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Abstract. In this paper, we study good ropes supported by linear spaces of dimension ≥ 2.
At first, we show that these schemes have some nice properties (for example, they all are locally
Cohen-Macaulay), then we investigate the problem of extending a rope supported by a line to
a good rope supported by a linear space of dimension ≥ 2. In particular, when the linear space
is a plane, we study the problem of extending a rope supported by a line to a good rope with
stable conormal bundle.
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1 Introduction

Let Y be a smooth, integral curve in Pn, where with curve we mean a closed,
locally Cohen-Macaulay subscheme of pure dimension 1. Multiple structures C
supported by Y , that is to say, non-reduced curves such that Cred = Y have
been studied with respect to various properties. In particular, ropes supported
by a smooth, integral curve Y have been investigated in [4], [15], [6], where a
rope is

1 Definition. Fix an integer b such that b ≥ 2. A b-rope C is a projective
scheme of degree deg(C) = bdeg(Y ) which verifies

(1) Cred = Y is an irreducible, nondegenerate smooth curve;

(2) the ideal sheaf IY,C has I2
Y,C = 0 and so it is an OY -module;

(3) IY,C is locally free of rank b− 1 over Y .
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In particular, if the smooth curve Y is a line L, the ropes supported by L
can be studied via a naturally associated exact sequence

0→ ⊕n−b
j=1OL(−βj − 1)→ OL(−1)⊕(n−1) → ⊕b−1

i=1OL(αi − 1)→ 0 (1)

where αi, 1 ≤ i ≤ b−1, and βj, 1 ≤ j ≤ n−b, are non-negative integers (see [16]).
Conversely, each exact sequence (1) with arbitrary non-negative integers αi and
βj uniquely determines a rope C ⊂ Pn supported by the line L (see [16]).

Ropes supported by lines were studied in detail in [16] and [18] (their co-
homological properties, their moduli spaces, components of the Hilbert scheme
Hilb(Pn) of Pn whose general member is a rope, and so on). In [18] the integers
αi, 1 ≤ i ≤ b − 1, (resp. βj , 1 ≤ j ≤ n − b) are called the α-type (resp. β-type)
of C.

It is possible to study multiple structures supported by schemes of dimension
≥ 2 but then it is very important to specify the properties the resulting scheme
has to verify (for example, see [14], [13]).

In this paper we study “good” ropes X ⊂ Pn+x−1 such that Xred is a linear
space Z ⊂ Pn+x−1 of dimension x (see Definition 3 below). We describe some
properties they have, and we consider the problem of extending ropes supported
by lines to ropes supported by linear spaces of higher dimension, that is to say,
we consider a b-rope C ⊂ Pn ∼= H ⊂ Pn+x−1 supported by the line L, and we
look for a good b-rope X supported by a linear space Z of dimension x such
that L = Z ∩H and C = X ∩H.

The plan of the paper is the following.
In Section 2, we define good ropes supported by linear spaces, both abstract

and embedded, and we show that they are always split ropes, and locally Cohen-
Macaulay schemes. Moreover, we construct a natural parameter space for the
good embedded ropes and we compute the cohomology of such ropes in terms
of the parameters.

In Section 3, we study the problem of extending ropes supported by lines
to good ropes supported by linear spaces of dimension x ≥ 2. In particular, we
prove that there exist good extensions under suitable hypotheses on x and on
the degree of the rope we extend (see Theorem 15 below).

In Section 4, we focus on the case x = 2. Using results on the existence of
vector bundles of rank 2 on P2 with expected properties, we construct corre-
sponding good embedded ropes of degree 3 supported by a plane. Furthermore,
we prove the following theorem about the extension of ropes

2 Theorem. Assume 0 < b < n and n − b ≥ 3. Fix b − 1 non-negative
integers α1, . . . , αb−1, and a b-rope C ⊂ Pn ⊂ Pn+1 of α-type α1, . . . , αb−1 sup-
ported by a line L. There exists an integer γ depending only on the integer
max{αi|1 ≤ i ≤ b − 1} and on the integer b such that for every integer c2 ≥ γ
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there is a good b-rope X supported by a plane Z containing L and a hyperplane
H of Pn+1 such that C = X ∩H,L = Z ∩H and the conormal module E∗ of X
is a stable vector bundle with c2(E∗) = c2.

