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Abstract. We show that every positive linear operator from a majorizing subspace of a
separable Fréchet lattice into a Hausdorff locally solid Riesz space with the Fatou property
and the σ-interpolation property can be extended. We shall also characterize the extreme
points of the convex set of all positive linear extensions of a positive linear operator defined
on a vector subspace when the range space is not assumed to be Dedekind complete.
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1 Introduction

In the classical Hahn-Banach-Kantorovich theorem, the range space is as-
sumed to be Dedekind complete. This assumption can be relaxed by using the
ideas of Y. A. Abramovich and A. W. Wickstead (see [1]) about the interplay
between the separability of the domain space and the σ-interpolation property
of the range space.

1 Theorem ( [1], Theorem 3.5). Let E and F be Banach lattices such that
E is separable and F has the σ-interpolation property, and let P : E → F be a
continuous sublinear operator. If G is a vector subspace of E and T : G → F
is a continuous linear operator satisfying T (x) ≤ P (x) for all x ∈ G, then
there exists a continuous linear extension T̂ of T to all of E also satisfying
T̂ (x) ≤ P (x) for all x ∈ E.

In [5], using the above result N. Dănet confirmed the following conjec-
ture posed by Wickstead in [14]: the space of all continuous regular operators
Lr(E,F ) between the Banach lattices E and F has the Riesz decomposition
property when E is separable and F has the σ-interpolation property. For the
study of the order structure of the space of regular operators, N. Dănet extended
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Theorem 1 in a more general setting and obtained the following version of the
Hahn-Banach extension theorem.

2 Theorem ( [6]). Let (X, τ1) be a metrizable topological vector space such
that X is τ1-separable, and let (F, τ2) be an ordered topological vector space with
the positive cone F+ τ2-closed and which has the strong σ-interpolation property.
Let P : X → F be a continuous sublinear operator. If G is a vector subspace of
X and T : G → F is a continuous linear operator which satisfies T (x) ≤ P (x)
for all x ∈ G, then there exists a continuous linear extension T̂ of T to all of X
such that T̂ (x) ≤ P (x) for all x ∈ X.

Recently, R. M. Dănet and N. C. Wong have used the ideas of Abramovich
and Wickstead to prove new results regarding the extension of the positive
operators. We list one here and refer to [7], [8] and [9] for more results.

3 Theorem ( [9], Theorem 5). Let E and F be two Banach lattices such
that E is separable and F has the σ-interpolation property. Let P : E → F+

be a continuous sublinear operator. Suppose that G is a vector sublattice of E
and T : G → F is a positive linear operator such that T (a) ≤ P (a) for all
a in G. If P is monotone on E+, then there exists a positive linear operator
S : E → F extending T such that S(x) ≤ P (x+) for all x in E. In case P is a
lattice seminorm, we obtain S(x) ≤ P (x), for all x in E.

The argument in the proof of Theorem 3 indeed works also for the case when
E is a metrizable locally solid Riesz space such that E is separable, and F is a
Hausdorff locally solid Riesz space with the σ-interpolation property.

In this paper, we present some new extension theorems of this sort. In par-
ticular, we shall show that every positive linear operator from a majorizing
subspace of a separable Fréchet lattice into a Hausdorff locally solid Riesz space
with the Fatou property and the σ-interpolation property can be extended. We
shall also characterize the extreme points of the convex set of all positive linear
extensions of a positive linear operator defined on a vector subspace when the
range space is not assumed to be Dedekind complete.

2 Preliminaries

In this paper, all spaces are over the reals. Recall that an ordered vector
space E is said to have the σ-interpolation property (or the Cantor property)
if for every increasing sequence (xn) and every decreasing sequence (yn) in E
with xn ≤ yn, ∀ n ∈ N, there is an element z in E such that xn ≤ z ≤ yn, ∀
n ∈ N. E is said to have the strong σ-interpolation property if for every pair
of sequences (xn) and (ym) in E with xn ≤ ym, ∀ n,m ∈ N, there is a z in
E such that xn ≤ z ≤ ym, ∀ n,m ∈ N. In case E is a Riesz space, i.e. vector
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lattice, these two notions coincide. If Ω is a completely regular Hausdorff space,
then the space C(Ω) has the σ-interpolation property if and only if any pair of
disjoint open Fσ subsets of Ω have disjoint closures (see [13]). Huijsmans and
Pagter have shown that an Archimedean Riesz space E has the σ-interpolation
property if and only if E is uniformly complete and E = {x+ }⊥ + {x− }⊥ for
all x ∈ E (see [10]).

