Girth 5 Graphs from Elliptic Semiplanes

M. Funk ⁱ

Dipartimento di Matematica e Informatica, Università della Basilicata, Viale dell'Ateneo Lucano, 85100 Potenza, Italy. martin.funk@unibas.it

Abstract. For $3 \le k \le 20$ with $k \ne 4, 8, 12$, all the smallest currently known k-regular graphs of girth 5 have the same orders as the girth 5 graphs obtained by the following construction: take a (not necessarily Desarguesian) elliptic semiplane S of order n - 1 where n = k - r for some $r \ge 1$; the Levi graph $\Gamma(S)$ of S is an *n*-regular graph of girth 6; parallel classes of Sinduce co-cliques in $\Gamma(S)$, some of which are eventually deleted; the remaining co-cliques are amalgamated with suitable *r*-regular graphs of girth at least 5. For k > 20, this construction yields some new instances underbidding the smallest orders known so far.

Keywords: (k,5)-cages, girth 5 graphs, elliptic semiplanes, Hughes planes.

MSC 2000 classification: 05C35 (05B25, 05C38, 51E30)

1 Introduction and Preliminaries

Old and new results in *Graph Theory* will be proved using methods from *Finite Geometries*. For basic notions we refer to [3] and [7], respectively. A (k, g)-cage is a k-regular graph of girth g of minimum order. Surveys on cages can be found in [9], [13], and [30]. Eight (k, 5)-cages are known:

k	order	Aut	cage due to	reference(s)
3	10	120	Petersen	[21]
4	19	24	Robertson	[23]
5	30	20	Robertson, Wegner	[24], [28]
		30	Foster	cf. [30]
		96	Yang & Zhang, Meringer	[19], [31]
		120	Robertson, Wegner	[24], [28]
6	40	480	O'Keefe & Wong	[20], [29]
7	50	252,000	Hoffman & Singleton	[12]

For $k \ge 8$, the orders of (k, 5)-cages are not known. A rough lower bound is $k^2 + 1$. In 1960 Hoffman & Singleton [12] showed that this bound is sharp if and only if k = 2, 3, 7, and (possibly) 57. Some refinements concerning lower bounds are due to [4], [8], and [17], cf. also [9]. Upper bounds are given by the orders

ⁱDedicated to Prof. Norman L. Johnson on the occasion of his 70^{th} Birthday

k	lower	upper	supported by	references	comment	v_{k-r}
	bound	bound	graphs due to		on con-	
		rec(k,5)			struction	
8	67	80	Royle, Jørgensen	[26], [14]		
9	86	96	Jørgensen	[14]		487
10	103	126	Exoo	[10]		63 ₈
11	124	156	Jørgensen	[14]		789
12	147	203	Exoo	[10]		
13	174	240	Exoo	[10]		12011
14	199	288	Jørgensen	[14]	deletion	
15	230	312	Jørgensen	[14]	deletion	
16	259	336	Jørgensen	[14]		168_{13}
17	294	448	Schwenk	[27]	deletion	
18	327	480	Schwenk	[27]	deletion	
19	364	512	Schwenk	[27]		256_{16}
20	403	576	Jørgensen	[14]		28817

rec(k, 5) of the smallest currently known k-regular graphs of girth 5. In [9], Exoo & Jajcay survey the state of the art and give detailed descriptions of the current record holders for $k \leq 20$:

"Deletion" refers to a standard technique, which has been re-invented several times and described in different languages, see also Section 6.

For k = 7, 9, 10, 11, 13, 16, 19, and 20, the girth 5 graphs listed above have a number of vertices which is *just twice the number* v of points of some elliptic semiplane with k - r points on each line, namely:

k	7	9	10	11	13	16	19	20
r	2	2	2	2	2	3	3	3
configuration	25_{5}	487	63_{8}	78_{9}	120_{11}	168_{13}	256_{16}	28817
type v_{k-r}								
semiplane type	C	L	L	D	L	L	C	L

In this paper, we convert this observation into a unifying construction principle. We start with Levi graphs of elliptic semiplanes. Construction 2 transforms these *n*-regular graphs of girth 6 into (n + r)-regular graphs: this will be done by *suitably* amalgamating copies of small *r*-regular graphs Π and Λ of girth ≥ 5 . Theorem 7 guarantees that the amalgams have girth 5. Sections 3, 4, and 5 deal with the challenging task of finding such suitable pairs. As to orders, our results tie with the smallest currently known instances and furnish some new examples for k > 20.

