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Abstract. We first generalize the operation of formal exterior differential in the case of finite
dimensional fibered manifolds and then we extend it to certain bundles of smooth maps. In
order to characterize the operator order of some morphisms between our bundles of smooth
maps, we introduce the concept of fiberwise (k,r)-jet. The relations to the Euler-Lagrange
morphism of the variational calculus are described.
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1 Introduction

Our geometrical research was inspired by the paper on the Schrodinger op-
erator by the second author and M. Modugno, [5], as well as by their previous
joint paper with A. Jadczyk, [4]. We are interested mainly in certain geometric
objects and operations related with the functional bundle S(E, Q) of all sections
E, — Q. of a 2-fibered manifold Q — F — M, x € M. In [2], the first and the
third authors established the theory of connections in a somewhat more general
situation of the bundle F(Y7,Y2) — M of all smooth maps between the fibers

{The author was supported by the Grant Agency of the Czech Republic under the project
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iThe author was supported by the Ministry of Education of the Czech Republic under the
project MSM 143100009.
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over the same base point of two fibered manifolds Y7 — M and Yo — M with
the same base M. The main purpose of the present paper is to introduce some
geometric concepts and to study some geometric operations that could be useful
for the variational calculus on these functional bundles.

Our approach to the variational calculus is based on the formal exterior
differential on finite dimensional fibered manifolds introduced by A. Traut-
man, [12], and further developed by the third author, [6,7]. In Section 1 of
the present paper we study a slight finite dimensional generalization of this
concept in a form suitable for our next purposes. Section 2 is devoted to some
geometric properties of the bundles F(Y7,Y3) and S(E,Q) in the framework
of the Frolicher’s theory of smooth structures, [3]. The morphisms between our
functional bundles represent a kind of differential operators. As pointed out
already in [2], one can distinguish an important class of them that have finite
order in the operator sense. In Section 3 we modify this idea to the morphisms
defined on the r-th jet prolongation J"F(Y7,Ys). This leads us to an original
concept of fiberwise (k,r)-jet of a base preserving morphism of finite dimen-
sional fibered manifolds. Section 4 deals with the formal exterior differentiation
over the functional bundle F(Y7,Y3). In Section 5 we study its restriction to
the bundle S(E,Q) of sections. In Proposition 11 we characterize an impor-
tant situation in which the finite dimensional formal exterior differential and
the analogous operation over S(F, Q) are naturally related. Finally, Section 6
is devoted to the Euler-Lagrange morphism on S(E, Q) from the viewpoint of
our previous operations.

If we deal with finite dimensional manifolds and maps between them, we
always assume they are of class C'°, i.e. smooth in the classical sense. On the
other hand, the smooth spaces and maps in the sense of A. Frolicher are said
to be F-smooth. Unless otherwise specified, all morphisms are assumed to be
base preserving. In all standard situations we use the terminology and notation
from the monograph [8].

We acknowledge Marco Modugno for suggesting this subject and for several
stimulating discussions.

2 The formal exterior differential in finite dimension
We recall that Q % E 2 M is said to be a 2-fibered manifold, if both ¢ and
p are surjective submersions. Consider two 2-fibered manifolds Z — Y — M,

W — Y — M, a fibered manifold N — M and a morphism

Y ZXW — N,
Y
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where Z x W is interpreted as a fibered manifold over M. Then the rule
Y

T (s, jro) = jai(s, o) (1)
defines a map
JEp T8z x JEW — JEN . (2)
JkY

In the case of

v:JZ x JW >N, r>t<s,
JtY

we obtain
JEp JRJTZ x o JRJPW — JEN.
JkJty
Then we introduce

JE Tz o JEsW S JEN (3)
Jhtty

by means of the canonical inclusions of the holonomic jet prolongations into the
iterated jet prolongations.
In particular, consider

o:JY x VJY - Z, s<r, (4)
JsY

where Z — M is a fibered manifold. By using the well known identification
x5 VJY — J°VY we construct

o (idyy x ;1) :JY x JVY - Z
JsY JsY

and

JE (o (idyy x s.Y):JHY  x JEsvy — Jkz.
JsY Jk+sy

Then we define
Tiip = Jpoy(p o (idyry X 371) o (idgrery X 3tip) (5)
JsY Jkt+sy

CJETY o vIREtsY s gk z.
Jk+sy

Let n: Y — VY be a vertical vector field on Y and J°n: J°Y — V.J°Y be
its flow prolongation. Write

e(T"n) = po (idyy Jﬁyjsn) JY — Z.
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Then
T (T ) : MY — TR Z.

