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Abstract. A group G has finite torsion-free rank if it has a series of finite length whose
factors are either infinite cyclic or periodic. A lattice-theoretic characterization of groups with
finite torsion-free rank is obtained; it follows in particular that the class of such groups is
invariant under projectivities. Moreover, a lattice description of radical groups with finite
abelian section rank is given.
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1 Introduction

Let G and Ḡ be groups. A projectivity from G onto Ḡ is an isomorphism
from the lattice L(G) of all subgroups of G onto the subgroup lattice L(Ḡ)
of Ḡ, and a class X of groups is invariant under projectivities if all projective
images of X-groups likewise belong to X. Obviously, if a group class X can be
described by means of only purely lattice concepts, then X is invariant under
projectivities. Lattice-theoretic characterizations of many relevant group classes
are known; among many others, for a group G each of the properties of being
simple, perfect, hyperabelian, polycyclic or supersoluble can be detected from
the subgroup lattice. As cyclic subgroups can be recognized in the lattice of all
subgroups of a group, it is also clear that groups with finite Prüfer rank have
a lattice theoretic description, and the aim of this short paper is to prove that
other finiteness conditions on the ranks produce group classes for which it is
possible to give a lattice-theoretic characterization.

A group G is said to have finite torsion-free rank if there exists a series of
finite length

{1} = G0 < G1 < · · · < Gt = G
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whose factors are either infinite cyclic or periodic; the number r0(G) of infinite
cyclic factors in such a series is an invariant, called the torsion-free rank of G.
Clearly, if G is a group and N is any normal subgroup of G, then G has finite
torsion-free rank if and only if both groups N and G/N have finite torsion-free
rank, and in this case the equality r0(G) = r0(N) + r0(G/N) holds. We shall
prove that groups with finite torsion-free rank can be described by the behaviour
of their subgroup lattices, and hence they form a group class which is invariant
under projectivities. As an application of this result, we will also give a lattice
characterization of radical groups with finite abelian section rank. Recall here
that a group G has finite abelian section rank if no infinite abelian groups of
prime exponent occur as sections of G.

Most of our notation is standard and can be found in [4]; for definitions and
properties concerning arbitrary lattices and lattices of subgroups, we refer to
the monograph [5].

2 Some lattice preliminaries

Let L be a lattice with least element 0 and greatest element I. Recall that
an element c of L is cyclic if the interval [c/0] is a distributive lattice satisfying
the maximal condition. Moreover, an element x of L is covered irreducibly by
elements x1, . . . , xt of the interval [x/0] if, for each cyclic element c of [x/0], there
is i ≤ t such that c ≤ xi and the set {x1, . . . , xt} is minimal with respect to such
property. Clearly a subgroup H of a group G is covered irreducibly in the lattice
L(G) by its subgroups H1, . . . ,Ht if and only if H is the set-theoretic union of
H1, . . . ,Ht and none of these subgroups can be omitted from the covering.

An element a of L is said to be cofinite if there exists in L a finite chain

a = a0 < a1 < · · · < an = I

such that (for every i = 0, 1, . . . , n − 1) ai is a maximal element of the lattice
[ai+1/0] and satisfies one of the following conditions:

• ai+1 is covered irreducibly by finitely many elements b1, . . . , bni of L such
that b1 ∧ · · · ∧ bni ≤ ai;

• for every automorphism ϕ of the lattice [ai+1/0], the element ai ∧ aϕ
i is

modular in [ai+1/0] and the lattice [ai+1/ai ∧ aϕ
i ] is finite.

An element a of L is said to be permodular if it satisfies the following con-
ditions:

• a is a modular element of L;
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• if c is a cyclic element of L and b is an element of [a ∨ c/a] such that the
lattice [a ∨ c/b] is finite, then b is a cofinite element of [a ∨ c/0].

The above definition is suggested by the behaviour of images of normal sub-
groups of a group G under a projectivity ϕ : L(G) → L(Ḡ). All such images
are permodular subgroups of Ḡ (in the sense that they are permodular elements
of the lattice L(Ḡ)). The concept of a permodular subgroup was introduced
by Zacher [8], and has played a central role in most lattice characterizations
of classes of infinite groups closed under projectivities. It is important to ob-
serve that, within the universe of locally (soluble-by-finite) groups, modular
and permodular subgroups coincide (see [6, Theorem 1]). In the lattice L(G)
of all subgroups of a group G an element X is cofinite if and only if the index
|G : X| is finite (see [5, Theorem 6.1.10]); thus if X is a permodular subgroup
of a group G, for each element g of G and for each subgroup Y of G such that
X ≤ Y ≤ 〈g,X〉, the finiteness of the lattice [〈g,X〉/Y ] is equivalent to that of
the index |〈g,X〉 : Y |. It follows that if X is a permodular subgroup of G and H
is any subgroup of G containing X and such that the interval [H/X] is finite,
then X has finite index in H.

