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Abstract. Some new results on symplectic translation planes are given using their represen-
tation by spread sets of symmetric matrices. We provide a general construction of symplectic
planes of even order and then consider the special case of planes of order q2 with kernel con-
taining GF(q), stressing the role of Brown’s theorem on ovoids containing a conic section. In
particular we provide a criterion for a symplectic plane of even order q2 with kernel containing
GF(q) to be desarguesian. As a consequence we prove that a symplectic plane of even order q2

with kernel containing GF(q) and admitting an affine homology of order q−1 or a Baer involu-
tion fixing a totally isotropic 2-subspace is desarguesian. Finally a short proof that symplectic
semifield planes of even order q2 with kernel containing GF(q) are desarguesian is given.
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1 Introduction

Let K be a field and V a vector space of dimension 2n over K. A spread
of V is a set Σ of subspaces of V , each of dimension n, partitioning the set of
non-zero vectors of V . For the theory of spreads and their associated translation
planes we refer to [2] or [21, Chapter I].

In this paper we are mainly interested in the case where K is a finite field
with q elements and V is equipped with a symplectic form β, that is a non-
degenerate alternating bilinear form. The pair (V, β) is called a symplectic space.
We refer to [30] for symplectic and orthogonal geometries . We consider spreads
consisting of totally isotropic subspaces (with respect to β). Such a spread, as well
the corresponding translation plane, is called symplectic (see also [15], [16], [24]).
If we fix suitable coordinates (symplectic coordinates), to the symplectic spread
Σ we associate a setM of qn symmetric n×n matrices with entries in K, such
thatM contains the zero matrix and the difference of any two distinct matrices
is non-singular. Such a set of matrices will be called a symmetric spread set.

In section 2 we will briefly recall some of the main properties of symplectic
planes, emphasizing the difference between the cases q even and q odd. In the
even case any symplectic plane admits a very special line-oval, that we called
completely regular (see [24] and [26]). A very short construction of such line-
ovals is given in Theorem 11. The existence of completely line-ovals allows us
to provide a general construction of all possible symplectic translation planes of
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even order. This construction comprises those given by Kantor [16] and Kantor
and Williams ( [17], [18]). We remark that Kantor’s construction applies only
when the plane has odd dimension over its kernel.

The last topic we consider is the very special case of symplectic translation
planes of even order q2, having kernel containing a field of (even) order q. These
planes are equivalent objects of ovoids of PG(3, q) (see [31]). Only two families
of them are known, namely the elliptic quadrics and the Tits ovoids. It is largely
conjectured that these are the only ones ( [27], [29]). The corresponding sym-
plectic planes are the desarguesian ones and the Lüneburg planes [21, Chapter
IV]. We will illustrate the important role played by Brown’s theorem [4] on
ovoids containing a conic section in deriving some consequences for the corre-
sponding symplectic planes. The main result we prove is Theorem 27, which
provides a criterion for a symplectic plane of even order q2 with kernel contain-
ing GF(q) to be desarguesian. As a consequence we derive that every symplectic
plane of order q2 (with kernel containing K = GF(q)) admitting an affine ho-
mology of order q− 1 or a Baer involution, whose set of fixed points is a totally
isotropic 2−subspace, is desarguesian. Finally a short proof, based on Brown’s
theorem, that any symplectic semifield plane of even order q2 with kernel con-
taining K = GF(q) is desarguesian will be given. In view of such an important
role played by Brown’s theorem we state the following

Problem. Prove that Theorem 27 implies Brown’s theorem.

2 A general construction of symplectic planes

Let Π be a finite projective plane of order q. We consider lines as set of
points, so that the incidence relation coincides with set-theoretic inclusion. In
particular, the line incident with distinct points P and Q is denoted by PQ.

2.1 Ovals and line-ovals

An oval of Π is a set of q+1 points, no three collinear. Let O be an oval. A
line ℓ is called exterior, tangent or secant to O according as ℓ meets O in 0, 1
or 2 points. Easy counting arguments show that

(a) on each point of O there is one tangent line;

(b) the number of tangent lines is q + 1;

(c) the number of secant lines is q(q + 1)/2;

(d) the number of exterior lines is q(q − 1)/2.
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We will be mostly interested in the case of planes of even order. In this case,
all the tangent lines to the oval O pass through the same point N , called the
nucleus (or else the knot) of the oval. The set Ω = O∪{N} is called a hyperoval.
For the theory of ovals we refer to [12] and [19].

There is a very simple characterization of hyperovals, which uses counting
arguments.

1 Proposition. Let Ω be a set of q + 2 points in a projective plane of even
order q, and let t0 be the number of lines of the plane that do not intersect Ω.
Then Ω is a hyperoval if and only if t0 ≥ q(q − 1)/2.

For the proof see [23] or [24].

The dual definition of an oval is that of line-oval: a set of q+1 distinct lines
of Π, no three of which are concurrent. Clearly, all properties of ovals translate
to line-ovals.

In case of projective planes of even order, if O is a line-oval, there exists
a unique line ℓ∞ such that on each of its points there is only one line of O.
This line ℓ∞ is called the nucleus, or also the dual nucleus. Denote by A = Πℓ∞

the affine plane obtained from Π by deleting the line ℓ∞ and its points, and by
B(O) the set of affine points which are on the lines of O. From properties (a),
(b) and (c) above, it is easy to prove that

(1) each point of B(O) belongs to two lines of O;

(2) |B(O)| = q(q + 1)/2;

(3) if ℓ is an affine line not belonging to O, then |ℓ ∩B(O)| = q/2.

2.2 Spread sets of matrices

Let (V, β) be a 2n-dimensional symplectic space over the finite field K =
GF(q) (we let q to be even or odd). We illustrate the use we will make of
coordinates. Let S0 and S∞ be totally isotropic n-subspaces such that V =
S0 ⊕ S∞ . The bases B0 = (v1, . . . , vn) of S0 and B∞ = (w1, . . . , wn) of S∞
are called dual bases if β(vi, wj) = δij , for all i, j = 1, . . . , n . The basis B =
B0 ∪ B∞ is called a symplectic basis of V , and vector-coordinates with respect
to this basis are called symplectic coordinates. If B is a symplectic basis, then
S0 and S∞ identify with Kn and V identifies with Kn ×Kn. We will represent
elements of Kn as n× 1 matrices, so that vectors of V are assigned coordinates
of type

(
X
Y

)
, where X = (x1, . . . , xn)

t and Y = (y1, . . . , yn)
t are elements of

Kn (symbol t denotes transposition). With respect to this basis, S0 has “the
equation” Y = O and S∞ has “the equation” X = O (here O denotes the n× 1
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zero matrix). Finally, the matrix representing β in this basis is

(
On In
−In On

)
.