On the other hand,

FE o JHY o vIERY — JFZ,
Jhtsy

so that
(Fae)(TFFon)  THTY — JR 7

1 Proposition. For every ¢ and n, we have

(Tnat)(T*Hn) = T ((T ) - (6)
PRrOOF. This follows from the well known fact J°n = s ' o J°n, where
Jn  J°Y — J3VY is the functorial prolongation of 7. QED

Consider the case Z = \'T*M in (4). The exterior differential d on M is a
first order operator, so that d determines the associated map & : J* /\l "M —
AT M satistying dw = 6 o (J'w) for every I-form w : M — A'T*M.

2 Definition. For every morphism ¢ : J"Y x VJ%Y — /\l T* M, we define

JsY

its formal exterior differential by

I+1
Do =060 (Fap) : Y x VY - ATM. (7)
JsHly
Proposition 1 implies that this concept represents a generalization of that
one introduced by the third author in [6]. In fact, ¢ is assumed to be linear in
VJ*Y in [6], while in (7) ¢ is quite arbitrary.

Consider some local fiber coordinates z*,2” on Y, i = 1,...,m = dim M,
p=m+1,...,m+n=dimY. Let @ and o be multiindices of the range m.
Write

zh, 0<|lafl<r
for the induced coordinates on J"Y and
b, XP=dzl, 0<|lo|]| <s
for the induced coordinates on VJY . If

iy .. (wl xb Xg) dz'' A .. A dz® (8)

) (o2}

is the coordinate expression of ¢, then the coordinate form of D is

<8a,~1,,,,~l + aail___il

oxt 0xb,

Oa;, . . .
b+ gi)l(;gl Xgi> de* Ndx"™ N .. N dz. (9)
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3 The functional bundle S(F, Q)

We shall use the following simplified version, [1], of the theory of smooth
spaces by A. Frolicher, [3]. An F-smooth space is a set S along with a set Cg
of maps v : R — S, which are called F'-smooth curves, satisfying

(i) each constant curve R — S belongs to Clg,

(i) if v € Cg and € € C*°(R,R), then yoe € Cs.

Every subset S C S is also an F-smooth space, if we define Cg C Cs to be the
subset of all curves with values in S. If (S',Cg) is another F-smooth space, a
map f: S — S is said to be F-smooth, if f o~ is an F-smooth curve on S’ for
every F-smooth curve v on S. So we obtain the category S of F-smooth spaces.

In particular, every smooth manifold M turns out to be an F-smooth space
by assuming as F-smooth curves just the smooth curves. Moreover, a map
between smooth manifolds is F-smooth, if and only if it is smooth. An F-
smooth bundle is a triple of an F-smooth space S, a smooth manifold M and
a surjective F-smooth map p : S — M. If p’ : S — M’ is another F-smooth
bundle, then a morphism of S into S’ is a pair of an F-smooth map f: S — S’
and a smooth map f : M — M’ satisfying fop = p’ o f. So we obtain the
category SB of F-smooth bundles. B

If p1 : Y71 — M, py: Yo — M are two fibered manifolds, we write

F(V1,Y2) = | C°(Yix, Yau)
zeM

and denote by p : F(Y1,Y2) — M the canonical projection. A curve ¢ : R —
F(Y1,Y3) is said to be F-smooth, if ¢ :=po¢: R — M is a smooth curve and
the induced map

c: Y1 =Y, clt,y) =ct)(y), pi(y) =c(t),

is also smooth, [2]. The F-smooth sections of F(Y1,Y3) are identified with the
base preserving morphisms s : Y7 — Y5, We write s : M — F(Y1,Ys) for the
F-smooth section induced by s.

The tangent bundle TF(Y1,Y2) — T'M is defined as follows, [2]. For every
F-smooth curve f: R — F(Y1,Y2), we first construct the tangent vector X =

~

2lo(po f) € TM. Write
TxY: = (Tpl)_l(X) cTY,, TxY,= (Tpg)_l(X) cTY,.

Then fdeﬁnes a map Tof: TxY, — TxYs by

To 7 loh(0) = 50T (2, (10)
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where we may assume that h : R — Y] satisfies pof: p1oh. We say that fand
another F-smooth curve g : R — F(Y1, Y2) satisfying %|0(po§) = X determine
the same tangent vector at f(0) = g(0) € F(Y1,Ya), if Tof = Tog : TxY1 —
TxYs. The set TF(Y1,Ys) of all equivalence classes is called the tangent bundle
of F LYl’ Y5). The map Tofis said to be the associated map of the tangent vector
Zlof-

Since TF(Y1,Y2) C F(TYy — TM,TYy, — TM), this is also an F-smooth
bundle. The vertical tangent bundle VF(Y;,Y2) — M is the subbundle of
TF(Y1,Y3) of all elements projected by T'p into a zero vector on M.