2 From Semiplanes to Graphs of Girth 5

Recall that an incidence structure $\mathcal{I} = (\mathfrak{P}, \mathfrak{L}, |)$ (in the sense of [7] or [11]) is said to be a *partial plane* if two distinct points are incident with at most one line. A v_k configuration or a configuration of type v_k is a partial plane consisting of v points and v lines such that each point and each line are incident with klines and k points, respectively. A finite elliptic semiplane of order k-1 is a v_k configuration satisfying the following axiom of parallels: for each anti-flag $p_1 \nmid l_1$, i. e. a non-incident point line pair (p_1, l_1) , there exists at most one line l_2 incident with p_1 and *parallel* to l_1 (i.e. there is no point incident with both l_1 and l_2) and at most one point p_2 incident with l_1 and parallel to p_1 (i.e. there is no line incident with both p_1 and p_2). A Baer subset of a finite projective plane \mathcal{P} is either a Baer subplane \mathcal{B} or, for a distinguished point-line pair (p_0, l_0) , the union $\mathcal{B}(p_0, l_0)$ of all lines and points incident with p_0 and l_0 , respectively. We shall write $\mathcal{B}(p_0|l_0)$ or $\mathcal{B}(p_0 \nmid l_0)$, according as $p_0|l_0$ or not. It was already known to Dembowski [7] that elliptic semiplanes are obtained by deleting a Baer subset from a projective plane \mathcal{P} . We call any such elliptic semiplane *Desarquesian* if \mathcal{P} is so. Dembowski proved the following partial converse:

1 Theorem. If $S = (\mathfrak{P}, \mathfrak{L}, |)$ is an elliptic semiplane of order $\nu = n - 1$ (*i.e.* with $n = \nu + 1$ points on each line), then all the parallel classes in \mathfrak{P} and \mathfrak{L} have the same size, say m. Moreover, m divides n(n-1), the total number of points (lines) is n(n-1) + m, and exactly one of the following cases holds true:

semi-	m	construction from	configuration
plane		a projective plane	type
type		${\mathcal P}$ of order n	
(improper)	1	$\mathcal{S}=\mathcal{P}$	$(\nu^2 + \nu + 1)_{\nu+1}$
C	n	$\mathcal{S} = \mathcal{P} - \mathcal{B}(p_0 l_0)$	$(n^2)_n$
L	n-1	$\mathcal{S} = \mathcal{P} - \mathcal{B}(p_0 \nmid l_0)$	$(n^2 - 1)_n$
D	$n-\sqrt{n}$	$\mathcal{S}=\mathcal{P}-\mathcal{B}$	$(n^2 - \sqrt{n})_n$
В	$ < n - \sqrt{n}$		

If S is proper, parallelism partitions \mathfrak{P} into $\mu := \frac{n(n-1)+m}{m}$ parallel classes \mathfrak{p}_i with $i \in I$, say, and dually \mathfrak{L} into μ parallel classes \mathfrak{l}_j with $j \in I$.

The semiplane types refer to contributions by Cronheim [6], Lüneburg [18], Dembowski [7], and Baker [2]. Dembowski left the existence of elliptic semiplanes of type *B* as an open problem. In 1977 Baker [2] found such an elliptic semiplane, which has 45 points, order $\nu = 6$, and parallel class size m = 3.

2 Definition. We extend the concept of parallelism in a v_k configuration and call two flags $(p_1 | l_1)$ and $(p_2 | l_2)$ with $p_1 \neq p_2$ and $l_1 \neq l_2$ parallel if both $\{p_1, p_2\}$ and $\{l_1, l_2\}$ make up pairs of parallel elements.

3 Lemma. Let S be an elliptic semiplane of type C, D, or L. For all $i, j \in I$, the m^2 point-line-pairs $(p, l) \in \mathfrak{p}_i \times \mathfrak{l}_j$ either fall into precisely m pairwise non-parallel flags and $m^2 - m$ anti-flags or all of them are anti-flags.