In last Section 5, we give existence results for good ropes supported by
3−dimensional linear spaces, using arguments like in Section 4.

We always work over an algebraically closed base field. In Sections 4 and 5
we will assume characteristic zero because we will heavily use [9], §7, and [10].

This research was partially supported by MURST and GNSAGA of INdAM
(Italy).

2 “Good” abstract and embedded ropes

In this section, we give the definition of abstract and embedded rope sup-
ported by a linear space, we prove that these schemes are split and locally
Cohen-Macaulay, and that there is a natural parameter space for them. At last,
we compute their cohomology in terms of the parameters.

To start with, we define a good abstract rope, analogously to ropes supported
by curves (see Definition 1).

3 Definition. Fix integers x and b with x ≥ 1 and b ≥ 2. A good abstract
b-rope on Px is a scheme X with Xred = Px and such that, calling I the ideal
sheaf of Xred in X, we have I2 = 0 and, seeing I as a coherent sheaf on Px, the
OPx-sheaf I is locally free of rank b− 1.

It follows from the definition that there is an exact sequence of OX - modules

0→ E∗ → OX → OZ → 0 (2)

with Z = Xred, and E∗ = I. By Definition 3, E∗ is a locally free OZ -module
with rank(E∗) = b− 1.

4 Definition. The vector bundle E∗ is called the conormal module of the
good rope X.

Among the good abstract ropes, we will focus on the split ones.

5 Definition. A good abstract b-rope X is a split b-rope if there exists a
retraction ψ : X → Z of the inclusion of Z in X.

Now, we define the good embedded b-ropes supported by linear spaces.

6 Definition. Fix an integer n ≥ b+ 2. A closed subscheme X ⊂ Pn+x−1 is
a good b-rope supported by the x-dimensional linear space Z ⊂ Pn+x−1 if there
exists a good abstract b-rope X ′ on Px and an emdedding j : X ′ → Pn+x−1 such
that j(X ′

red) = Z and j(X ′) = X.
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It is clear from its definition that a good rope is always embedded.

Of course, the previous definition is equivalent to say that there is a very
ample line bundle OX(1) on X with deg(OX(1)|Z) = 1. As in the case of a good
abstract b-rope, we call IZ,X the conormal module of X and we denote it as E∗.
Notice that deg(X) = rank(E∗) + 1 = b.

As first result on such linear ropes, we prove that they are always split ropes.

7 Lemma. Let X ⊂ Pn+x−1 be a good b-rope supported by the x-dimensional
linear space Z. Then X is a good split b-rope supported by Z.

Proof. At first, we construct a retraction of the inclusion of Z in X.

To this end, take a linear subspace W ⊂ Pn+x−1 with dim(W ) = n− 2 and
W ∩ Z = ∅. Let h : Pn+x−1 \W → Px be the linear projection from W . The
morphism h induces an isomorphism h|Z : Z → Px.

Set ψ = (h|Z)−1 ◦ (h|X) : X → Z.

From its definition, it follows that ψ|Z = idZ , and so the constant function 1
on Z is the restriction of the corresponding one on X. Furthermore, if j : Z → X
is the inclusion, then ψ ◦ j = idZ , and so ψ is a retraction of the inclusion
j. QED

8 Remark. Using ψ, we can define an OZ -module structure on OX . But, E∗
is a locally free OZ -module, and so the sequence (2) becomes an exact sequence
of OZ -modules. Because of the properties of ψ, the sequence (2) is split exact.

9 Corollary. Let X ⊂ Pn+x−1 be a good b-rope supported by the x-dimen-
sional linear space Z. Then X is locally Cohen-Macaulay.

Proof. By definition, Z is a linear space of dimension x, and so it is
arithmetically Cohen-Macaulay. Then, Z has depth x at each of its closed
points. In the proof of Lemma 7, we constructed a retraction ψ : X → Z
with ψ∗(OX) ∼= OZ ⊕ E∗, where E∗ is a locally free OZ -module. Then, ψ∗(OX)
is a locally free OZ -module, and so X has depth x at each closed point of Z.
But X and Z have the same closed points and so we have the claim. QED

It follows from the definition of good rope and from the sequence (2) that
there is another exact sequence of OZ -modules associated to a good rope. In
fact, we have the following remark.