2 Proposition. With respect to the symplectic basis B = B0∪B∞ there is a
bijection between the family of all totally isotropic n-subspaces of V intersecting
S∞ only in the zero vector and the space of all n × n symmetric matrices with
entries in K.

Proof. (See also [25, Proposition 2.1]) Let S be a totally isotropic n-
subspace such that S ∩ S∞ = {0}. There is a homogeneous linear system which
represents S:

AX +BY = O (1)

for suitable n × n matrices A and B. Since S∞ is represented by X = O, the
condition S ∩ S∞ = {0} gives detB 6= 0. So system (1) is equivalent to

Y =MSX (2)

where MS = −B−1A.
We prove that MS is symmetric. As S is totally isotropic,

(Ht, (MSH)t)

(
On In
−In On

)(
H ′

MSH
′

)
= 0 (3)

for all H,H ′ ∈ Kn. Therefore

Ht(MS −M t
S)H

′ = 0 , for all H,H ′ ∈ Kn (4)

and so MS =M t
S .

It is easy to see that the map S 7→MS is bijective. QED

3 Corollary. Let Σ be a symplectic spread and let S0 and S∞ be two distinct
components of Σ. Pick a symplectic basis B = B0∪B∞. Then to the set Σ\{S∞}
there corresponds bijectively a setM of n× n symmetric matrices over K such
that

(1) the zero matrix On is inM; and

(2) if A and B are inM and A 6= B, then A−B is non-singular.

4 Definition. The set M, as defined in the above corollary, is called a
symmetric spread set for Σ (with respect to the symplectic basis B).

We will denote by A(M) the symplectic translation plane determined by the
spread setM.
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5 Remark. (1) In the following when we say “M is a symmetric spread
set of order qn” we mean thatM is a set of qn symmetric n× n matrices over
K = GF(q) verifying (1) and (2) of Corollary 3.

(2) Note that ifM is a symmetric spread set of order qn, then also AtMA =
{AtMA |M ∈M} is a symmetric spread set of order qn for every A ∈ GL(n, q).
Moreover the associated planes A(M) and A(AtMA) are isomorphic via the

isomorphism given by the matrix

(
A−1 On

On At

)
.

The class of spread sets is closely related to the class of regular sets of linear
maps. A subset R of GL(V ), where V is a finite dimensional K-vector space, is
called regular if for any v, w ∈ V \ {0} there is precisely one λ ∈ R such that
λ(v) = w. Clearly, ifM is a spread set, then the setM∗ =M\{O} is a regular
set. It is also easy to prove a converse statement.

We determine which conditions are imposed on a symmetric spread set in
order that the corresponding plane be desarguesian.

6 Proposition. LetM be a symmetric spread set. ThenM is a field if and
only if M consists of commuting elements. In this case Kn is a 1-dimensional
vector space overM and the plane defined byM is desarguesian.

Proof. (See also [13] and [25]) We need only to prove that ifM is commu-
tative, thenM is a field. SinceM∗ acts regularly on Kn \ {0}, then, by Schur’s
Lemma (see [20, Proposition 1.1, p. 643]), the centralizer ofM∗ in Mn(K) is a
field (it is isomorphic to the kernel of the plane A(M)) and, by hypothesis, it
containsM. ThereforeM coincides with its centralizer and thus is a field. The
last statement is now clear. QED

There is also a converse in case q even.

7 Proposition. Let q be even. IfM is a symmetric spread set of order qn

such that In ∈M and A(M) is desarguesian, thenM is a field.

Proof. The desarguesian plane A(M) admits a group of shears with axis

X = O of order qn and, for example, the involution

(
O I
I O

)
. ThereforeM is

an additive group such that M ∈M∗ if and only if M−1 ∈M∗. By [9],M is a
field. QED

2.3 Completely regular line-ovals

From now on in this paper we assume q even, that is q = 2d, where d ≥ 2.
Only in two points of this paper we will depart from this assumption.

If (V, β) is a symplectic space over the field K = GF(q), let Q be a quadratic
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form whose polar form is β:

β(u, v) = Q(u+ v)−Q(u)−Q(v)

for all u, v ∈ V . We denote by S(Q) the set of singular vectors of the quadratic
form Q (we include also the zero vector):

S(Q) := {v ∈ V | Q(v) = 0} .

Let S be the K-vector space of all symmetric n× n matrices. Its dimension
is n(n+ 1)/2. Therefore

|S| = qn(n+1)/2 . (5)

Let A be the K-vector space of all skew-symmetric n × n matrices. Since we
are in characteristic 2, then A is a subspace of S (in characteristic 2 a skew-
symmetric matrix is a symmetric matrix with zero diagonal). Note that

|A| = qn(n−1)/2 . (6)

8 Definition. The diagonal map is the map d: S → Kn, which associates
to every symmetric matrixM the vector d(M) whose components are the square
root those of the diagonal of M in their natural order.

The map d plays a relevant role in [6]. The next two propositions are easy
to prove.

9 Proposition. The map d is semilinear, with companion automorphism
x 7→ √x, for all x ∈ K. Its kernel is A.

10 Proposition. Let A be an n × n matrix. For every symmetric n × n
matrix M the following identities hold:

A d(M) = d(AMAt) . (7)

XtMX = (Xtd(M))2 , for all X ∈ Kn . (8)

We denote by Ta : K → GF(2) the absolute trace map of the field K:

Ta(x) =
d−1∑

i=0

x2
i

, for all x ∈ K .

By restriction of scalars V can be considered as a GF(2)-space, with symplectic
form Ta ◦ β. It is easy to see that if Q is a quadratic form polarizing to β, then
Ta ◦Q is a quadratic form of V as GF(2)-space, polarizing to Ta ◦ β.