Given a 2-fibered manifold Q % E 2 M, we denote by S(E,Q) C F(E,Q —
M) the F-smooth bundle of all sections s : E, — Q, of q.

A 2-fibered manifold morphism is a triple (f, f1, fo) such that the following
diagram commutes

o JE Ny 5 N Y/

oAl s

So we obtain the category 2F M. Write 2FM! € 2F M for the category defined
by the requirement that f; is a diffeomorphism on each fiber. If f € 2F M!, we
have the induced map

S(f):S(E,Q) — S(E,Q)
transforming s : F, — @, into
f:c oso (flx)_l : Efo(w) — Qfo(m) .

Clearly, S is a functor on 2FM! with values in SB.

If we have another 2-fibered manifold P — E — M, then a 2F M-morphism
over idgp will be called an E-morphism. In this case we shall also write f =
S(f):S(E,Q)— S(E,P).

Consider a vertical curve 7 : R — S(E,Q) over z € M. Then ~(t) : E, —
Qz, t € R, and ~(t)(y) is a vertical curve on Q — E for every y € E,. Hence
%|07(t)(y) € V,(Q — E). Using the standard globalization procedure, [11], we
deduce

VS(E,Q) = S(E,V(Q — E)). (11)

We have a canonical injection

i:J'S(E,Q)— S(E,J (Q— E)) (12)
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defined as follows. Consider a section s : M — S(F,Q), so that s : E — @Q. Then
j"s determines j"s : E — J"(Q — E). We have j’s € JIS(FE,Q) C JLF(E,Q)
and we set

i(jp8) = j"8| By : B — J1(Q — E).

We shall consider some local fiber coordinates x?, P on Y; and local fiber co-
ordinates z’, 2% on Ys. In the case of Q — E — M, 2, 2P, 2® will mean the
corresponding fiber coordinates on ). Hence the coordinate expression of jIs
are the functions

zg(@"), 0 <[lof[< 7,

where « is a multiindex of the range m, [2]. On the other hand, the coordinate
expression of i(j;5) are some functions z%5(2?), 0 <[lal| + [|B]|< 7, where 3 is a
multiindex of the range m + 1,...,m + n. Our definition implies

Zap = Opzq(2P) . (13)
3 Remark. We remark that (13) describes also a general injection
S(E,J(Q — B))— S(E,J'(Q — E)). (14)

Consider another 2-fibered manifold P — F — M and an F-morphism
f:@Q — P. Then we have the induced maps

JfJQ—E) = J(P—E), Jf(jys)=Jy(fos)
and S(f):S(E,Q) — S(E,P).

4 Lemma. The following diagram commutes

rsEQ YL sk, P

zl zl (15)
S(E,J(Q — E)) 2L, s, (P — E))

PRroor. For jis e J"S(E,Q), we obtain clockwise i(j;(f0§)) = Z(];(m))
= j"(f o s)|E, and counterclockwise S(J" f)(j"s|Ey) = 7" (f o s)| Ey.
The classical exchange map s, : VJ'Y — J"VY is defined by

3 loggs(t,u) = Gp 5 los(t,u), tERueM,
[8]. In the functional case, we have an exchange map

K, :VJ' F(Y1,Ys) — J'VF(Y1,Y2)
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defined by the analogous formula
K (& logzs(t,u) = jo gy lod(t, ). (16)

If we consider S(E, Q) instead of F(Y7,Y2), then the values of 5 in (16) are the
sections of ¢, so that we have a restricted and corestricted map

K, :VJ'S(E,Q) — J'VS(E,Q).

The same character of the definitions of s, and K, implies that the following
diagram commutes

VJITS(E,Q) —X J'VS(E,Q)

| | i

s(E,vrrQ) 2L s, rvQ)

where the left and right arrows are the canonical injections induced by (12) in
combination with (11).