10 Remark. Let X be a good b-rope supported by the x-dimensional linear
space Z ⊂ Pn+x−1 with E∗ as conormal module. Both Z and X are embedded
in Pn+x−1 and so we have the two exact sequences

0→ IZ → OPn+x−1 → OZ → 0

and

0→ IX → OPn+x−1 → OX → 0.
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There is a map of complexes induced from the exact sequence (2) that induces
a surjective map IZ → E∗. Then, X is equipped with a surjective map

φA : OZ(−1)⊕(n−1) → E∗,

which follows from Z being a complete intersection.

Set K = ker(φA) and let φB : K → OZ(−1)⊕(n−1) be the associated inclu-
sion. Then, we have the following exact sequence

0→ K φB−→ OZ(−1)⊕(n−1) φA−→ E∗ → 0. (3)

If Z is a line L, then the sequence (3) becomes the exact sequence (1).

As in the case dim(Z) = 1, we can use the exact sequence (3) to construct
a natural parameter space for the good b-ropes.

11 Theorem. There is a 1-to-1 correspondence between the good b-ropes
supported by a linear space Z ⊂ Pn+x−1 of dimension x and the pairs (E∗, φA)
up to isomorphism where rank(E∗) = b − 1 and φA : OZ(−1)⊕(n−1) → E∗ is a
surjective map.

Proof. IfX is a good b-rope supported by Z, we naturally have a surjective
map φA : OZ(−1)⊕(n−1) → E∗, as constructed in previous Remark 10. It is
evident that the pair (E∗, φA) is unique up to isomorphism.

Vice versa, in Pn+x−1 we have the isomorphism IZ/I2
Z
∼= OZ(−1)⊕(n−1)

and so using the exact sequence (3) we construct an ideal sheaf IX such that
I2

Z ⊂ IX ⊂ IZ which defines a good b-rope X supported by Z having (E∗, φA)
as associated pair. QED

12 Remark. Obviously, a rank k vector bundle K on Z and an injective
map φB : K → OZ(−1)⊕(n−1) with locally free cokernel (i. e. a map φB : K →
OZ(−1)⊕(n−1) with rank k at each point of Z) uniquely determines a good
(n− k)-rope X over Z with coker(φB) as conormal module.

The pair (E∗, φA) determines the cohomology of the good rope X. In fact,
we have

13 Proposition. Let X ⊂ Pn+x−1 be a good b-rope supported by the linear
space Z of dimension x, and let (E∗, φA) be a pair associated to X as in Remark
10. Then, H i

∗(IX) ∼= H i−1
∗ (E∗) for 2 ≤ i ≤ x, while H1

∗ (IX) ∼= coker(H0(φA) :
S(−1)⊕(n−1) → H0

∗ (E∗)) where S = R/IZ and the isomorphisms are of R-
modules.

Proof. From the exact sequence (2), we have the exact sequence

0→ IX → IZ
ϕ→ E∗ → 0.
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Taking the associated long exact cohomology sequence, we get that

H i
∗(IX) ∼= H i−1

∗ (E∗) for 2 ≤ i ≤ x
because H i

∗(IZ) = 0 for i = 1, . . . , x, and

0→ IX → IZ
H0(ϕ)−→ H0

∗ (E∗)→ H1
∗ (IX)→ 0,

where IX and IZ are the saturated ideals defining X and Z, respectively. Then,
H1

∗ (IX) = coker(H0(ϕ)).
Set φ′ the composition of the isomorphism IZ/I2

Z
∼= OZ(−1)⊕(n−1) and φA.

We have that φ′ and ϕ have the same image because I2
Z ⊂ IX and the map

IX → IZ is the inclusion. Hence, H0(φA) and H0(ϕ) have the same image, and
so we have the claim. QED

3 Extension of ropes supported by lines

In this section we study the problem of extending a rope supported by a line
to a good rope supported by a linear space of higher dimension, that is to say,
we find conditions to assure that a rope supported by a line is the intersection
of a good rope supported by a linear space of dimension ≥ 2 with a linear space
of the right dimension. The answer to this problem depends on the constraints
imposed to the conormal bundle E∗.