The following theorem is proven in [24]. In view of its importance for the
rest of this paper we give here a very short proof.
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11 Theorem. Let Σ be a symplectic spread of a symplectic space (V, β) over
K = GF(q) and let A(Σ) be the corresponding symplectic plane of even order
qn. Fix symplectic coordinates in such a way that β is represented by the matrix(
On In
In On

)
and letM be a symmetric spread set for Σ. Let Q be the quadratic

form Q
(
X
Y

)
= Xt Y . Then the set of lines

O = {X = O} ∪ {Y =MX + d(M) , M ∈M} (9)

is a line-oval such that
B(O) = S(Ta ◦Q) . (10)

Proof. Every element of B(O) is a singular vector for Ta ◦Q. For

(Ta ◦Q)

(
X

MX + d(M)

)
=Ta(X

tMX +Xtd(M))

=Ta((X
td(M))2 +Xtd(M)) = 0

because of (8) and Hilbert’s theorem 90 ( [20, Theorem 6.3, p. 290]). Therefore
B(O) ⊆ S(Ta ◦Q). Now

|S(Ta ◦Q)| = qn(qn + 1)

2

(see [30, Theorem 11.5, p. 140]). Hence

|B(O)| ≤ qn(qn + 1)

2
.

The complement of B(O) has size ≥ qn(qn−1)
2 and by the dual statement of

Proposition 1 the set of lines O is a line-oval. Thus |B(O)| = qn(qn+1)
2 and so

B(O) = S(Ta ◦Q). QED

This theorem not only states that every symplectic translation plane of even
order admits a line-oval, but also provides us with a simple description of it, that
allows a general construction of symplectic translation planes of even order. This
construction relies on the following observation and some of its consequences.

12 Theorem. LetM be a symmetric spread. LetM,N ∈M. Then d(M) =
d(N) if and only if M = N .

Proof. Let O be the line-oval of A(M), as described in Theorem 11. If
d(M) = d(N) for some M 6= N , then the three lines of O

X = O , Y =MX + d(M) and Y = NX + d(N)

would have the common point (O, d(M)), which is absurd, as O is a line-oval.
QED
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13 Corollary. The map d:M→ Kn, restricted toM, is bijective.

14 Corollary. Each element ofM belongs to precisely one coset of S/A.
15 Corollary. LetM and N be symmetric spread sets for symplectic spreads

of the same symplectic space. If M ∈ M, N ∈ N and d(M) = d(N), then
M −N ∈ A.

As a consequence, given a symmetric spread set M, any other symmetric
spread set can be constructed by adding to each matrix M of M a suitable
skew-symmetric matrix AM (depending on M). In particular, let D be a desar-
guesian symmetric spread set (the corresponding plane is desarguesian). Any
other symmetric spread setM is of type

M = {D +AD | D ∈ D , AD ∈ A} , (11)

where the skew-symmetric matrices AD have to be chosen so thatM be really
a spread set. Therefore the construction of any symplectic translation plane can
begin with a desarguesian plane; then we “modify” some components of the
desarguesian spread, so that we get a new symplectic spread. Clearly, this sort
of construction requires a criterion in order to be sure that we are effectively
constructing a spread. We call this construction a modification process.

2.4 The modification process

Examples of the modification process can be given using coordinatization of
translation planes by quasifields. We treat the case of finite quasifield and finite
translation planes. As a general reference see [7]. For a while we let q to be even
or odd.

16 Definition. A quasifield Q is a nonempty finite set equipped with two
binary operations: addition + and multiplication ∗ , such that (Q,+) is an
abelian group, whose identity is denoted by 0, and, for all x, y, z ∈ Q,

(i) there is a multiplicative identity, denoted by 1, that is, x ∗ 1 = 1 ∗ x = x;

(ii) (x+ y) ∗ z = x ∗ z + y ∗ z (left distributivity);

(iii) x ∗ y = x ∗ z =⇒ x = 0 or y = z;

(iv) x ∗ y = 0 ⇐⇒ x = 0 or y = 0.

The kernel K(Q) of Q consists of all the elements k ∈ Q such that k ∗ (x ∗ y) =
(k ∗ x) ∗ y and k ∗ (x+ y) = k ∗ x+ k ∗ y for all x, y ∈ Q. The kernel K(Q) is a
field and Q is a left vector space over K(Q).
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If one does not require (i), then Q is called a prequasifield.
Any finite field is clearly a quasifield, coincident with its kernel. It can be

proven that Q has order pe, where p is a prime, and that it is not restrictive to
assume that Q coincides (as a set) with the finite field F = GF(pe) and that
Q and F have the same addition. In other words, every finite quasifield can
be obtained from a finite field F preserving the addition + and defining a new
multiplication ∗ related to the field addition by (i), (ii), (iii) and (iv) of the
foregoing definition. With this identification the prime field of F and that of
K(Q) are the same. Moreover, K(Q) is a subfield of F and F can be viewed as
a K(Q)-vector space. We will follow this representation of quasifields, and the
notation Q = (F,+, ∗) will indicate that the quasifield Q has been constructed
from the field F with a new moltiplication ∗. In the following the multiplication
of the field F will be denoted by juxtaposition.

A translation plane A(Q) is obtained from the quasifield Q = (F,+, ∗),
having F × F as point-set, and as line-set the following subsets of F × F :

{(a, y) | y ∈ F} and {(x, x ∗m+ b) | x ∈ F} for all a, b,m ∈ F .

As is usual, lines are described in terms of equations:

x = a and y = x ∗m+ b for all a, b,m ∈ F .

The order of A(Q) is |F | and the spread Σ = Σ(Q) defining A(Q) consists of
the lines through the origin 0:

Σ = {x = 0} ∪ {y = x ∗m}m∈F . (12)

The points at infinity will be denoted by (∞), corresponding to the line x = 0,
and (m), with m ∈ F , corresponding to the line y = x ∗m.