We shall say that a lattice L with 0, I is periodic if the lattice [a/0] is finite
for each cyclic element a of L; clearly, a group has periodic subgroup lattice if
and only if it is periodic.

1 Lemma. Let G be a group and let X be a permodular subgroup of G. The
lattice [G/X] is periodic if and only if for each element g of G there is a positive
integer k such that gk ∈ X.

Proof. Suppose first that [G/X] is a periodic lattice, and let g be any
element of G. As X is a modular subgroup of G, the intervals [〈g,X〉/X] and
[〈g〉/〈g〉 ∩ X] are isomorphic, and hence 〈g,X〉 is a cyclic element of [G/X].
Thus [〈g,X〉/X] is finite, so that the group 〈g〉/〈g〉 ∩ X is likewise finite and
there is a positive integer k such that gk belongs to X. Assume by contradiction
that the converse statement is false, and let C be a cyclic element of the lattice
[G/X] such that [C/X] is infinite. Consider in C a subgroup M containing X
which is maximal with respect to the condition that [M/X] is finite, and let
c be an element of C \ M ; put K = 〈c,M〉. As [M/X] is finite, there exist
finitely many elements a1, . . . , at of M such that M = 〈a1, . . . , at,X〉. Then
K = 〈c, a1, . . . , at,X〉 and so the index |XK : X| is finite (see [5, Lemma 6.2.8]).
Moreover, the group K/XK is cyclic, since its subgroup lattice is isomorphic
to a sublattice of [C/X], and hence it is finite. Therefore the index |K : X| is
finite, and so the interval [K/X] is finite, contradicting the choice of M . This
contradiction proves the lemma. QED

Our next two results are direct consequences of Lemma 1.
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2 Corollary. Let G be a group and let X be a permodular subgroup of G
such that [G/X] is periodic. If Y is any permodular subgroup of G containing X,
then also the lattice [G/Y ] is periodic.

3 Corollary. Let G be a group and let X and Y be permodular subgroups
of G such that X ≤ Y . If [G/Y ] and [Y/X] are periodic lattices, then also the
interval [G/X] is periodic.

A lattice L with 0, I is called torsion-free if [a/0] is infinite for every cyclic
non-zero element a of L; also in this case it follows directly from the definition
that a group is torsion-free if and only if it has torsion-free subgroup lattice.

4 Lemma. Let G be a group and let X be a permodular subgroup of G. If
the lattice [G/X] is torsion-free, then X is normal in G.

Proof. Let g be any element of G \ X. As [〈g〉/〈g〉 ∩ X] ≃ [〈g,X〉/X] is
infinite, we have that g has infinite order and 〈g〉 ∩ X = {1}. Thus Xg = X
(see [5, Lemma 6.2.3]), and hence X is normal in G. QED

3 Lattice characterizations

It follows from the definition that if N is a normal subgroup with finite
torsion-free rank of a group G and G/N is periodic, then G has finite torsion-
free rank and r0(G) = r0(N). The first lemma of this section extends such
property to modular subgroups of soluble groups.

5 Lemma. Let G be a soluble group and let X be a modular subgroup of G
with finite torsion-free rank. If the lattice [G/X] is periodic, then G has finite
torsion-free rank and r0(G) = r0(X).

Proof. The statement is obvious if X is normal in G, so that without loss
of generality it can be assumed that G is not abelian. Let K be the smallest
non-trivial term of the derived series of G. As the lattice [G/XK] is periodic
by Corollary 2, by induction on the derived length of G we have that G/K has
finite torsion-free rank and r0(G/K) = r0(XK/K). On the other hand,K/K∩X
is periodic, so that K has finite torsion-free rank and r0(K) = r0(K ∩ X). It
follows that G has finite torsion-free rank and

r0(G) = r0(K) + r0(G/K) = r0(K ∩X) + r0(XK/K) = r0(X).

The lemma is proved. QED

Let G be a group and let X be a subgroup of G. Recall that the isolator
IG(X) ofX in G is the set of all g ∈ G such that gn ∈ X for some positive integer
n. It is well known that the isolator of any subgroup of a locally nilpotent group
is a subgroup; for this and other properties of isolators in locally nilpotent groups
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we refer to [3, Section 2.3]. For our pourposes, we need a result on permutable
subgroups of locally nilpotent groups. Recall that a subgroup X of a group G
is permutable if XH = HX for each subgroup H of G. Clearly, all permutable
subgroups are permodular and in any locally nilpotent group permutable and
permodular subgroups coincide (see [5, Theorem 6.2.10]).

6 Lemma. Let G be a torsion-free locally nilpotent group, and let X be an
abelian permutable subgroup of G. Then X is normal in G.

