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1 Introduction

Throughout this paper all rings R are associative with unity and all modules
M are unital right R-modules. For a module Mg, let M[z] be the set of all
formal polynomials in indeterminate z with coefficients from M (i.e., M[x] =
{30 gmix®: s >0,m; € M}). Then M[x] becomes a right R[z]-module under
usual addition and multiplication of polynomials. For a subset X of a module
Mg, let rr(X) ={r € R| Xr =0}. Consider the module M |x] over R|x]. Let

rAnng(2M) = {rp(U) | U € M }

and
rAnn gy, (2M) = { g (V) | V C M(a]}.

For a polynomial m(z) = mg + miz + --- + msx® € M[z],
Cr(w) = {mo,m1,...,ms} and for a subset V of Mlx], Cy denotes the set
Unm(@yev Cm(z)- Then rg (V) N R = rr(V) = rr(Cv). Hence we have a map

v rAnnR[x](2M[x]) — rAnnp(2M)

defined by W(rgp)(V)) = 7rE(V) N R for each rgy (V) € rAnnR[x}(2M[x]).
Now, we are going to show that W is surjective. Let 7zr(U) € rAnng(2M) for
some U C M. If we chose V = {3}_ mz’ : t > 0,m; € U} C M| then
TR (V) € rAnnRM(2M[m]) and moreover,

V(g (V) = rgp (V)N R=rr(V) =rr(Cv) = rr(U).
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Therefore V¥ is surjective.
If U is a subset of Mg, then rp(,1(U) = rg(U)[z]. Hence we also have a map

@ : rAnngp(2M) — rAnnRM(2MM)

defined by ®(rg(U)) = rgy)(U) = rr(U)[z] for each rg(U) € rAnng(2M). The
map ® is injective. To show this, let 7y (U) = rR[m](U/) for rp(U),rr(U") €
rAnng(2M). Then rz(U)[z] = rr(U’)[z] and hence rr(U) = rr(U’). Conse-
quently, ® is injective. If ® is bijective, then its inverse is W. In fact, for all
rr(U) € rAnng(2M):

(Vo ®@)(rr(U)) = ¥(®(rr(V))) = ¥(rgp)(U)) = rrp(U) N R =rr(U).

So Wo® = 1 pun,em). For each rp (V) € rAnnR[m](ZM[x}) there exists
rr(U) € rAnng(2M) such that ®(r(U)) = rpjy (V) since ® is surjective. So (®o
V) (V) = (g (V) = S@D(p(D)) = B(Lpg o) (rr (D)) =
®(rr(U)) = rgjz)(V) and hence ® o ¥ = L Ann gy (2M11) - Consequently, the
inverse of ® is W.

Following Anderson and Camillo [1] a module Mg is called an Armendariz
module if whenever m(z) f(z) = 0 where m(z) = Y ;_,m;z* € M[z] and f(z) =
Zz':o mjz’) € R[x], we have m;a; = 0 for all i and j. We show that ® is bijective
if and only if Mg is Armendariz.

In [6], a module Mp, is called a quasi-Armendariz module if whenever
m(z)R[z]f(z) = 0 where m(z) = >_;_,mz’ € M[z] and f(z) = 23:0 mjzl €
R[z], we have m;Ra; = 0 for all 4 and j.

Let

rAnng(sub(M)) = {rg(U) | U is a submodule of M }

and
rAnngp (sub(M[z])) = {rgp (V) | V is a submodule of M(z] }.
Consider the map
@' : rAnnp(sub(M)) — rAnngy, (sub(M][z]))

the restriction of ® to rAnng(sub(M)). We show that ® is bijective if and only
if Mg is quasi-Armendariz. According to [7] the module Mp is called quasi-
Baer if, for any submodule N of M, rr(N) = eR where 2 = ¢ € R. We give a
sufficient condition for a module to be quasi-Armendariz.
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2 Armendariz and quasi-Armendariz modules

In this section, we give relations between the set of annihilators in M and
the set of annihilators in M[z]. The following theorem shows that ® is bijective
if and only if Mp is Armendariz.

1 Theorem. Let Mg be a module. Then the following statements are equiv-
alent:

(1) Mg is an Armendariz module.

(2) The map @ :rAnng(2M) — rAnnR[x](ZM[x}) defined by ®(rr(U)) =
TRz (U) = rr(U)[x] for every rr(U) € rAnng(2M), is bijective.

PROOF. (1) = (2) Assume M is an Armendariz. Obviously @ is injective.
So it is enough to show @ is surjective. Let 7z, (V) € rAnnR[x}(QM[x]) for some
V C Mz]. Then for rg(Cy) € rAnng(2M), ®(rgr(Cv)) = 71 (Cv) = 7R (V).
In fact, let f(z) € rpy(Cv) where f(x) = ag+a1r+---+apz™. Then Cy f(z) =
0. Thus for all m € Cy, mf(x) = mag + maiz + --- + ma,z” = 0 and hence
ma; = 0 for all j. Let n(z) = ng + niz + -+ + mya’ € V be arbitrary. Then
n(x)f(r) = 0 since n; € Cy for all i. Hence f(x) € 7y (V). Conversely, let
g(x) = by + byx + - + brat € 7Riz) (V). Then for all m(x) € V, m(x)g(x) =0
where m(z) = mg +myz + -+ +mya! € V. Since Mg is Armendariz, mib; =0
for all i and j. Hence m;g(x) = 0 for all i. So g(z) € rg[;)(Cy) since m(z) € V
is arbitrary. Consequently for each rg(,(V) € rAnnRM(ZM M) for some V C
M[z] there exists rr(Cy) € rAnng(2™) such that ®(rr(Cy)) = rgy)(V) and
therefore ® is surjective.