The map Pm : F → F , where m ∈ F ∗ = F \ {0}, defined by Pm(x) = x ∗m
for all x ∈ F is bijective (since F is finite and because of (iii) above) and is
a K(Q)−linear map. The map P0 is the zero map. For k ∈ K(Q)∗ the map
Pk defines the collineation λk of A(Q) letting λk(x, y) = (k ∗ x, k ∗ y) , for all
(x, y) ∈ F × F . The set {λk | k ∈ K(Q)} constitutes the kernel of A(Q).

In what follows it will sometimes be more convenient to work with prequasi-
fields than quasifields. This is by no means restrictive, since by modifying the
multiplication the prequasifield can be turned in a quasifield in such a way that
the respective associated translation planes are the same.

Let Q = (F,+, ∗) be a prequasifield. We assume that F = GF(qn) is an
algebraic extension of K = GF(q) of degree n, so that K is a subfield of F . In
particular F is a K-vector space of dimension n. We also assume the following
hypothesis:
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(1) K ⊆ K(Q); and

(2) (kx) ∗ y = k(x ∗ y) for all k ∈ K and x ∈ F .

In view of this hypothesis the map Pm : x 7→ x ∗m is also a K-linear map of
the K-space F , for all m ∈ F .

Let T: F → K be the trace map of the field F (relative to K):

T(x) :=
n−1∑

i=0

xq
i

for all x ∈ F .

The map T is a K-linear map, which is onto. The map 〈, 〉 : F × F → K, such
that, for all x, y ∈ F ,

〈x, y〉 := T(xy) (13)

is a symmetric non-singular bilinear form on the K-vector space F , called an
inner product. An endomorphism S : F → F is called symmetric if S coincides
with its adjoint with respect to 〈,〉.

There is an orthonormal basis that let us identify F , equipped with this
inner product, with Kn, equipped with its usual dot product (see [20, Theorem
5.2 and Corollary 5.3]).

17 Definition. A prequasifield Q = (F,+, ∗) is called symplectic if the
following condition holds for all x, y, z ∈ F :

T(x(y ∗ z)) = T(y(x ∗ z)) . (14)

The following proposition, whose proof is very easy, explains the use of the
term “symplectic quasifield”:

18 Proposition. Equip F × F with the alternating bilinear form

β((x1, y1), (x2, y2)) := T(x1y2 − x2y1) . (15)

Then the spread Σ(Q) of F × F associated to the quasifield Q = (F,+, ∗), as
defined in (12), is symplectic if and only if Q satisfies condition (14). Moreover,
if Q is symplectic, then each map Pm is a symmetric endomorphism of the
K−space F , with respect to the inner product (13).

Now we return to the assumption q even, and note that our definition of
symplectic quasifield is weaker than that of [16], in order to not distinguish
between [F : K] = n odd or even. In case n odd it can be proven [16, Proposition
3.10] that condition (14) is equivalent to

T(x(x ∗ s)) = T(xs)2 . (16)
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We illustrate how to use the modification process in order to get a lot of
examples.

Let F = GF(qn) ⊇ K = GF(q) (recall that now we are assuming q even).
For each s ∈ F define Ds : F → F by Ds(x) = xs, for all x ∈ F . This map is a
symmetric endomorphism of F , as a K-vector space, that we call multiplication
by s. It is represented in any orthonormal basis by a symmetric matrix. The set
D = {Ds | s ∈ F} is a field isomorphic to the field F .

Let Q = (F,+, ∗) be a symplectic prequasifield. Also the map

Pm : F → F

given by Pm(x) = x∗m is a symmetric endomorphism of F . By the modification
process, for each s ∈ F there is D(s) ∈ D and A(s) ∈ A such that

Ps = D(s) +A(s) , (17)

where we use the symbol D(s) to distinguish D(s) from the map Ds : x 7→ xs,
and the subscript indicates the dependence on s.

For every s ∈ F ∗, the map D(s) belongs to D, which is a field. So there is a
unique H(s) ∈ D such that

H(s)Ds = D(s) . (18)

From this equation and (17) we get, for all s 6= 0,

Ps = H(s)Ds +A(s) . (19)

In case s = 0, we put P0 = 0, D(0) = 0 and A(0) = 0.
Since x ∗ s = Ps(x) and xs = Ds(x), we obtain

x ∗ s = Ps(x) = H(s)Ds(x) +A(s)(x) = H(s)(xs) +A(s)(x) . (20)

In this expression, H(s) is an invertible (for s 6= 0) symmetric endomorphism,
while A(s) is skew-symmetric. Thus we have the following necessary conditions:
for all s, x, y ∈ F

T(xH(s)(y)) = T(yH(s)(x)) (21)

T(xA(s)(x)) = 0 (22)

We give a few examples of this construction.
Referring back to (20), all the examples will have H(s) = Ds. So the pre-

quasifields we will describe have multiplication ∗:
x ∗ s = xs2 +A(s)(x) .

The problem is to find suitable skew-symmetric endomorphisms A(s). To this
end, we need of the following observations.

Let F = GF(qn) ⊇ F ′ = GF(qn
′

) ⊇ K = GF(q) be fields with nn′ odd and
with corresponding trace maps T′ : F → F ′ and T: F → K.
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19 Lemma. If z ∈ F and u ∈ F ′, then

(i) T(T′(z)) = T(z),

(ii) T(uz) = T(uT′(z)), and

(iii) T′(u) = u and T(1) = 1.

Proof. See [17, Lemma 2.14]. QED

Following [17], the notation (Fi)
n
0 , where n is odd, stands for a tower of

fields

F = F0 ⊃ F1 ⊃ · · · ⊃ Fn ⊇ K = GF(q) ,

with corresponding trace maps Ti : F → Fi. The following proposition is the
source of a lot of examples.

20 Proposition. Let (Fi)
n
0 be a tower of fields. Set λ0 = 1; let λi ∈ F ∗

i and
ζi ∈ F be arbitrary for 1 ≤ i ≤ n; and for 0 ≤ i ≤ n write ci =

∏i
j=0 λj. Define

Q = (F,+, ∗) by

x ∗ y = xy2 +
n∑

i=1

[ci−1yTi(ci−1xy) + ciyTi(cixy)]

+

n∑

i=1

[ci−1yTi(xζi) + ζiyTi(ci−1xy)] .