Proof. Consider the isolator IG(X) of X in G. If IG(X) = G, the group
G is abelian (see [3, 2.3.9]) and the statement is obvious. Suppose that IG(X)
is a proper subgroup of G, so that G is generated by the set of all elements of
infinite order g of G such that 〈g〉∩X = {1}; since Xg = X for all such elements
g (see [5, Lemma 5.2.7]), it follows that X is normal in G. QED

7 Corollary. Let G be a group with no periodic non-trivial normal sub-
groups, and let X be an abelian permutable subgroup of G. Then X is subnormal
in G with defect at most 2.

Proof. As X is ascendant in G, its normal closure XG is a torsion-free
locally nilpotent group (see [4, Part 1, Theorem 2.31]). Thus X is normal in XG

by Lemma 6, and hence it is subnormal in G with defect at most 2. QED

Our main result provides a lattice-theoretic characterization of groups with
finite torsion-free rank, and so it shows in particular that the class of such groups
is invariant under projectivities.

8 Theorem. A group G has finite torsion-free rank if and only if there
exists in G a finite chain

{1} = X0 < X1 < · · · < Xt = G

of permodular subgroups such that each interval [Xi+1/Xi] is either periodic or
a torsion-free distributive lattice with the maximal condition. In this case, the
torsion-free rank of G is the number of torsion-free intervals in such a chain.

Proof. Every group with finite torsion-free rank has of course the property
described in the statement. Conversely, suppose first that G is a soluble group
with this property. Let s be the number of torsion-free intervals in the chain

{1} = X0 < X1 < · · · < Xt = G,

and let k ≤ t be the smallest non-negative integer such that the interval [G/Xk]
is a periodic lattice. Clearly, it can be assumed that G is not periodic, i. e. that
k > 0. Then [Xk/Xk−1] is torsion-free by Corollary 3, so that Xk−1 is a normal
subgroup of Xk by Lemma 4 and Xk/Xk−1 is infinite cyclic. By induction on s
we have that Xk−1 has finite torsion-free rank and r0(Xk−1) = s− 1. It follows



144 R. De Luca and F. de Giovanni

that Xk has finite torsion-free rank and r0(Xk) = s. Application of Lemma 5
yields finally that also G has finite torsion-free rank and r0(G) = r0(Xk) = s.

In the general case, observe that if N is any normal subgroup of G and
[Xi+1/Xi] is a torsion-free lattice, then the interval [Xi+1N/XiN ] is infinite if
and only if Xi ∩ N = Xi+1 ∩ N (because Lemma 4 yields that Xi is normal
in Xi+1 and Xi+1/Xi is infinite cyclic); thus s = s1 +s2, where s1 is the number
of torsion-free non-trivial intervals in the chain

{1} = X0 ∩N ≤ X1 ∩N ≤ · · · ≤ Xt ∩N = N

and s2 is the number of torsion-free non-trivial intervals in the chain

{1} = X0N/N ≤ X1N/N ≤ · · · ≤ Xt/N = G/N.

Consider the second derived subgroup G′′ of G. Since any permodular sub-
group X of G is permutable in XG′′ (see [5, Theorem 6.2.19]), we have that
Xi∩G′′ is a permutable subgroup of G′′ for each i = 0, 1, . . . , t. As by the soluble
case the group G/G′′ has finite torsion-free rank and r0(G/G

′′) is the number
of torsion-free non-trivial intervals in the chain

{1} = X0G
′′/G′′ ≤ X1G

′′/G′′ ≤ · · · ≤ Xt/G
′′ = G/G′′,

it is enough to show that the statement holds for the group G′′ with the chain

{1} = X0 ∩G′′ ≤ X1 ∩G′′ ≤ · · · ≤ Xt ∩G′′ = G′′.

Thus replacing G by G′′ it can be assumed without loss of generality that the
subgroups X0,X1, . . . ,Xt are permutable in G. Clearly, we can also factor out
the largest periodic normal subgroup of G, and suppose that G has no periodic
non-trivial normal subgroups. Thus X1 must be infinite cyclic, and so X1 is
normal in XG

1 by Corollary 7. By induction on s, it can be assumed that the
groups XG

1 /X1 and G/XG
1 have finite torsion-free rank and

r0(X
G
1 /X1) + r0(G/X

G
1 ) = s− 1.

Therefore G itself has finite torsion-free rank and r0(G) = s. The theorem is
proved. QED

Recall that a group G is called radical if it has an ascending series with
locally nilpotent factors, or equivalently if the upper Hirsch–Plotkin series of G
terminates with G. It has been proved by Baer and Heineken [2] that a radical
group has finite abelian section rank if and only if it is hyperabelian and all its
abelian subgroups have finite p-rank for p = 0 or a prime. On the other hand, the
class of hyperabelian groups has a lattice description (see [5, Theorem 6.4.7]),
and hence by Theorem 8 the following result provides a lattice characterization
of the class of radical groups with finite abelian section rank.
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9 Corollary. Let G be a hyperabelian group and let T be the join of all its
periodic permodular subgroups. Then G has finite abelian section rank if and
only if it has finite torsion-free rank and all indecomposable modular intervals
[X/{1}] of L(T ) satisfy the minimal condition.

