0) ∩ Y and F (x0) � y∗, ∀ y∗ ∈ Lτ

s (F̂ , x0) ∩ Y. (10)

As a result, we conclude that the set InfΛ,τ Lτ
s (F̂ , x0)∩Y consists of the unique element F (x0).

Indeed, if we suppose the converse, then (10) just leads us to a contradiction with the definition
of τ -efficient Λ-infimum. Therefore, taking into account Definition 3, we get

lim infΛ,τ
x→x0

F̂ (x) = {F (x0) } .

Thus, the Λτ -lower semicontinuity property of the mapping F at x0 is proved.

It is well-known that for real-valued mappings F : X → R = R ∪ +∞ the notions of lsc,
q-lsc, and o-lsc are equivalent (see [7]). However, as immediately follows from Definition 10,
for real-valued mappings the condition

F (x0) ∈ lim infΛ,τ
x→x0

F̂ (x)

is identical to the following one F (x0) ≤ lim inf
x→x0

F̂ (x). Hence, in this case, lsc and Λτ -lsc are

identical properties. As a result, we come to the following conclusion:

Lemma 3. For real-valued mapping F : X → R the four notions of lower semicontinuity
given above are equivalent.

To conclude this section we give the following observation concerning the property of two
Λτ -lsc mappings. It is well known that the sum of two q-lsc (resp. o-lsc) mappings is not a
q-lsc (resp. o-lsc) mapping in general. Due to the following example, we can give a similar
conclusion for the Λτ -lsc mappings.
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Example 4. Let X = R, Y = R2, and let Λ = R2
+ be the cone of positive elements. Let

us consider the mappings F : R → R2 and G : R → R2 defined by

F (x) =






[
0
0

]
if x = 0,

[
−2+|x|−1

−2|x|−1

]
if x 6= 0,

G(x) =






[
0
0

]
if x = 0,

[
−|x|−1

2|x|−1

]
if x 6= 0.

It is easy to see that each of these mappings is q-lsc at x0 = 0 since for all b ∈ R2 such that
b �

[
0
0

]
it is impossible to find any sequence {xk}

∞
k=1 converging to 0 and satisfying condition

F (xk) � b (resp. G(xk) � b) for all k ∈ N. So, due to Lemma 1, these mappings are Λs-lsc at
0. However, for the mapping F +G we have

Ls
s(F (0) +G(0)) =

{[
−2

0

]
,

[
0

0

]}
, and InfΛ,s

x∈X [F (x) +G(x)] =

{[
−2

0

]}
.

Hence,

InfΛ,s
x∈X∂

[F (x) +G(x)] =

{[
−2

0

]}
6∋ F (0) +G(0),

and we obtain the required conclusion: the sum of two Λs-lsc mappings is not a Λs-lsc mapping
in general.

Remark 6. We conclude this section with the following observation. As follows from
the definition of the Λτ -lower semicontinuity for vector-valued mappings F : X∂ → Y , this
property essentially depends on the domain X∂ ⊂ X. In fact, the assertion: “ if F : X → Y is a
Λτ -lower semicontinuous mapping then its restriction on any bounded subsetX∂ ⊂ X preserves
this property at every point of X∂” can be wrong in general. However such situation is both
natural and typical in the vectorial case. Indeed, for the different sets of admissible solutions
X1

∂ , X
2
∂ (X1

∂ ∩X
2
∂ 6= ∅) and any point x0 such that x0 ∈ X1

∂ ∩X
2
∂ , the sets InfΛ,τ Lτ

s (F, x0) and
InfΛ,τ

x∈Xi
∂

F (x) are not singletons in general. So, the sets

InfΛ,τ Lτ
s (F, x0) ∩ InfΛ,τ

x∈X1
∂

F (x) and InfΛ,τ Lτ
s (F, x0) ∩ InfΛ,τ

x∈X2
∂

F (x)

can be drastically different as well. Thus, in view of Definitions 3 and 10, the mappings
F : X1

∂ → Y and F : X2
∂ → Y can be distinguished by a Λτ -lower semicontinuity property at

the point x0 ∈ X1
∂ ∩X2

∂ .

5 Existence theorem of the Λτ -efficient solutions for
vector optimization problems

We begin with the following supposition: assume that the ordering cone Λ possesses the
so-called D-property, that is, every decreasing sequence in Y is τ -convergent if and only if this
sequence is Λ-lower bounded. For instance, the ordering cone of positive elements in Lp(Ω)
(1 < p < +∞) which is defined as

ΛLp(Ω) = { f ∈ Lp(Ω) | f(x) ≥ 0 almost everywhere on Ω }

satisfies this property with respect to both the weak and the strong topologies of Lp(Ω) (see
[8]).
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Theorem 2. Let X and Y be Banach spaces, and let Λ ⊂ Y be a closed convex ordering
pointed cone, which is supposed to be with D-property. Assume that X∂ is a compact subset
of X (with respect to the strong topology), and F : X∂ → Y is a Λτ -lower semicontinuous
mapping. Then the vector optimization problem 〈X∂ , F,Λ〉 has a non-empty set of Λτ -efficient
solutions Solτ (X∂ ; F ; Λ).