(23)

Then Q is a prequasifield coordinatizing a symplectic translation plane.

This is [18, Proposition 2.19]. The second and third summand of the above
formula give the map A(y). Using Lemma 19, it is easy to verify that A(y) is
skew-symmetric.

Different choices of elements λi and ζi in (23) produce different symplectic
planes. Here are some examples.

(1) Semifield planes. If all λi are 1 and ζi ∈ F ∗, presemifields are obtained.
These are extensively investigated in [15].

(2) Nearly flag-transitive planes. A translation plane is called nearly flag-
transitive if admits a collineation group fixing two points on the line at
infinity and transitive on the remaining ones. Referring to the multiplica-
tion as defined in (23), if all ζi are 0, then the plane coordinatized by the
prequasifield admits the group of collineations (x, y) 7→ (s−1x, sx), where
s ∈ F ∗, fixing two points on the line at infinity and cyclically permuting
the remaining ones; this situation is investigated in [32].
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3 Flag-transitive planes

In this section we illustrate a general construction of all known symplectic
translation planes of even order admitting a flag-transitive group. We follow,
with some minor modification, the construction given in [15, II]. We first show
how symplectic subplanes of a symplectic plane can be constructed.

21 Theorem. Let A be a symplectic translation plane of even order q2n

admitting a Baer involution α. Then Fix(α), the set of fixed points and fixed
lines of α, is a Baer subplane A0 which has order qn and is still symplectic.

Proof. Let O be a completely regular line-oval of A. If A0 is the Baer
subplane determined by α, then the fixed lines of O form a line-oval of A0. We
claim that O0 is completely regular. We directly apply the definition (see [24]).
Let (P ) ∈ ℓ∞ be a point at infinity fixed by α and let x and y be two fixed lines
through (P ). Since O is completely regular there is a unique line z through
(P ) such that {x, y, z} is a regular triple; this means that every line ℓ not
through (P ) meets x, y, z in points A,B,C of which at least one is in B(O).
We prove that z is a fixed line. In fact, {x, y, z} is a regular triple if and only if
{α(x), α(y), α(z)} = {x, y, α(z)} is a regular triple. Since z, the third line of the
triple, is unique, we get α(z) = z. Therefore the sub-line-oval O0 is completely
regular and so because of [26, Theorem 4.7] the plane A0 is symplectic. QED

We now construct the following nearly flag-transitive symplectic translation
plane of even order q2n, where n is odd. Let F = GF(q2n) and K = GF(q2). Let
k ∈ K \ {0, 1} such that kq = k. Define on F the following multiplication ∗: for
all x, y ∈ F

x ∗ y := (1 + k)xy2 + k
n−1∑

i=1

xq
2i
yq

2i+1 .

Referring to the preceding section

H(y)(x) = (1 + k)xy2 and A(y)(x) = k
n−1∑

i=1

xq
2i
yq

2i+1 .

While it is easy to verify that H(y) is a symmetric linear map, it is long and
tedious to prove that A(y) is a skew-symmetric linear map (it is fundamental
that n is odd), and that Q = (F,+, ∗) is a prequasifield. Also, some calculations
(or some minor modifications of the construction given in [15, II, section 6])
prove that the map α : F ×F , such that α(x, y) = (yq

n
, xq

n
) for all x, y ∈ F , is a

Baer involution which interchanges the component x = 0 with y = 0. The plane
A(Q) is nearly flag-transitive. In fact, the map ga, defined for every a ∈ F ∗ by
ga(x, y) = (ax, a−1y) is a collineation fixing the lines x = 0 and y = 0. The group
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G = {ga | a ∈ F ∗} is cyclic and permutes the points at infinity distinct from (∞)
and (0). The centralizer of α is the group G0 = CG(α) = {ga ∈ G | aq

n+1
= 1}.

It is a cyclic group of order qn+1. Because of Theorem 21 the subplane A0

determined by the Baer involution α is symplectic and admits the flag-transitive
group T0G0, where T0 is the translation group of A0.

The following are very natural questions, occurred during conversations with
W. Kantor.

(1) Can the above construction be inverted? That is, does every
symplectic flag-transitive plane of even order qn and kernel
GF(q), with n odd, arise in this way? A similar question is
stated in [10].

(2) Can this construction be extended to symplectic flag-transitive
planes of even order qn and kernel containing GF(q), with n
even?

4 The case of planes of order q2

In this section we consider symplectic translation planes of order q2, with
kernel containingK = GF(q). For a while we let q to be even or odd. LetM be a
symmetric spread set of order q2 (see Remark 5, item (1)). SinceM∗ =M\{O}
is a regular set, then given (u,w) ∈ K2 \ {(0, 0)} there is a unique matrix
M ∈M∗ such that

M

(
1

0

)
=

(
u

w

)
.

Because of this bijection between K2 \ {(0, 0)} andM∗, there exists some func-
tion f : K2 → K, such that

(1) f(0, 0) = 0; and

(2) M =

{(
u w
w f(u,w)

)
| u, v ∈ K

}
.

Using again the regularity of M∗, for every (a, b), (a′, b′) belonging to K2 \
{(0, 0)} there is a unique M =

(
u w
w f(u,w)

)
∈M∗, such that

(
u w
w f(u,w)

)(
a

b

)
=

(
a′

b′

)
.

This leads to the system
{
ua+ wb = a′

wa+ f(u,w)b = b′
.
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If b = 0 (thus a 6= 0), we get the unique solution u = a′/a, w = b′/a. If b 6= 0
(in this case a can be 0), we obtain the equation

−a
2

b2
u+ f(u,−a

b
u+

a′

b
) =

b′

b
− a′a

b2

which admits a unique solution. This is the same as requiring that the function
on K (letting s = a/b and t = a′/b)

u 7→ −s2u+ f(u,−su+ t)

is a permutation for all s, t ∈ K. We have thus proved the following theorem.

22 Theorem. Let M be a symmetric spread set of order q2. Then there
exists a function f : K ×K → K, such that

(1) f(0, 0) = 0;

(2) M =

{(
u w
w f(u,w)

)
| u, v ∈ K

}
;

(3) for every s, t ∈ K, the function γs,t : K → K, defined letting

γs,t(u) := −s2u+ f(u,−su+ t) , for all u ∈ K , (24)

is a permutation of K.