4 The operator order on J" F(Y7,Y5)

In [2] there was discussed, in fact, the operator order on an F-smooth mor-
phism
A:F(Y1,Ys) —» F(Y1,Y), (18)

where Y — M is another fibered manifold. We say that A is of the operator
order k, if, for every ¢, € C*°(Yis, Yoz),

Jye =Jyv implies A(p)(y) = A¥)(y).
Then A determines the associated map
A:FIFYVLY2) =Y, Aljse) = Alp) (), (19)

where
FI*W,Ya) = | J*(Vie, Yau)
zeM

is a classical manifold. By [2], A is a smooth map.
Let %, 2P and 2® be the local coordinates on Y; and Y5 from Section 2.
Then the induced coordinates on F.J*(Y7,Ys) are 25, 0 <[|B]|< k, where § is a
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multiindex of range (m+1,...,m+n). If 2, w*, s =1,...,dim Y — dim M, are
local fiber coordinates on Y, then the coordinate expression of A is

w' = [ a7, 25).
If we consider an SB-morphism
AZJTf(Yi,Yg)—)f(Yl,Y), (20)

we have take into account that ¢,¢ € J.F(Y1,Ys) are characterized by the
associated maps
@71[} : ngyl - J£Y2 .
So we have j*@, ik : JTY) — JE(JIY, JIYR).
5 Definition. We say that A is of the operator order k, if

iYL = j*|JrYy implies  A(p)(y) = A()(y) -

To characterize the associated map of A in this situation, we introduce a
new concept.

6 Definition. For a base preserving morphism f : Y7 — Y5, its fiberwise
r-jet prolongation (Fj")f is defined by

(Fif Y1 = FJ (N, Ya), (Fi")f(y) =iy (fa)

where f, : Y1, — Ya, is the restricted and corestricted map, = = p;(y). The
k-jet jg(}"j’")f is called the fiberwise (k,r)-jet of f at y.

Let a be a multiindex of the range m and v = (a, 3). Let 2* = f%(a?, 2P) be
the coordinate expression of f. Then the coordinate expression of (Fj")f is

25 =0sf", 0<Z|Bl<r.

We write FJ*7(Y1,Ys) = JE(FJ"(Y1,Ys) — Y7) for the space of all fiberwise
(k,r)-jets of Y7 to Y. This is a classical manifold with the induced coordinates

2, 0<[BI<r, 0<hi<k.

Clearly, we have
FIO (Y, Ys) ~ JF(v; XY, — Y1). (21)

Indeed, (Fj%)f = f, which we identify with its graph Y1 — Y} x Ya, y +
M
(v, f())-
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7 Proposition. If A: J'F(Y1,Ys) — F(Y1,Y) is of operator order k, then
A(jz f)(y) depends on jy(Fi")f only.
PROOF. For r = 1, the associated map h : J1Y; — J1Y5 of an element of
JLF(Y1,Ys) is
2= fUxp,aP), 2 = 0if U (wh, aP) + Oy f* (xh, aP) af (22)

)

where 2 and ! are the variables on J}Y1, x = (zf) € M. Hence jFh|J}Y,
y = (xf, 2}), depends on

Opf“ (b, 20), 0p0:f*(x(,2h), Opdpf*(xh,ap), 0 <[BI< k.

These are the coordinates of jlyf (FjY)f. For r > 1 we proceed by iteration using
the facts J" is an r-th order functor and the coordinate formula for J” f is of a
specific polynomial character in the induced jet coordinates. QED

Hence A determines the associated map
A FI(Y1L,Ye) =Y, AGS(FI)S) = AGRD().-

Analogously to (19), A is a smooth map.

We remark that the concept of fiberwise (k,r)-jet can be incorporated into
the general framework of the concept of (r,s,q)-jet of fibered manifold mor-
phisms, [8]. But this is somewhat sophisticated for our purposes, so that we
prefer our direct approach here.

8 Remark. It is interesting that a similar approach can be applied to an
arbitrary fiber product preserving bundle functor G on FM,,,. In [1] we clarified
that G can be extended to F(Y1,Ys) as follows. If G is of the base order r,
it can be identified with a triple (A, H,t), where A is a Weil algebra, H :
G7, — Aut A is a group homomorphism and ¢ : D], — A is an equivariant
algebra homomorphism. In [1] we defined GF(Y7,Y3) as the subset of the F-
smooth associated bundle P"M|[T4F(Y1,Ys)] of all equivariance classes {u, Z},
u€ P"M, Z € TAF(Y1,Ys) satisfying tar(u) = T4p(2).

Analogously to the tangent case, Z can be interpreted as a map

Z:TaY, —» TdYy, X eT*p(Z)eT M.