14 Definition. Let Z ⊂ Pn+x−1 be an x-dimensional linear space. A good
b-rope X supported by Z and given by an exact sequence (3) will be called α-
split where α = (α1, . . . , αb−1) (resp. α-stable, or β-split, or β-stable, where

β = (β1, . . . , βn−b)) if E∗(1) = ⊕b−1
i=1OZ(αi) (resp. E∗ is stable, or K(1) =

⊕n−b
i=1OZ(−βi), or K is stable).

Then, α and β can be seen as the splitting types of E∗(1) and K(1), respec-
tively.

Now, we prove that under suitable hypotheses on the dimension of Z and
the degree of the rope, every rope supported by a line (and hence α-split) can
be extended to a good α-split rope supported by a linear space.

15 Theorem. Fix integers n, x, b with 2 ≤ x < n− b < n. Let Z ⊂ Pn+x−1

be an x-dimensional linear space and let H ⊂ Pn+x−1 be a codimension x − 1
linear space such that L = Z ∩H is a line. Let C ⊂ H be a b-rope supported by
the line L, with splitting type α = (α1, . . . , αb−1). Then there is a good α-split
b-rope X on Z with X ∩H = C.

Proof. The rope C supported by L is defined via the exact sequence (1)

0→ ⊕n−b
j=1OL(−βj − 1)→ OL(−1)⊕(n−1) φA,L−→ ⊕b−1

i=1OL(αi − 1)→ 0.
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The theorem is equivalent to the existence of a surjective map

φA : OZ(−1)⊕(n−1) → ⊕b−1
i=1OZ(αi − 1)

such that φA,L = φA|L, that is to say, φA is an extension of φA,L. The set of all
such extensions is parameterized by the vector space

H0(Z,IL,Z ⊗Hom(OZ(−1)⊕(n−1),⊕b−1
i=1OZ(αi − 1))).

Notice that the vector bundle Hom(OZ(−1)⊕(n−1),⊕b−1
i=1OZ(αi− 1)) is spanned

by its global sections. This implies that for every P ∈ Z the set of all extensions
of φA,L not surjective at P has codimension at least n − 1− (b− 1) = n− b in
H0(Z,IL,Z⊗Hom(OZ(−1)⊕(n−1),⊕b−1

i=1OZ(αi−1))). Since dim(Z) = x < n− b,
we obtain that a general extension of φA,L is surjective at every point of Z, and
so the claim follows. QED

16 Remark. A similar computation works for non α-split extensions. Let
E∗ be a vector bundle on Z. If H1(Z,IL,Z⊗Hom(OZ(−1)⊕(n−1), E∗)) = 0, i. e. if
H1(Z,IL,Z⊗E∗(1)) = 0, we may lift any surjective map φA,L : OL(−1)⊕(n−1) →
E∗|L to a morphism φA : OZ(−1)⊕(n−1) → E∗. If x < n − b and E∗ is spanned
by its global sections, the proof of Theorem 15 shows that the general lifting φA

is surjective and hence it defines a good b-rope supported by Z extending the
given b-rope supported by L.

17 Remark. Let X ⊂ Pn+x−1 be a good b-rope supported by an x-dimen-
sional linear space Z and with conormal module E∗. For every line L ⊂ X the
vector bundle E∗|L is the direct sum of b− 1 line bundles on L ∼= P1 and hence
there are b − 1 integers α1 ≤ α2 ≤ · · · ≤ αb−1, with E∗|L ∼= ⊕b−1

i=1OL(αi − 1).
The ordered integers αi, 1 ≤ i ≤ b − 1, are uniquely determined by X and
L. They are called the α-type of X with respect to the line L. Of course, we
have c1(E∗) = α1 + · · · + αb−1 − b + 1, where c1(E∗) is the first Chern class of
E∗. Moreover, if X is an α-split good b-rope, then the Chern classes of X are
uniquely determined by the integers x, α1, . . . , αb−1.

Analogously, if (3) is the exact sequence definingX, the splitting type βj , 1 ≤
j ≤ n− b, of K(1)|L is called the β-type of X with respect to L.

If we fix a linear space H ⊂ Pn+x−1 with dim(H) = n and Z ∩H = L, and
set C = X ∩H, the integers αi, 1 ≤ i ≤ b − 1, and βj , 1 ≤ j ≤ n − b, are the
integers appearing in the exact sequence (1) associated to the b-rope C.