Conversely, to every function f : K ×K → K, such that (1) and (3) hold, it is
uniquely associated a symmetric spread setM, defined as in (2).

We call the function f the associated function of the spread setM.

23 Remark. Putting u = −x, s = a and t = −b, the permutation given in
(24) is the same as that found, using different methods, in [1]. Note also that
starting from the conditionM

(
0
1

)
=
(
u
w

)
one obtains the following representation

for the symmetric spread set

{(
g(u,w) u
u w

)
| u,w ∈ K

}
,

where g : K×K → K is a map such that g(0, 0) = 0 and the function ρs,t : K →
K,

ρs,t(w) = −s2u+ g(−sw + t, w) , for all w ∈ K ,

is a permutation for all s, t ∈ K.
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24 Example. (see also [3]) The Kantor–Knuth spread set

K =

{(
w auσ

u w

)
| u,w ∈ K

}

where K = GF(q), q is odd, a is a non-square, and σ ∈ Aut(K), defines a
symplectic spread with respect to the symplectic form whose matrix is

(
O2 J
−J O2

)
,

where J =

(
0 1
1 0

)
. Applying a basis change in K2 (or by multiplying J with

each matrix of K) we get a symmetric spread set:

M = JK =

{(
u w
w auσ

)
| u, v ∈ K

}

which defines the same translation plane. In this example, the associated func-
tion is f(u,w) = auσ. Moreover, this example proves that in the odd case there
is, in general, no bijection between the set of diagonal vectors of the matrices
ofM and the set of vectors of K2.

We investigate in which cases a symmetric spread set of order q2 is desargue-
sian, to wit the corresponding plane is desarguesian. A very general and simple
result is the following proposition.

25 Proposition. A symmetric spread set M of order q2 containing the
identity matrix I is desarguesian if and only if its associated function f is of
type f(u,w) = u+ tw, for all u,w ∈ K, and some non-zero t ∈ K.

Proof. In view of Proposition 6 it suffices to find which conditions are
imposed on f whenM consists of commuting matrices. We have

(
u w
w f(u,w)

)(
u w
w f(u,w)

)
=

(
u w
w f(u,w)

)(
u w
w f(u,w)

)

if and only if
uw + wf(u,w) = wu+ wf(u,w)

for all u,w, u, w ∈ K. In particular, putting w = 1 and u = 0, we get

f(u,w) = u+ f(0, 1)w

for all u, v ∈ K, so that f is of type required. The converse is a simple calculation.
QED
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Now we return to the even case. In this case, symmetric spread sets can be
put in a more convenient form. Let M be a symmetric spread set. There is a
bijection between the set of diagonal vectors (u, v) of the matrices of M and
the set of vectors of K×K (see Corollary 13). Thus we can assume as variables
the diagonal entries (u, v), so that the third entry w of each matrix ofM must
be some function of (u, v). Let us define w := ϕ(u, v), where ϕ : K ×K → K is
such that ϕ(u, v) = 0. SinceM∗ is a regular set, a similar reasoning as that in
the proof of Theorem 22 gives that the function

u 7→ su+ ϕ(u, s2u+ t) , (25)

as well
v 7→ sv + ϕ(s2v + t, v) , (26)

are permutations of K for all s, t ∈ K. In the even case we call the map ϕ the
associated function of the symmetric spread set M. Moreover, we can assume
that the symmetric spread set of order q2 contains the identity matrix I. For if
ϕ is the associated function, it is easy to verify that there are a, b ∈ K∗ such

that ϕ(1/a2 , 1/b2) = 0; put A =

(
a 0
0 b

)
and consider the symmetric spread

set AMA. This spread set contains the identity matrix and defines a plane
isomorphic to A(M) (see Remark 5, item (2)).

26 Proposition. A symmetric spread setM of order q2 and containing the
identity matrix I is a field if and only if ϕ is of type ϕ(u, v) = h(u+ v), for all
u, v ∈ K, and some non-zero h ∈ K of absolute trace 1.

The proof is completely similar to that of Proposition 25.

4.1 Symmetric spread sets and ovoids

Another interesting fact we want to investigate is the close relation between
symmetric spread sets of order q2 and ovoids of PG(3, q). Represent theK-vector
space of symmetric 2 × 2 matrices as the 3-dimensional affine space AG(3, q),

by identifying the matrix

(
u w
w v

)
with the affine point (u, v, w). Consider the

following “quadratic map”

χ : AG(3, q)→ AG(3, q)

such that χ(x, y, z) = (xy + z2, x, y). The spread set M, represented by the
“affine surface” z = ϕ(x, y), is mapped onto the set of q2 affine points of the
ovoid Ω(M) of PG(3, q):

Ω(M) = {(xy + ϕ(x, y)2, x, 1, y) | x, y ∈ K} ∪ {(1, 0, 0, 0)} .
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(In the projective space, point coordinates are assigned up to a nonzero scalar.)
Desarguesian symmetric spread sets are sent by the map χ onto elliptic quadrics,
and conversely. The use of such a quadratic map is not completely new. It has
been used, for example, by Glynn in [8]. Anyway, it is an application of the
Klein correspondence in a disguised form (see [25] for further details).

Ovoids of PG(3, q), and thus symplectic translation planes of order q2 with
kernel containing GF(q), are rare. Only two families are known: elliptic quadrics,
to which there correspond desarguesian planes, and Tits ovoids, whose corre-
sponding symplectic planes are the Lüneburg planes (see [21]). Therefore to have
a criterion which allows us to establish when a plane (an ovoid) is desarguesian
(an elliptic quadric) is very important. In view of these considerations we prove
some results that provide such a criterion. As we will see, the key result we
use is Brown’s theorem [4], which states that every ovoid of PG(3, q), q even,
containing a conic section is an elliptic quadric.