Proof. Suppose first that G has finite abelian section rank, so that in
particular G has finite torsion-free rank (see [4, Part 2, Lemma 9.34]). Let X
be any subgroup of T such that L(X) is an indecomposable modular lattice.
As T is the largest periodic normal subgroup of G (see [5, Theorem 6.5.17]),
the subgroup X is periodic and so it contains a primary subgroup of finite
index (see [5, Theorem 2.4.13]). On the other hand, every primary subgroup
of G is a Černikov group (see [7]), and hence the lattice L(X) satisfies the
minimal condition. Conversely, if the group G has the property described in the
statement, every primary abelian subgroup of T satisfies the minimal condition
and so T has finite abelian section rank. Moreover, the factor group G/T has
finite Prüfer rank (see [4, Part 2, Lemma 9.34]), and hence G itself has finite
abelian section rank. QED

A hyperabelian group G is said to be an S1-group if it has finite abelian
section rank and π(G) is finite (here π(G) denotes the set of all prime numbers p
for which G has elements of order p). It is well known that any S1-group has a
characteristic series {1} ≤ T ≤ K ≤ G such that T is a Černikov group, K/T
is torsion-free and G/K is finite (see [4, Part 2, Theorem 10.33]). Therefore
S1-groups admit a lattice description, which depends on the following result.

10 Corollary. A hyperabelian group G has the property S1 if and only if
the largest periodic permodular subgroup T of G is a Černikov group and G/T
contains a torsion-free subgroup K/T of finite Prüfer rank such that the index
|G : K| is finite.

The class of S1-groups contains of course all soluble minimax groups: a group
G is called minimax if it has a series of finite length

{1} = G0 < G1 < · · · < Gt = G

whose factors satisfy either the minimal or the maximal condition. We mention
here that also the class of soluble minimax groups can be characterized by
means of properties of the subgroup lattice. In fact, Baer [1] and Zaicev [9], [10]
independently proved that a soluble group G is minimax if and only if it satisfies
the weak minimal condition, i. e. if in G there are no infinite descending chain
of subgroups X1 > X2 > . . . in which each index |Xi : Xi+1| is infinite; this is
actually a lattice condition, because, as we already mentioned, the finiteness of
the index of a subgroup can be detected in the subgroup lattice.

The last part of the paper deals with a somewhat different type of group
class. Let H be the class of all groups whose periodic sections are locally finite.
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Clearly, all locally (soluble-by-finite) groups belong to H, and the imposition of
the property H seems to be a useful tool in the study of many classes of infinite
unsoluble groups. In particular, it turns out that any H-group with finite torsion-
free rank is periodic-by-soluble-by-finite (see for instance [3, p.209]).

It is well known that a finitely generated group G is soluble if and only if it
has a finite chain of permodular subgroups

{1} = X0 < X1 < · · · < Xt = G

such that each interval [Xi+1/Xi] is a permodular lattice (see [5, Theorem
6.4.8]). It follows that also locally (soluble-by-finite) groups can be described
using lattice properties. Our next result provides a lattice-theoretic characteri-
zation of the class of groups whose periodic sections are locally finite.

11 Theorem. A group G belongs to the class H if and only if whenever X
and Y are subgroups of G such that X is permodular in Y and [Y/X] is a periodic
lattice, then [〈y1, . . . , yt,X〉/X] is finite for all elements y1, . . . , yt of Y .

Proof. Clearly, in any group with the lattice property described in the
statement all periodic sections are locally finite. Conversely, suppose that the
group G satisfies this latter condition, and let X and Y be subgroups of G such
that X is permodular in Y and [Y/X] is periodic. Consider elements y1, . . . , yt

of Y , and put H = 〈y1, . . . , yt,X〉. Then X has finite index in its normal closure
K = XH (see [5, Lemma 6.2.8]), so that there is a positive integer e such that Ke

is contained in X and in particular X/XH is periodic. As the interval [H/X]
is periodic, it follows from Lemma 1 that H/XH is likewise periodic, and so
locally finite. In particular, the group

〈y1, . . . , yt〉/〈y1, . . . , yt〉 ∩XH ≃ 〈y1, . . . , yt〉XH/XH

is finite and hence also the lattice

[〈y1, . . . , yt,X〉/X] ≃ [〈y1, . . . , yt〉/〈y1, . . . , yt〉 ∩X]

is finite. The statement is proved. QED
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[7] V.P. Šunkov: On the minimality problem for locally finite groups, Algebra and Logic, 9
(1970), 137–151.
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