Let E be an ordered vector space. Recall that a subset A of E is called to
be full if a1, a2 ∈ A and a1 ≤ a2 imply that the order interval [a1, a2] ⊆ A.
A linear topology τ on E is called locally full if there exists a neighbourhood
basis of the origin consisting of full sets. An ordered vector space endowed with
a locally full topology is called an ordered topological vector space. If the locally
full topology τ on E is such that the positive cone E+ is closed, then τ is a
Hausdorff topology and E is Archimedean ( [4, pp. 159–160]).

Let F be a Riesz space. A subset S of F is said to be solid if |y| ≤ |x| and
x ∈ S imply y ∈ S. A linear topology τ on F is called locally solid if there
exists a neighbourhood basis of the origin consisting of solid sets. A Riesz space
endowed with a locally solid topology is called a locally solid Riesz space (see [2])
or a topological Riesz space (see [4]). A metrizable locally solid topology τ on a
Riesz space F is said to be a Fréchet topology if (F, τ) is τ -complete. A Fréchet
lattice is a Riesz space equipped with a Fréchet topology. Recall that a subset S

of a Riesz space is called order closed if it follows from xα
(o)−−→ x and {xα } ⊆ S

that x ∈ S. We say that a locally solid Riesz space (F, τ) satisfies the Fatou
property (or that τ is a Fatou topology) if τ has a neighbourhood basis of the
origin consisting of solid and order closed sets.

Let E and F be Riesz spaces. By a sublinear operator we mean an operator
that is subadditive and positively homogeneous. An operator P : E → F+ is
said to be a (vectorial) seminorm if P has the properties of a seminorm like in
the scalar case. Also, a seminorm P : E → F+ is called a lattice seminorm if
P (x1) ≤ P (x2) in F+ whenever |x1| ≤ |x2| in E.

For the unexplained terminology see [2], [3] or [4].

3 Extension theorems for positive operators

We begin with a dominated extension type result.

4 Theorem. Let E be a separable metrizable locally solid Riesz space and
F be a Hausdorff locally solid Riesz space with the σ-interpolation property.
Let P : E → F+ be a continuous lattice seminorm. Suppose that G is a Riesz
subspace of E, and T1, T2, . . . , Tn are positive linear operators from G into F
such that

∑n
i=1 Ti(u) ≤ P (u), ∀ u ∈ G. Then each Ti can be extended to a
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positive linear operator Si : E → F such that
∑n

i=1 Si(x) ≤ P (x), ∀ x ∈ E.

Proof. It is enough to establish the result for n = 2. Let T = T1 + T2. By
Theorem 3 (and the remarks that follow) there exists a positive linear operator
S : E → F extending T such that S(x) ≤ P (x) for all x in E. Note that S is
continuous, since S is dominated by P . Define a continuous lattice seminorm
P1(x) = S(|x|), x ∈ E. Then T1(u) ≤ T1(|u|) ≤ T (|u|) = S(|u|) = P1(u) for
all u in G. By Theorem 3 again we obtain a continuous positive extension S1

of T1 such that S1(x) ≤ P1(x) for all x ∈ E. Let S2 = S − S1. Clearly S2 is a
positive linear operator extending T2. Thus S1, S2 are the desired positive linear
operators. QED

The following result is a generalization of [9, Theorem 10] which is itself
inspired by [4, p. 210].

5 Theorem. Let E be an ordered vector space equipped with a metrizable
locally convex topology τ1 such that E is τ1-separable, and let (F, τ2) be an or-
dered topological vector space with the positive cone F+ τ2-closed and having the
strong σ-interpolation property. Let T be a positive linear operator defined on a
vector subspace G of E with values in F . If there exists a neighbourhood U of 0
in E such that the set

S = {T (x) : x ∈ G, x ≤ u for someu ∈ U }

is bounded from above, then T can be extended on E to a continuous positive
linear operator.