First we need some definitions. Let Σ be a symplectic spread of the symplec-
tic space (V, β), where V has dimension 4 over K = GF(q), and let A(Σ) be the
corresponding symplectic translation plane of even order q2. A totally isotropic
Baer subplane of A(Σ) is a Baer subplane whose set of points coincides with a
totally isotropic 2-subspace. Such a Baer subplane has order q and is desargue-
sian. It is not difficult to prove that every totally isotropic 2-subspace, which
is not a component of the spread, is indeed a totally isotropic Baer subplane,
and that on each of them it is induced by a completely regular line-oval of the
plane A(Σ) a (not necessarily completely regular) line-oval. We investigate what
happens when the induced line-oval is completely regular.

27 Theorem. Let A(Σ) be a symplectic translation plane of even order q2,
with kernel containing K = GF(q), and O a completely regular line-oval. Then
A(Σ) is desarguesian if and only if there is a totally isotropic Baer subplane A0,
such that the induced line-oval O0 = A0 ∩ O is completely regular.

Proof. Let A0 be a totally isotropic Baer subplane. Then A0 meets non-
trivially q + 1 components of Σ. Pick two of them, say S0 and S∞, and fix
symplectic coordinates

(
X
Y

)
= (x0, x1, x2, x3)

t, such that S0 has equations Y =

O, S∞ has equations X = O, the symplectic form has matrix

(
O2 I2
I2 O2

)
and

the plane admits a symmetric spread setM with associated function ϕ. Since A0

contains the 1-dimensional subspaces A0∩S0 and A0∩S∞, then A0 is represented
by equations

{
sx0 + x1 = 0

x2 + sx3 = 0
,
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for some s ∈ K, or else by equations

{
x0 + tx1 = 0

tx2 + x3 = 0
,

for some t ∈ K. The two cases are similar. So we can assume for A0 the first set
of equations. Let

O = {X = O} ∪ {Y =MX + d(M) |M ∈M}

be a completely regular line-oval of A(Σ) (see Theorem 11). The spread induced
on the subplane A0 is

Σ0 =









x0 = 0

x1 = 0

x2 + sx3 = 0





⋃








x1 = sx0

x2 = sx3

x3 = (ϕ(s2v, v) + sv)x0

, v ∈ K





and the line-oval induced on A0 is

O0 =









x0 = 0

x1 = 0

x2 + sx3 = 0





⋃








x1 = sx0

x2 = sx3

x3 = (ϕ(s2v, v) + sv)x0 +
√
v

, v ∈ K




.

The subplane A0 is desarguesian. Assume that the induced line-oval O0 is com-
pletely regular. By [22, Corollary 1] O0 is a line-conic (its dual is a conic). Using
the linear map 



1 0 0 0
0 0 0 1
s 1 0 0
0 0 1 s




the affine plane A0 is mapped onto the subspace x2 = 0 , x3 = 0, and thus is
isomorphic to the desarguesian affine plane AG(2, q), with affine coordinates
(x, y). The line-conic O0 is equivalent to the following line-conic of AG(2, q):

{x = 0} ∪ {y = (sv + ϕ(s2v, v))x+
√
v | v ∈ K} .

Since the map v 7→ sv+ϕ(s2v, v) is a permutation (see equation (26)), it follows
that s+ϕ(s2, 1) 6= 0. The above line-conic is affinely equivalent to the line-conic

O′
0 = {x = 0} ∪

{
y =

(
sv + ϕ(s2v, v)

s+ ϕ(s2, 1)

)
x+
√
v | v ∈ K

}
.
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Passing to homogeneous coordinates (z0, z1, z2), such that x = z1/z0 and y =
z2/z0, the line-conic becomes

O′
0 = {z1 = 0} ∪

{(√
v
)
z0 +

(
sv + ϕ(s2v, v)

s+ ϕ(s2, 1)

)
z1 + z2 = 0 | v ∈ K

}
.

By duality we get the conic

L = {(0, 1, 0)} ∪
{(√

v ,
sv + ϕ(s2v, v)

s+ ϕ(s2, 1)
, 1

)
| v ∈ K

}
.

Finally, by suitably interchanging the coordinates and putting t =
√
v, we get

the conic

C = {(0, 0, 1)} ∪
{(

1 , t ,
st2 + ϕ(s2t2, t2)

s+ ϕ(s2, 1)

)
| t ∈ K

}
.

This conic C has as nucleus the point (0, 1, 0) and contains the points (0, 0, 1),
(1, 0, 0) and (1, 1, 1). Therefore (see [11]) it must be in its standard form, which
is of type {(0, 0, 1} ∪ {(1, t, t2) | t ∈ K}. Thus, in our case,

st2 + ϕ(s2t2, t2)

s+ ϕ(s2, 1)
= t2 , for all t ∈ K .

Hence, ϕ(s2t2, t2) = ϕ(s2, 1)t2, for every t ∈ K, or in terms of the old variable
v,

ϕ(s2v, v) = ϕ(s2, 1)v , for all v ∈ K .

Therefore the spread setM contains the following subset of size q:

{(
s2v ϕ(s2, 1)v

ϕ(s2, 1)v v

)
| v ∈ K

}
,

which is mapped by the quadratic map χ onto the set

{(s2 + ϕ(s2, 1)2)v2, s2v, 1, v) | v ∈ K}

of q affine points of the associated ovoid Ω(M). These points, together with the
point at infinity (1, 0, 0, 0), constitute a conic, which is the section of the ovoid
by the plane x1 = s2x3. By Brown’s theorem [4] the ovoid is an elliptic quadric,
and thus A(M) is a desarguesian plane.

The converse is immediate. QED
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28 Remark. In a weaker form the same theorem is proved in [25, Theorem
3.8], where the Klein correspondence and Brown’s theorem are the key tools for
the proof. In the Klein correspondence every regulus of PG(3, q) corresponds
with a conic section of the Klein’s quadric (see [12]), and a regulus contained
in a symplectic spread corresponds with a conic section of the associated ovoid.
Therefore

29 Corollary. A symplectic plane of even order q2, with kernel contain-
ing K = GF(q), is desarguesian, if and only if a symplectic spread defining it
contains a regulus.

This corollary is the main result of [28].

We list some interesting consequences.

30 Corollary. Let M be a symmetric spread set of even order q2 with
associated function ϕ. Then M is a field of order q2 if and only if, for some
s ∈ K, ϕ(s2v, v) = ϕ(s2, 1)v, for all v ∈ K.