(2) = (1) Assume m(z) f(x) = 0 where m(x) = mo+miz+---+muxt € M|x]
and f(x) = ag + a1z +---+apz® € R[z]. By hypothesis, TR[z) (M(2)) = rR(U)[Z]
for some U C M. Then f(z) € rr(U)[z] and hence a; € rr(U) for all j. So
aj € rr(U) C rr(U)[x] = rgpz)(m(r)) then m(x)a; = 0. Consequently, m;a; = 0
for all ¢ and j. Therefore Mg is an Armendariz. QED

Following Kaplansky [4], a ring R is a Baer ring if the left annihilator of each
subset is generated by an idempotent. We note that the definition of Baer rings
is left-right symmetric. A ring R is called a left (resp. right) p.p. ring if the left
(resp. right) annihilator of each element of R is generated by an idempotent. A
left and right p.p. ring is called a p.p. ring.

For a subset X of a module Mg, let rr(X) = {r € R: Xr = 0}. In [7]
Lee and Zhou introduced Baer modules, quasi-Baer modules and p.p.-modules
as follows.

(1) Mg is called Baer if, for any subset X of M, rr(X) = eR where e =
e € R;
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(2) Mp is called quasi-Baer if, for any submodule N of M, rg(N) = eR
where ¢? = e € R;

(3) Mp is called principally projective (or simply p.p.) if, for any m € M,
rr(m) = eR where 2 = e € R.

We obtain [7, Corollary 2.7 (1) and Corollary 2.12 (1)] as a corollary of
Theorem 1.

2 Corollary. Let Mg be an Armendariz module. Then Mg is a Baer module
if and only if M[z]g[y) is a Baer module.

PROOF. Assume Mp is a Baer module and let V' be a subset of M[z]. Then
by Theorem 1, there exists U C M such that ®(rg(U)) = rgjy(V) since Mg
is an Armendariz. So rg(U)[z] = rpy (V). Since Mg is a Baer module, there
exists e = e € R such that rg(U) = eR. Thus rgy, (V) = eR[z] and hence
M [x]gs) is a Baer module. Conversely, the proof can be done by using the same
method in the proof of [7, Theorem 2.5. (1)(a)]. QED

3 Corollary ( [5], Theorem 10). Let R be an Armendariz ring. Then R is
a Baer ring if and only if R[x| is a Baer ring.

4 Corollary. Let Mg be Armendariz module. Then Mg is a p.p. module if
and only if M[z]g(y) is a p.p. module.

PRrROOF. Similar to the proof of Corollary 2. QED

If we take R instead of M in Corollary 4, then we have

5 Corollary ( [5], Theorem 9). Let R be Armendariz ring. Then R is a p.p.
ring if and only if R[x] is a p.p. ring.

In [6], a module Mp, is called a quasi-Armendariz module if whenever
m(z)R[z]f(x) = 0 where m(z) = S5_ymiz’ € M[z] and f(z) = Y \_ymjal €
R[z], we have m;Ra; = 0 for all < and j. Put

rAnng(sub(M)) = {rgr(N) | N is a submodule of M },

rAnnpgp, (sub(M|z])) = {rg (V) | V is a submodule of M([z] }.

6 Theorem. Let Mg be a module. The following statements are equivalent:

(1) Mg is quasi-Armendariz.

(2) The map @ : rAnng(sub(M)) — rAnng,)(sub(M[z])) defined by
<I>/(7‘R(N)) = TR2)(N) = TRz (N[z]) for every rr(N) € rAnng(sub(M)), is
bijective.

PROOF. (1) = (2) Assume Mp is quasi-Armendariz. Obviously @ is injec-
tive. Therefore, it is enough to show @' is surjective.

Let rg[z) (V) € rAnn gy, (sub(M [z])) for some submodule V' of M[x]. Then for
rr(CyR) € rAnng(sub(M)), ® (rr(CyR)) = TRiz] (Cv R) = TRz (V). In fact,
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let f(x) € 7Ry (Cv R). Then Cy Rf(x) = 0. In particular, Cy f(z) = 0 and hence
Vf(z) =0.So f(x) € rgy(V). Conversely, let g(x) = by + byx + - + bpa® €
7Riz) (V). Then Vg(z) = 0. Since V' is a submodule of M[z], V Rg(x) = 0. So
v(x)Rg(x) = 0 for all v(z) = vo + viz + --- + vzl € V. Since Mg is quasi-
Armendariz, v;Rb; = 0 for all ¢ and j. Hence Cy Rg(xz) = 0 and therefore
g(x) € TRz (CRV). Consequently ®' is surjective.

(2) = (1) Assume m(z)R[z]f(x) = 0 where m(x) = mo+miz+---+muat €
MIx] and f(z) = ap+aiz+---+apz® € R[z]. By hypothesis, T Rz) (M(2) R[7]) =
rr(N)[z] for some submodule N of M. Then f(x) € rgr(N)[z] and hence
aj € rr(N) for all j. So a; € rr(N) C rr(N)[z] = rgjy)(m(x)R[z]) and then
m(z)R[z]a; = 0. In particular m(z)Ra; = 0 and hence m;Ra; = 0 for all i and
j. Therefore My is a quasi-Armendariz.

Following [2] a module My, is called a semi-commutative module if it satisfies
the following condition: whenever elements a € R and m € M satisfy ma = 0
then mRa = 0.

7 Corollary. Let Mp be a semi-commutative module. Then Mpg is Armen-
dariz if and only if Mg is quasi-Armendariz.

8 Corollary ( [3], Corollary 3.5). Let R be a semi-commutative ring. Then
R is Armendariz if and only if R is quasi-Armendariz.
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