PROOF. First we show that there are at most m flags in each $\mathfrak{p}_i \times \mathfrak{l}_j$: suppose that $p \mid l$ is such a flag; since the points in \mathfrak{p}_i and the lines in \mathfrak{l}_j are parallel in pairs, a second flag $p' \mid l'$ in $\mathfrak{p}_i \times \mathfrak{l}_j$ can exist only if $p \neq p'$ and $l \neq l'$; this, in turn, implies that $p \mid l$ and $p' \mid l'$ are parallel flags; the statement follows by induction on the number of flags.

Now we distinguish three cases: if S is of type C, we count n^2 points and n^2 lines. Both sets fall into $\mu = n$ parallel classes of m = n elements each. Hence there are n^2 sets $\mathfrak{p}_i \times \mathfrak{l}_j$, each containing at most n flags. On the other hand, the n^2 points of S, each incident with n lines, make a total number of n^3 flags. Thus each set $\mathfrak{p}_i \times \mathfrak{l}_j$ contains exactly n flags.

In an elliptic semiplane S of type L, the point and line sets have $n^2 - 1$ elements. They are partitioned into $\mu = n + 1$ parallel classes of m = n - 1 elements each. Hence there are $(n + 1)^2$ sets $\mathfrak{p}_i \times \mathfrak{l}_j$, each containing at most n - 1 flags. Since $S = \mathcal{P} - \mathcal{B}(p_0 \nmid l_0)$, the points in the parallel class \mathfrak{p}_i are incident with some line l' of \mathcal{P} passing through p_0 . The line l' meets l_0 in some point p'. The lines of \mathcal{P} passing through p' other than l_0 make up a parallel class of S, say $\mathfrak{l}_{i'}$. Obviously, there is no flag at all in $\mathfrak{p}_i \times \mathfrak{l}_{i'}$.

Hence, for each parallel class \mathfrak{p}_i of points there is exactly one parallel class $\mathfrak{l}_{i'}$ of lines such that there are m^2 anti-flags in $\mathfrak{p}_i \times \mathfrak{l}_{i'}$. Analogously for each parallel class \mathfrak{l}_j of lines. This implies that there are $(n+1)^2 - (n+1) = n^2 + n$ sets $\mathfrak{p}_i \times \mathfrak{l}_j$, each containing at most n-1 flags. On the other hand, the $n^2 - 1$ points of S, each incident with n lines, make a total number of $n^3 - n$ flags. Thus each set $\mathfrak{p}_i \times \mathfrak{l}_j$ with $j \neq i'$ contains exactly n-1 flags, while $\mathfrak{p}_i \times \mathfrak{l}_{i'}$ contains only anti-flags.

If S is of type D, an analogous reasoning shows that for a fixed parallel class \mathfrak{p}_i of points there are precisely \sqrt{n} parallel classes \mathfrak{l}_{i_r} with $r = 1, \ldots, \sqrt{n}$ such

that $\mathfrak{p}_i \times \mathfrak{l}_{i_r}$ contains only anti-flags, while the other sets $\mathfrak{p}_i \times \mathfrak{l}_j$ with $j \neq i_r$ contain $m = n - \sqrt{n}$ flags each.

4 Definition. Let $S = (\mathfrak{P}, \mathfrak{L}, |)$ be an elliptic semiplane with parallel class size m. Fix an m-subset (G, +) of some group (G', +). Extend the labelling for the parallel classes by the set I to a labelling for the elements in \mathfrak{P} and \mathfrak{L} by double indices, say $p_{i,s} \in \mathfrak{p}_i \subseteq \mathfrak{P}$ and $l_{j,t} \in \mathfrak{l}_j \subseteq \mathfrak{L}$ with $s, t \in G$. We will refer to (i; s) and [j; t] as the G-coordinates of $p_{i,s}$ and $l_{j,t}$, respectively. In the case I = G, we shall substitute the semicolon with a comma and write (i, s) and [j, t].

5 Corollary. Being parallel in pairs, the m flags (if any) belonging to $\mathfrak{p}_i \times \mathfrak{l}_j$ induce a permutation

$$\sigma_{ij} : \begin{cases} G & \longrightarrow & G \\ s & \longmapsto & t \quad if and only if \quad p_{i,s} \mid l_{j,t} \end{cases}$$

of the elements in G.