We know that GY;, i = 1,2, is the subset of P"M[TAY;] of all {u, Z;} satisfying
trr(u) = Tpi(Z;). Then we construct a well defined inclusion

G}—(Yl, Yé) - f(GYl, GYé)
by transforming {u, Z} € GF(Y1,Y2) into the map
{u, Z}({u, Zl}) = {U,Z(Zl)}, {u, Zl} e GY.
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Thus, for every G we can treat the operator order of an SB-morphism
G‘/T(Ylayé) - ‘/T(Ylay)

similarly to the case G = J".

5 The formal exterior differential over F(Y7,Y53)

We recall that, given two other fibered manifolds Y3 — M, Yy — M, an
SB-morphism A : F(Y1,Ys) — F(Y3,Yy) is called J*-differentiable, if the rule

(28) = Jy(A03), 3:M — F(Y1,Ya)
defines an F-smooth map
JEA L JFF(Y,Ys) — JEF(Ys, ).
In general, consider three F-smooth bundles S1,.S2,.55 over M and two sur-
jective SB-morphisms 7y : S1 — S3, o : Sy — S3. We write
S1 ;; Sy = {(u1,uz) € S1 X Sa,m1(uy) = mo(u2)} .

Clearly, this is also an F-smooth bundle over M.
Consider a J*-differentiable morphism, s < r,

AT FOWM,Y))  x  VIFMW,Y) — F(Y,Y). (23)
JsF(Y1,Y2)

Using the exchange map Ky, see (16), we can define

TELA T E(Y,Y) X VIR F(Y, Ya) — JEF(Y,Y) (24)
Jkts F(Y1,Ys)

in the same way as in Section 1.
To introduce the formal exterior differential, we have to consider
S(Y1, \'T*Y1) on the right hand side of (23). So, let

l
AT FYLY)  x  VIEFW,Y) — S, A\T™) (25)
JSF(Y1,Y2)

be a J!-differentiable morphism. Then we construct jhlolA, use the inclusion

l l
i J'S(vi, NT'Y) — S(vi,J' \T*77)

on the right hand side and add S(8) : S(vi, JEA'T*Y1) — S(Yi, AT T*1),
where ¢ is the formal version of the exterior differential.
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9 Definition. The F-smooth morphism

DA = S(§)oio JLA: (26)
I+1
LITFEWLY,)  x o VIPPFE(YLY.) = S, \ T
JsH1F(Y1,Y2)
will be called the formal exterior differential of (25).
Clearly, the construction of J"Y; x VJ*Y; and of the induced maps is a
JS

Y1
fiber product preserving bundle functor on FM,,. According to Remark 8, we

can introduce the concept of operator order of the morphism (23). However, we
shall not go into details in this paper.

6 The restriction of D to S(F, Q)

Now we consider S(E, Q) in the role of F(Y1,Y2). Let P — E — M be
another 2-fibered manifold and

A:J"S(E,Q) o) VJ*S(E,Q) — S(E, P) (27)

be a J¥-differentiable morphism. Then (24) restricts to a morphism

TEATES(E,Q) x  VJMTSS(E,Q) — JES(E,P).  (28)
TRHES(B,Q)

In the case k = 1 and P = \' T*E, (26) yields a morphism
I+1
DA: JVS(E,Q)  x  VJITS(E,Q)— S(E, \T*E).  (29)
JSHIS(E,Q)

An important fact is that (29) and the finite dimensional formal exterior
differential over F are related as follows. From now on we always consider ) as
a fibered manifold over E. Let

B:JQ x VJ°Q—P (30)
J5Q
be a smooth E-morphism. On one hand, we construct

S(B): S(E,J'Q) N S(B,VJQ) — S(E,P). (31)
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The injection J"S(E,Q) — S(E,J"Q) induces, including holonomization, an
injection
I:JFS(E,JQ)  x  JFS(E,VJQ) — (32)
JES(E,J5Q)
— S(E,JMTQ)  x  S(BE,VJFEQ).
S(E,Jk+sQ)
On the other hand, we can construct

JEB:JMTQ x VJHEQ - JkP. (33)
Jk+sQ

So we have a diagram
J*S(B)
—_—

JES(E,J7Q)  x  JES(E,VJQ)
JkS(EB,J*Q)

1| i (34)

k
S(E, Q) x  S(E,vrsQ) 2l g gk p
S(E,Jk+sQ)

JFS(E, P)

Then the proofs of (15) and (17) imply
10 Lemma. (8/) is a commutative diagram. QED
In the case of B: J'Q x V.JQ — A'T*E, S(B) induces
J5Q