31 Corollary. Let A(Σ) be a symplectic translation plane of even order q2.
Then A(Σ) admits a totally isotropic Baer subplane fixed by a Baer involution
if and only if A is desarguesian.

Proof. It follows from Theorem 21 and the above theorem. QED

32 Remark. This corollary is a different, but equivalent, formulation of a
theorem of Brown [5].

33 Corollary. Let M be a symmetric spread set of even order q2 with
associated function ϕ. ThenM is a field if and only if ϕ(u, v) = ϕ(v, u) for all
u, v ∈ K.

Proof. It suffices to note that the map from K4 to K4

(x0, x1, x2, x3) 7→ (x1, x0, x3, x2)

is a Baer involution, fixing the totally isotropic 2-subspace x0 = x1, x2 = x3, if
and only if ϕ(u, v) = ϕ(v, u) for all u, v ∈ K. QED

In [14] Johnson and Vega give a non-existence condition for symplectic trans-
lation plane of order qn, proving that any such a plane can only admit affine
homologies of order dividing q − 1. We have the following theorem.

34 Theorem. Let A be a symplectic translation plane of even order q2, with
kernel containing K = GF(q). If A admits an affine homology of order q − 1,
then the plane is desarguesian.

Proof. Fix symplectic coordinates. Then the plane is represented by a
symmetric spread set M with associated function ϕ. We can assume that M
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contains the identity matrix I and that the affine homology has axis Y = O and
co-axis X = O. Therefore the homology is represented by the 4× 4 matrix

(
I2 O2

O2 A

)
,

where A is a 2 × 2 matrix such that AM ∈ M for all M ∈ M. In particular
then A ∈ M, as I ∈ M, and AM is a symmetric matrix. Since A and M are
symmetric, the matrix AM is symmetric if and only if A and M commute. If

A =

(
a ϕ(a, b)

ϕ(a, b) b

)
and M =

(
u ϕ(u, v)

ϕ(u, v) v

)
,

then A and M commute if and only if

aϕ(u, v) + vϕ(a, b) = uϕ(a, b) + bϕ(u, v)

for all u, v ∈ K. Thus

(a+ b)ϕ(u, v) = ϕ(a, b)(u+ v) . (27)

There are then two possibilities: either

(1) a 6= b; or

(2) a = b and ϕ(a, b) = 0.

In case (1) we get

ϕ(u, v) =
ϕ(a, b)

a+ b
(u+ v) , for all u, v ∈ K .

Thus ϕ is of type h(u + v), and so M is desarguesian, because of Proposition
26.

In case (2),M contains a scalar matrix

(
a 0
0 a

)
of order q−1. Therefore the

associate function ofM satisfies ϕ(v, v) = 0, and soM is desarguesian, because
of Corollary 30 when s = 1. QED

Finally, we prove a well known fact about symplectic semifield planes. May
be also the proof we give is known, but we are unable to find a reference.

35 Theorem. Let A be a symplectic semifield plane of even order q2 with
kernel containing GF(q). Then A is desarguesian.
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Proof. Since A is a semifield plane, it admits a group G of order q2, con-
sisting of shears with axis a component, say S∞, of the defining spread Σ. Fix
symplectic coordinates

(
X
Y

)
, in such a way that S∞ is X = O and that the

symplectic form has matrix

(
O2 I2
I2 O2

)
. LetM be a symplectic spread set such

that A = A(M). We can assume that M contains the identity matrix I. The
group G consists of linear maps and is represented by 4× 4 matrices of type

(
I2 O2

M I2

)
, where M ∈M .

ThereforeM is an additive group of order q2 and if ϕ is its associated function,
such that ϕ(1, 1) = 0, then

ϕ(u, v) = ϕ(u, 0) + ϕ(0, v) = H(u) + L(v) ,

where H and L are additive maps on K. Using the quadratic map χ, we get
that the associated ovoid contains the following ovals, which are the section by
the planes x3 = 0 and x1 = 0, respectively,

{(H(u)2, u, 1, 0) | u ∈ K} ∪ {(1, 0, 0, 0)}

and

{(L(v)2, 0, 1, v) | v ∈ K} ∪ {(1, 0, 0, 0)} ,
which are respectively projectively equivalent to the ovals of PG(2, q)

T1 : {(1, u,H(u)2) | u ∈ K} ∪ {(0, 0, 1)}

and

T2 : {(1, v, L(v)2) | v ∈ K} ∪ {(0, 0, 1)} .
These ovals are translation ovals, since the maps u 7→ H(u)2 and v 7→ L(v)2 are
additive. Since both ovals have as nucleus the point (0, 1, 0) and as an axis the
line x0 = 0, by [11]

H(u)2 = a2u2
n

, and L(v)2 = b2v2
m

for some a, b ∈ K∗ and some positive integers n and m such that (n, q − 1) =
(m, q − 1) = 1. The subset ofM, obtained putting u = v,

{(
u au2

n−1
+ bu2

m−1

au2
n−1

+ bu2
m−1

u

)
| u ∈ K

}
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is mapped by χ onto the affine points of the following oval, which is the section
of Ω(M) by the plane x1 = x3,

{(u2 + a2u2
n

+ b2u2
m

, u, 1, u) | u ∈ K} ∪ {(1, 0, 0, 0)} .

This oval is equivalent to the oval

{(1, u, a2u2n + b2u2
m

)} ∪ {(0, 0, 1)}

of PG(2, q) havig as nucleus the point (0, 1, 0). It is a translation oval, since the
map u 7→ a2u2

n
+ b2u2

m
is additive. Again by [11], necessarily n = m. So

ϕ(u, u) = (a+ b)u2
n−1

for all u ∈ K .

As ϕ(1, 1) = 0, so a = b. Therefore ϕ(u, u) = 0 for all u ∈ K, and so M is a
field, because of Corollary 30, and the plane is desarguesian. QED

In view of the previous results that emphasize the role played by Brown’s
theorem, we state the following problem, which must be compared with a similar
problem posed in [25, Section 3, problem 3.3]:

Problem. Prove that Theorem 27 implies Brown’s theorem on conic sec-
tions.

We think that such a proof would provide new insights into the theory of
symplectic translation planes of even order q2.
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