Denote by $K_m(G)$ the the complete graph K_m on the vertex set G. Recall that the *Cayley colour* of an edge $\{v, w\}$ in $K_m(G)$ is $\pm (v - w)$.

6 Definition. Let r be a fixed positive integer with $r \leq \frac{m-1}{2}$. A pair of subgraphs Π, Λ of the complete graph $K_m(G)$ on G is said to be suitable (with respect to the permutations σ_{ij}) if

- (i) Π and Λ are both *r*-regular, of order *m*, and of girth at least 5;
- (ii) the Cayley colours of Π and Λ are σ_{ij} -disjoint, i.e. $\{s, v\} \in E(\Pi)$ and $\{t, w\} \in E(\Lambda)$ imply $s^{\sigma_{ij}} v^{\sigma_{ij}} \neq \pm (t w)$ for all $i, j \in I$.

The Levi graph $\Gamma(\mathcal{S})$ of $\mathcal{S} = (\mathfrak{P}, \mathfrak{L}, |)$ is the graph with vertex set $\mathfrak{P} \cup \mathfrak{L}$, the edges being the flags of \mathcal{S} , cf. e.g. [5]. It is well known that $\Gamma(\mathcal{S})$ is an *n*-regular bipartite graph of girth 6 and order $2m\mu$.

Construction. Let Π and Λ be a pair of suitable subgraphs of $K_m(G)$. Take μ copies of both Π and Λ and label them by the elements of the index set I. Amalgamate the Levi graph $\Gamma(S)$ and the families $\{\Pi_i : i \in I\}$ and $\{\Lambda_j : j \in I\}$ by identifying the following vertices with each other:

Denote the resulting amalgam by $\mathcal{S}(\Pi, \Lambda)$.

7 Theorem. The amalgam $S(\Pi, \Lambda)$ is an (n + r)-regular simple graph of girth 5 and order $2\mu m$.

QED

PROOF. The amalgam is a simple graph since the additional edges arising from the families $\{\Pi_i : i \in I\}$ and $\{\Lambda_j : j \in I\}$ connect vertices belonging to one and the same bipartition class of $\Gamma(S)$. Degree and order of the amalgam can easily be checked. The amalgamation cannot produce 3-cycles; 4-cycles, however, might come into being.

So we have to show that this does not happen. Any two distinct vertices $p_{i,s}$ and $p_{i',v}$ of $\Gamma(S)$ are connected by some edge of Π_i only if i' = i, i.e. they arise from two points belonging to the same pencil \mathfrak{p}_i . Parallel points of S give rise to vertices at distance 4 from each other in the Levi graph $\Gamma(S)$ since there exist lines, say l and l', intersecting in some point p'' of S such that

$$p_{i,s}, l, p'', l', p_{i,u}$$

is a shortest path from $p_{i,s}$ to $p_{i,v}$ in $\Gamma(\mathcal{S})$. If s and v are joined by an edge in Π_i , we obtain the 5-cycle

$$p_{i,s}, l, p'', l', p_{i,v} \longleftrightarrow v, s \longleftrightarrow p_{i,s}$$

in $\mathcal{S}(\Pi, \Lambda)$. Analogously, any two distinct vertices $l_{j,t}$ and $l_{j',w}$ of $\Gamma(\mathcal{S})$ are connected by some edge of Λ_j only if j' = j, i.e. they arise from two lines belonging to the same pencil l_j . A dual argument as above works for the vertices $l_{j,t}$ and $l_{j,w}$, eventually giving rise to a 5-cycle

$$l_{j,t}, p, l'', p', l_{j,w} \longleftrightarrow w, t \longleftrightarrow l_{j,t}$$

in $\mathcal{S}(\Pi, \Lambda)$.

If $p_{i,s} \mid l_{j,t}$ and $p_{i,v} \mid l_{j,w}$, Corollary 5 implies $s^{\sigma_{ij}} = t$ as well as $v^{\sigma_{ij}} = w$, i.e. $s^{\sigma_{ij}} - v^{\sigma_{ij}} = t - w$. Since Π and Λ make up a suitable pair with respect to σ_{ij} , the edge $\{s, v\}$ can become an edge of Π , only if $\{t, w\}$ does not appear as an edge of Λ , and analogously, $\{t, w\}$ can become an edge of Λ , only if $\{s, v\}$ does not appear as an edge of Π . Thus the amalgam does not contain 4-cycles.