18 Remark. Fix integers n, b, x, with 2 ≤ x ≤ b − 2, and b < n. Fix non
negative integers β1, . . . , βn−b. Let Z ⊂ Pn+x−1 be an x-dimensional linear space
and H ⊂ Pn+x−1 a codimension x−1 linear space such that L = Z∩H is a line.
Consider an injective map φB|L : ⊕n−b

j=1OL(−βj − 1) → OL(−1)⊕(n−1) giving
the β-type of a b-rope C ⊂ H supported by L. By Remark 16 the condition
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x ≤ b−2 allows us to extend φB|L to an injective map φB : ⊕n−b
j=1OZ(−βj−1)→

OZ(−1)⊕(n−1). Notice that E∗ = coker(φB) is a rank b − 1 vector bundle on Z
equipped with a surjective map φA : OZ(−1)⊕(n−1) → E∗ and hence it defines
a good b-rope X over Z with E∗ as conormal module. By construction X is a
β-split extension of C.

The case of 2-ropes (i. e. when the conormal module is a line bundle) is
very easy and left to the interested reader. In this case the conormal module
is uniquely determined by its restriction to any line. Taking the dual exact
sequence as in Remark 18 one easily studies the case n − b = 1, i. e. (n − 1)-
ropes supported by a codimension n− 1 linear subspace of Pn+x−1.

4 Ropes on a plane

In this section we will consider the case x = 2, i. e. the case of good b-ropes
on a plane.

For all integers c1, c2, r with r ≥ 2, letM(P2; c1, c2, r) be the moduli scheme
of stable vector bundles on P2 with rank r and Chern classes c1 and c2. Assume
c1 ≥ −2. It is known (see [3], [5] or [7]) that M(P2; c1, c2, 2) is smooth and
irreducible or empty and that M(P2; 0, c2, 2) 6= ∅ if and only if c2 ≥ 2 while
M(P2;−1, c2, 2) 6= ∅ if and only if c2 > 0 (see [3], [12] or [8, Lemma 3.2]).

Now, we want to compute the twists for a rank 2 stable vector bundle F on
P2 to be the conormal module of a good rope, of course of degree 3.

Recall that, if F is a vector bundle on P2, with Chern classes c1 = c1(F),
and c2 = c2(F), then the Chern classes of F(x) are

c1(F(x)) = c1 + 2x and c2(F(x)) = c2 + xc1 + x2

(see e.g. [5, bottom of p. 469], or [9, Lemma 2.1], or [8, proof of 7.1]), while the
Euler characteristic of F(x) is

χ(F(x)) = (c1 + 2x+ 1)(c1 + 2x+ 2)/2 + c2 + xc1 + x2

(use Riemann-Roch or read [5, p. 470]).
Hence, to get a normalized vector bundle from F we have to twist F by −a,

where a = (c1 − d1)/2, and d1 = 0 if c1 is even, d1 = −1 otherwise. We set
d1 = c1(F(−a)) and d2 = c2(F(−a)).

For a normalized rank 2 bundle F on P2 with Chern classes d1, d2 (and so
−1 ≤ d1 ≤ 0), we have that H0(F(y)) 6= 0 for every y ≥ y(d1, d2) where

y(d1, d2) = min{y|y ≥ 0, (y + 1)(y + 2 + d1) > d2}
(see [8, Prop. 7.1]).

Now, we can state some lemmas.
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19 Lemma. Let F be a rank 2 stable vector bundle on P2 with Chern classes
c1, c2. Assume d2 ≥ 2 + d1 for the normalized bundle F(−a). For every integer
y ≥ y(d1, d2) − a we have h0(P2,F(y)) 6= 0. Let t be the least integer with
0 ≤ t ≤ y(d1, d2) such that h0(P2,F(t− a)) 6= 0. We have h1(P2,F(y − a)) = 0
for every integer y ≥ a+d2−t2−1 and F(z−a) is spanned by its global sections
for every integer z ≥ a+ d2 − t2.