I+1

DS(B) : J'S(E, J"Q) Jls(gm) J'S(B,VI*Q) — S(E, N\T*E).  (35)

On the other hand, we have DB : J""'Q x js419 VJT1Q — A T*E. Then
Lemma 10 implies

11 Proposition. We have D(S(B)) = S(DB)o 1.

7 The Euler-Lagrange morphism

We first recall a suitable construction of the Euler-Lagrange morphism of a
first order Lagrangian on a fibered manifold Y — M, [6,10]. We shall discuss a
slightly more general case of a morphism

l
A JY - NT°M (36)

If | = m = dim M, we obtain a classical first order Lagrangian on Y.
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The vertical differential of A is a map

!
dyA: Y = V'Y @ NT"M. (37)
The well-known exact sequence
0=VYRTM—VJ'Y VY -0

induces the dual map V*J'Y — V*Y @ TM. If we add the classical tensor
contraction ay : TM ® /\l "M — /\l_1 T*M , we obtain the composed map

! -1
py VY @ NT*M - VY e \T°M. (38)
Hence py o dy A can be interpreted as a morphism
-1
B(A\) =py odyA: JY xVY = NT*M. (39)
Then l
DB\ : J°Y x VJ'Y - NT*M.
JY

In coordinates, if

A= Ly g (2, 2P 2y do™ AL A da'

then
OLj, .. ; i OLiy i ; ;
dy\ = ﬁdw”@dw“ Ao Adah +871£;}ld:rf®d:rll Ao ANdz' .

Hence oL P

B(\) = #dwf” ® @éydx“ Ao o ANdx".
Using (9), we obtain

Li, ; ; Li, i ; ;
DB()\) ED,'%CZQJP@CZQJ“ Ao ANdx' + %dmf@dm“ A ANdx't
X o

K3 7

where D; denotes the standard formal partial derivative with respect to z*, [6].
This implies that the difference

EN) :=(dy ) o — DB()), (40)
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where 77% : J?Y — JY is the jet map, is projectable to VY. Hence it can be
interpreted as a morphism

l
EN: Y - VYo \NT*M. (41)

Its coordinate expression implies that for m = [ we obtain the Euler-Lagrange
morphism of A\. A more geometric explanation of this fact can be found in [6].
Consider now a smooth E-morphism

l
L:J'Q— \T"E, (42)

which is a first order Lagrangian on () — FE in the case | = m + n. We can
interpret L as an SB-morphism

L:S(E,JQ /\T* (43)

or as a section, denoted by the same symbol,

l
L:M—FJ'QN\TE). (44)

Under the functional approach, the vertical differential is a map

l l
FJ'QNTE)— S(J'QV*J'Qe \NT*E). (45)

Then we take into account
-1

po: VI'Q® /\T*E -V Qe \T'E
This induces, fiberwise, a map

l -1
Fldpg. pq) : F(J'Q V' I'Qe NTE) —» F(J'Q.V'Qe \T°E).

~

Then B(E) = F(id g, pg) o dy o L can be viewed as a morphism

B(L): S(E,J'Q x VQ)— S(E /\T*
and we can construct

D(B(L)) : J'S(E,J'Q) x J'S(E,VJ'Q /\T*
JLS(E,Q)
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A~ o~

Since B(L) = S(B(L)), Proposition 11 yields D(B(L)) = S(D(B(L))) o I. This
implies that D(B(L)) can be viewed as an F-smooth section

l
M — F(J?Q,Vv*J'Q® \T7E)

and dy o Lo 2 — D(B(L)) corestricts to an F-smooth section

l
E(L)=dyoLoni—-D(B(L): M — F(J*Q,V'Q® \TE). (46)

This can be viewed as an SB-morphism, denoted by the same symbol,

l
E(L): S(B,J*Q) — S(E,V*Q® \T"E). (47)

By construction, £(L) = S(E(L)).
Thus, in the case [ = m+n our construction represents a functional approach
to the Euler-Lagrange morphism of a first order Lagrangian on @) — FE.

12 Remark. Given two fibered manifolds Y7 — M and Y5 — M, one can
study variational calculus for the base preserving morphisms Y; — Y5. Since
these morphisms are identified with the sections of the fibered manifold Y7 X s
Ys — Y71, from the abstract point of view the morphism problem reduces to the
variational calculus for the sections of the latter bundle. However, the geometry
of the morphism problem should be more rich. It seems to be reasonable to
discuss this subject in more details elsewhere.
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