Proof. To begin with, we prove that {−∞} 6∈ InfΛ,τ
x∈X∂

F (x). To do so, it is sufficient to
show that if {xk}

∞
k=1 ⊂ X∂ is a sequence such that its image {F (xk)}

∞
k=1 ⊂ Y is a decreasing

sequence in Y , then there is an element z ∈ Y such that z � F (xk) for all k ∈ N. Let us
assume the converse. Then there are sequences {x̂k}

∞
k=1 ⊂ X∂ and {ẑk}

∞
k=1 ⊂ Y such that

ẑk+1 � ẑk ∀ k ∈ N, and

InfΛ,τ {ẑk}
∞
k=1 = {−∞}, F (x̂k) � ẑk ∀ k ∈ N. (11)

By the initial assumptions, the family {x̂k}
∞
k=1 ⊂ X∂ is compact, so we may suppose that

x̂k → x∗ in X, where x∗ is some element of X∂ . Then, by monotonicity of {zk}
∞
k=1 ⊂ Y and

D-property of Λ, we can pass to the limit in F (x̂k) � ẑk as k → ∞. As a result, we have

ξ � −∞, ∀ ξ ∈ Lτ{F (x̂k)}, (12)

where Lτ{F (x̂k)} is the set of all cluster points of {F (x̂k)}
∞
k=1 with respect to the τ -topology

of Y . On the other hand, in view of Definition 3 and the Λτ -lower semicontinuity of F , we
have

F (x∗) ∈ lim infΛ,τ
x→ x∗ F̂ (x), and hence F (x∗) ⊁ ξ, ∀ ξ ∈ Lτ{F (x̂k)}.

Combining this result with (12), we obtain F (x∗) ⊁ −∞. However this contradicts (11). Hence
InfΛ,τ

x∈X∂
F (x) 6∋ {−∞}.

Let ξ be any element of InfΛ,τ
x∈X∂

F (x). Then, by definition of the Λτ -efficient infimum, there

exists a sequence {yk}
∞
k=1 ⊂ Y such that yk

τ
−→ ξ in Y . We define a sequence {xk}

∞
k=1 ⊂ X∂

as follows F (xk) = yk for all k ∈ N. Since the set X∂ is compact, we may suppose that there
exists x0 ∈ X∂ such that xk → x0 in X. Hence ξ ∈ Lτ

s (F, x0), and we get

Lτ
s (F, x0) ∩ InfΛ,τ

x∈X∂
F (x) 6= ∅.

Then, due to the Λτ -lower semicontinuity of the mapping F on X∂ and Definition 3, we obtain

F (x0) ∈ lim infΛ,τ
x→x0

F̂ (x) = Lτ
s (F, x0) ∩ InfΛ,τ

x∈X∂
F (x).

Hence, F (x0) ∈ Lτ
s (F, x0), which implies we may assume

F (x0) = ξ, and ξ ∈ InfΛ,τ
x∈X∂

F (x).

Thus, x0 ∈ Solτ (X∂ ; F ; Λ) and this concludes the proof.

However, the compactness property of the set of admissible solutions X∂ is a very re-
strictive assumption. In view of this we use the Banach-Alaoglu Theorem in reflexive Banach
spaces, which leads us to the following generalization of the previous theorem.

Theorem 3. Let X∂ be a bounded weakly closed subset of a reflexive Banach space X, let
Y be a Banach space partially ordered by a closed convex pointed cone Λ, and let F : X∂ → Y be
a weakly Λτ -lower semicontinuous mapping. Then the vector optimization problem 〈X∂ , F,Λ〉
has a non-empty set of the Λτ -efficient solutions Solτ (X∂ ; F ; Λ).
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Proof. We will only deal with that part of the previous proof concerning the compactness
property of the sequences {x̂k}

∞
k=1 and {xk}

∞
k=1. Indeed, taking into account the initial suppo-

sitions and the Banach-Alaoglu Theorem, the subset X∂ is sequentially compact with respect
to the weak topology of X. Hence we may suppose that, passing to subsequences if neces-
sary, each of the above sequences is weakly convergent to some elements of X∂ . To conclude
the proof, we can use motivations similar to the proof of the previous theorem changing the
components Lτ

s (F, x0) and lim infΛ,τ
x→x0

F̂ (x) onto Lτ
w(F, x0) and lim infΛ,τ

x⇀x0
F̂ (x), respectively.
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