Proof. The lower bound for d2 is equivalent to the non-emptiness of
M(P2; d1, d2, 2) (see [3], [12] or [8, Lemma 3.2]). The inequality h0(P2,F(t −
a)) 6= 0 is [8, Prop. 7.1]. The vanishing of h1(P2,F(y − a)) is [8, Theorem 7.4].
The spannedness of F(z − a) follows from Castelnuovo - Mumford’s Lemma
because we just proved that h1(P2,F(z−a−1)) = 0, while h2(P2,F(z−a−2)) =
0 by Serre duality and the stability of F . QED

Now, we recall a result on general rank 2 stable vector bundles on P2. By [5,
Corollary 5.2], if c1 is even or its proof if c1 is odd (see [11] or [7] or [2] for
much more) for every integer x with c1 + 2x ≥ −2 we have h2(P2,F(x)) = 0
and at most one of the cohomology groups h0(P2,F(x)) and h1(P2,F(x)) is
non-zero, i. e. we have h0(P2,F(x)) = max(0, χ(F(x))) and h1(P2,F(x)) =
max(0,−χ(F(x))). Then, for a general rank 2 stable vector bundle on P2 we set

x(c1, c2) = min{x|c1 + 2x > −2 and χ(F(x)) ≥ 0}.

20 Lemma. Let F be the general rank 2 stable vector bundle on P2, with
Chern classes c1, c2. Assume d2 ≥ d1+2 for the normalized vector bundle F(−a).
We have h1(P2,F(y)) = 0 if and only if y ≥ x(c1, c2). The vector bundle F(y) is
spanned by its global sections if and only if either y > x(c1, c2) or y = x(c1, c2)
and χ(F(x(c1, c2))) ≥ 4.

Proof. The first assertion is [5, Corollary 5.2], if c1 is even while if c1 is
odd the proof of [5, Corollary 5.2], works verbatim. The second assertion is
well-known; the spannedness of F(y) for y > x(c1, c2) also follows from the first
assertion and Castelnuovo-Mumford’s Lemma. QED

From previous Lemmas, we obtain at once the following results.

21 Theorem. Let Z ⊂ Pn+1 be a plane. Fix integers d1 and d2 with −1 ≤
d1 ≤ 0 and d2 ≥ d1 + 2. Let F be a rank 2 stable vector bundle on P2 with
c1(F) = d1 and c2(F) = d2. Let t be the first integer with 0 ≤ t ≤ y(d1, d2) such
that h0(P2,F(t)) 6= 0. Then, for every integer y ≥ d2− t2 there is a good 3-rope
on Z with F(y) as conormal module.

22 Theorem. Let Z ⊂ Pn+1 be a plane. Fix integers d1 and d2 with −1 ≤
d1 ≤ 0 and d2 ≥ d1 + 2. Then, for a general F ∈ M(P2; d1, d2, 2) and every
integer t > x(d1, d2) there is a good 3-rope on Z with F(t) as conormal module.
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In principle one could use the non-emptiness results given in [7] and [2,
Theorem 1.7], and the cohomological properties of general stable bundles proved
in [2] and [11] to extend the previous results to the case of b-ropes on P2 with
b ≥ 3. However, the numerology seems to be intractable (at least to us).

Proof of Theorem 2. Assume the existence of a vector bundle E∗ on
a plane Z containing L such that E∗(1)|L has splitting type α1, . . . , αb−1. If
h1(Z, E∗) = 0, then h1(Z,IL,Z ⊗ Hom(OZ(−1)⊕(n−1), E∗)) = 0 and hence the
restriction map

H0(Z,Hom(OZ(−1)⊕(n−1), E∗))→ H0(L,Hom(OL(−1)n−1,⊕b−1
j=1OL(αj − 1)))

is surjective.
Thus by Remark 16, it is sufficient to prove the existence of a rank (b− 1)

stable bundle E∗ with c2(E∗) = c2, splitting type αj − 1, 1 ≤ j ≤ b− 1, and with
h1(Z, E∗) = 0.

Let A be any vector bundle on Z. The tangent space of the deformation
functor Def of A on Z is H1(Z,End(A)), the obstruction space of the functor
Def is contained in H2(Z,End(A)) and the automorphism group of the functor
Def is H0(Z,End(A)).

Now consider only the deformations of A which keep constant the splitting
type of A|L; we call L-trivial any such deformation and we obtain in this way
a functor Def(∗, L). Since L is the zero-locus of a section of OZ(1), the vector
spaces H i(Z,End(A)(−1)), 0 ≤ i ≤ 2, are respectively the automorphism group,
the tangent space and a space containing all the obstructions for the functor
Def(∗, L).