Proof. We can assume U convex and balanced. Put M = U −E+. Clearly,
S = {T (x) : x ∈ G

⋂
M }. Let S be bounded above by y0 ∈ F+. Note that

M is a convex neighbourhood of zero in E, and let PM be the continuous
sublinear Minkowski functional of M . Define the continuous sublinear operator
P : E → F+ by P (x) = PM (x)y0. For every x in G and every ε > 0, we have
x ∈ (PM (x) + ε)M , thus T (x) ≤ P (x). Here we use the hypothesis that F+ is
closed. Now by Theorem 2 there exists a continuous linear operator T̂ extending
T on E such thatT̂ (x) ≤ P (x) for all x ∈ E.

Let us prove that T̂ is positive. To this end, let x ∈ E+ and n ∈ N. Since
−nx ∈ M , we have P (−nx) = PM (−nx)y0 ≤ y0. Therefore, T̂ (x) ≥ − 1

ny0 for

n ∈ N, which implies that T̂ (x) ≥ 0. QED

Based on Theorem 5 just proved, we give a result whose proof is the same
as that of [4, p. 211, Proposition 2], thus omitted.

6 Corollary. Let E be an ordered vector space equipped with a metrizable
locally convex topology τ1 such that E is τ1-separable, and let F be an ordered
vector space such that F = F+−F+ and F has the strong σ-interpolation prop-
erty. Suppose that τ2 is a locally convex and locally full topology on F such that
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the positive cone F+ is τ2-closed. Then there is a nonzero positive, continuous
linear operator of E into F if and only if E+ is not τ1-dense in E.

Let us say that a vector subspace G of an ordered vector space E is a
majorizing subspace whenever for each x ∈ E there exists some u ∈ G with
x ≤ u (or, equivalently, whenever for each x ∈ E there exists some u ∈ G with
u ≤ x). Our next result is inspired by Theorem 2 of [8].

7 Theorem. Let E be a separable Fréchet lattice and F a Hausdorff locally
solid Riesz space with the σ-interpolation property and the Fatou property. Let
G be a majorizing subspace of E. If T : G → F is a positive linear operator,
then T has a positive linear extension to all of E.

Proof. We claim that T is continuous. Indeed, let τ be the Fatou topology
on F . Then there exists a unique Fatou topology τ δ on the Dedekind completion
F δ of F that induces τ on F ( [2, Theorem 11.10]). We may consider T as
a mapping of G into F δ. Then T : G → (F δ, τ δ) has a continuous positive
extension to E ( [3, Theorem 2.8]; [2, Theorem 16.6]). Therefore, T : G→ F is
continuous.

Now let x0 ∈ E \ G and G1 the linear span of G
⋃{x0 }. We shall extend

T to a positive operator on G1. Let A = {u ∈ G : u ≤ x0 } and B = { v ∈ G :
x0 ≤ v }. Since G majorizes E, both A and B are nonempty. For every u ∈ A
and every v ∈ B we have u ≤ x0 ≤ v, from which we obtain

T (u) ≤ T (v), ∀u ∈ A, v ∈ B. (1)

Since E is separable and the topology on E is metrizable, the sets A, B are also
separable. Let A1, B1 be dense countable subsets of A and B respectively. In
particular, the inequality (1) holds for all u ∈ A1 and all v ∈ B1. Since F has
the σ-interpolation property, there exists an element y0 in F such that

T (u) ≤ y0 ≤ T (v), ∀u ∈ A1, v ∈ B1.

Because T is continuous and F is Hausdorff locally solid Riesz space, the above
inequality is true for all u ∈ A and v ∈ B. Therefore

T (u) ≤ y0 ≤ T (v), ∀u ∈ A, v ∈ B. (2)

We define the operator T1 : G1 → F by putting

T1(a+ λx0) = T (a) + λy0, ∀a ∈ G, λ ∈ R.