Now we drop the assumption that A is locally free, but we require that A
is locally free in a neighborhood of L. For the general deformation theory of A,
see [1]. For the functor of L-trivial deformations of A we must use the vector
space Exti(Z;A(−1), A) instead of the vector space H i(Z,End(A)(−1)).

Set B = ⊕b−1
j=1OZ(αj − 1). Fix an integer x ≥ 0 and x general points

P1, . . . , Px of Z \ L. Fix any surjective map u : B → ⊕x
j=1OZ,Pj and set

A = ker(u). The torsion free sheaf A has rank b − 1, c1(A) = c1(B), c2(A) =
c2(B) + x(see e.g. [1]) and A|L ∼= ⊕b−1

j=1OL(αj − 1) because Pi /∈ L for every i.
In [2] it was considered the case αj = 1 for every j. Following [2] we will say
that A is a quasi B-trivial sheaf. The proofs in [2], §3, show that for x≫ 0 the
sheaf A is stable and deformable to a locally free sheaf and that we may do the
same with L-trivial deformations; here we use that ωZ

∼= OZ(−3) and hence
h0(Z,ωZ(1)) = 0. QED

23 Remark. From the proof, it comes out that it is in general impossible
to deform A to a locally free sheaf keeping fixed its restriction to a degree 3 (or
higher) plane curve.
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5 3-ropes on a 3-dimensional linear space

In this section we will give a few remarks for the case x = 3 and b− 1 = 2.
To apply Remark 16, we will always assume n ≥ 6.

Let M(P3; c1, c2, 2) be the moduli space of stable rank two vector bundles
on P3 with Chern classes c1 and c2. The main difference with respect to the
case x = 2 considered in previous section is that M(P3; c1, c2, 2) may be re-
ducible and even not equidimensional. Hence for the integers c1 and c2 for
which M(P3; c1, c2, 2) 6= ∅ one usually identifies an interesting irreducible com-
ponent T of M(P3; c1, c2, 2) and studies the cohomological properties of the
elements of T or at least of the general F ∈ T . Following [10] in the case c1
even we will call T (c1, c2) the irreducible component of M(P3; c1, c2, 2) con-
taining an instanton bundle obtained from skew lines using a construction due
to Serre (see [8, Example 3.1.1], or [10, Example 1.6.1]). For c1 = 2c ≥ 0, we
have T (c1, c2) 6= ∅ if and only if c2 > 0; if c1 = −2 we have T (c1, c2) 6= ∅
if and only if c2 ≥ 2. Similarly, if c1 = 2c − 1 ≥ −1 and c2 ≥ 6, there is a
“cohomologically good” generically smooth irreducible component T (c1, c2) of
M(P3; c1, c2, 2) described in [10] and whose general member has natural coho-
mology. Using Castelnuovo - Mumford’s Lemma and [10], Th. 0.1, instead of the
quoted results in [5] and [12], we obtain as in the previous section the following
result; to help the reader with the numerology of its statement we recall that
c1(E∗(−1)) = c1 − 2 and c2(E∗(−1)) = c2 − c1 + 1 and hence Riemann - Roch
gives χ(E∗(−1)) = (c1 + 1)c1(c1 − 1)/6− (c1 + 2)(c2 − c1 + 1)/2 + 1 (see [9, Th.
2.3]).

24 Proposition. Fix integers c1, c2 with c1 ≥ −1. Set a = [(c1 +1)/2], d1 =
c1 − 2a and d2 = c2 − c1a+ a2. Assume d2 ≥ 6 if c1 is odd and d2 > 0 if c1 is
even. Assume (c1 + 1)c1(c1 − 1)/6 − (c1 + 2)(c2 − c1 + 1)/2 + 1 ≥ 0. Let E∗ be
a general member of T (c1, c2). Then there is a good 3-rope X ⊂ Pn+2 supported
by a 3-dimensional linear space with E∗ as conormal module.

25 Remark. There is a fundamental difference for α-stable extensions of
ropes between extensions from a line to a plane and from a plane to a 3-
dimensional linear space. In the previous section we gave an α-stable exten-
sion of any rope supported by a line to a good rope supported by a plane
with stable conormal module. The corresponding result from a plane to a 3-
dimensional linear space is false because if c1 ≥ −2 and c2 ≫ 0 a general
element of M(P2; c1, c2, 2) is not the restriction of a vector bundle on P3, just
for dimensional reasons.
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