Clearly, T1 extends T . We claim that T1 is positive. To this end, Let a ∈ G
and λ 6= 0 such that a + λx0 ≥ 0. If λ > 0, then x0 ≥ − 1

λa, which implies
T (− 1

λa) ≤ y0. Hence T1(a + λx0) = T (a) + λy0 ≥ 0. The same is true for the
case λ < 0. Finally, note that G1 is again a majorizing subspace and T1 is also
continuous. The proof is finished by using Zorn’s lemma. QED
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4 Characterization of extreme extensions

Let E and F be Riesz spaces and let G be a vector subspace of E. Consider
a positive operator T : G → F . By E(T ) we shall denote the collection of all
positive linear extensions of T to all of E. Let extr E(T ) denote the set of all
extreme points of the convex set E(T ). In many instances, extr E(T ) may happen
to be empty even if E(T ) 6= ∅. In case F is Dedekind complete, Z. Lipecki, D.
Plachky and W. Thomson have shown the following : S ∈ extr E(T ) if and only
if inf{S(|x − u|) : u ∈ G } = 0 for each x ∈ E ( [11]; [12, Theorem 2]). The
Dedekind completeness of F is indispensable in their investigation of extreme
extensions. Next, we shall present a result about extreme extensions, where the
range space is only assumed to have the σ-interpolation property admittedly
weaker than Dedekind completeness.

8 Theorem. Let E be a separable Fréchet lattice and F a Hausdorff locally
solid Riesz space with the σ-interpolation property. Let G be a vector subspace
of E and T : G→ F a positive linear operator. Then for an operator S ∈ E(T )
the following statements are equivalent:

(i) S ∈ extr E(T ).

(ii) For any continuous seminorm P : E → F+ satisfying

P (x) ≤ S(|x− u| ), ∀x ∈ E, u ∈ G (3)

we have P = 0 on E.

Proof. (i)=⇒(ii) Let P : E → F+ be a continuous seminorm satisfying
the inequality (3). Clearly, 0 ≤ P (x) = P (−x) ≤ S(|x| ) for all x ∈ E, and
also P (u) = 0 for every u ∈ G. Now, we claim that P (x) = 0 for all x ∈ E. To
this end, we can assume by way of contradiction that there exists some element
x0 ∈ E such that P (x0) > 0 in F . Let E0 be the set {λx0 : λ ∈ R }. Define
the operator R0 : E0 → F by R0(λx0) = λP (x0). Obviously, R0 is a continuous
linear operator, and R0(λx0) ≤ P (λx0). By Theorem 2, R0 has a continuous
linear extension to all of E denoted by R such that R(x) ≤ P (x) for all x ∈ E.
Clearly, R 6= 0, and |R(x)| ≤ P (x) holds for all x ∈ E. Therefore we can easily
see that R = 0 on G. Since for each x ≥ 0 in E we have

R(x) ≤ P (x) ≤ S(x)

and
−R(x) = R(−x) ≤ P (−x) = P (x) ≤ S(x),

it easily follows that S − R ≥ 0 and S + R ≥ 0. Hence, S − R and S + R are
all elements of E(T ). Note that S − R 6= S and S + R 6= S. Now the equality
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S = 1
2(S−R)+ 1

2(S+R) implies that S is not an extreme point of E(T ), which
leads to a contradiction. Therefore, P = 0 on E.

(ii)=⇒(i) Let S satisfy the requirements in (ii) and let S = λS1 + (1− λ)S2

with S1, S2 ∈ E(T ) and 0 < λ < 1. Then for each x, y ∈ E we have

|S1(x) − S1(y)| ≤ S1(|x− y| ) =

(
1

λ
S − 1 − λ

λ
S2

)
(|x− y| ) ≤ 1

λ
S(|x− y| ).

Next, for each x ∈ E and each u ∈ G, it follows from S(u) = S1(u) = S2(u)
that

|S(x) − S1(x)| ≤ |S(x) − S(u)| + |S1(u) − S1(x)| ≤
(

1 +
1

λ

)
S(|x− u| )

Now Put P (x) = λ
1+λ |S(x)−S1(x) |. Since the positive operators S, S1 are both

continuous ( [2, Theorem 16.6]), P (x) is a continuous seminorm which satisfies
the inequality (3). By the hypothesis, we have P (x) = 0, which implies that
S = S1 on E. Therefore, S is an extreme point of E(T ). Now the proof is
finished. QED
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