The following three Sections (one for each type of elliptic semiplanes) will deal with the challenging task of finding such suitable pairs.

3 Elliptic Semiplanes of Type C

In this Section, we use non-homogeneous coordinates over some algebraic structure such that lines are given by equations $y = x \cdot a + b$. Typically we may choose quasifields. Under this rather general hypothesis, Construction 2 yields several non-isomorphic graphs with the same parameters k = n + r and $2 \mu m$.

Let $\mathcal{C} = (\mathfrak{P}, \mathfrak{L}, |)$ be an elliptic semiplane of type C obtained from a translation plane \mathcal{T} over a quasifield $(\mathfrak{Q}, +, \cdot)$ of order a prime power n = q by deleting a Baer subset $\mathcal{B}(p|l)$. Introduce non-homogeneous coordinates in \mathcal{T} , following Hall's method ([11], see also [7]) such that $p = (\infty)$ and $l = [\infty]$. Then the points and lines of \mathcal{C} have coordinates (a, b) and $[\alpha, \beta]$, respectively, with $a, b, \alpha, \beta \in \mathfrak{Q}$, and incidence is given by the rule

$$(a, b) \mid [\alpha, \beta]$$
 if and only if $a \cdot \alpha + \beta = b$.

Two points or two lines of C are parallel if and only if their first coordinates coincide: in \mathcal{T} , two distinct points (a, b), (a, b') are joined by the line [a] and two distinct lines $[\alpha, \beta], [\alpha, \beta']$ meet in the point (α) , both belonging to $\mathcal{B}(p|l)$. Hence

$$\mathfrak{p}_a := \{ p_{a,b} = (a,b) : b \in \mathfrak{Q} \} \quad \text{and} \quad \mathfrak{l}_\alpha := \{ l_{\alpha,\beta} = [\alpha,\beta] : \beta \in \mathfrak{Q} \}$$

are the pencils of pairwise parallel points and lines, respectively, and we may choose $I := \mathfrak{Q}$ as well as $(G, +) := (\mathfrak{Q}, +)$.

8 Proposition. Let r be a positive integer with $r \leq \frac{q-1}{2}$. Let Π and Λ be two subgraphs of $K_q(\mathfrak{Q})$, which are both r-regular, of order q, and of girth at least 5. Then Π and Λ are suitable if they have disjoint Cayley colours, *i. e.* $\{a, b\} \in E(\Pi)$ and $\{c, d\} \in E(\Lambda)$ always imply $a - b \neq \pm (c - d)$.

PROOF. The rule characterizing incidence in terms of the above coordinates implies that, for all $a, \alpha \in \mathfrak{Q}$, the permutation $\sigma_{a,\alpha}$ acts by (right) addition (say):

$$\sigma_{a,\alpha}: \begin{cases} \mathfrak{Q} & \longrightarrow & \mathfrak{Q} \\ b & \longmapsto & \beta = b - a \cdot \alpha \end{cases}$$

Hence $\sigma_{a,\alpha}$ leaves the Cayley colours of the edges of $K_q(\mathfrak{Q})$ invariant, i.e.

$$v^{\sigma_{a,\alpha}} - w^{\sigma_{a,\alpha}} = v - a \cdot \alpha - w + a \cdot \alpha = v - w$$

for all distinct $v, w \in K_q(\mathfrak{Q})$. Thus " $\sigma_{a,\alpha}$ -disjoint Cayley colours" mean just "disjoint Cayley colours." QED

9 Remark. Construction 2 furnishes k-regular graphs of girth 5, some of whose orders tie with or even improve the known upper bounds rec(k, 5):

k	q	r	order of	known	first constructed by	reference(s)
			$\mathcal{C}(\Pi,\Lambda)$	upper		
				bound		
7	5	2	50	50	Hoffman & Singleton	[12], Ex. 10
9	7	2	98	96	Jørgensen	[14]
10	8	2	128	126	Exoo	[10]
11	9	2	162	124	Jørgensen	[14]
13	11	2	242	240	Exoo	[10]
15	13	2	338	230	Jørgensen	[14]
19	16	3	512	512	Schwenk	[27], Ex. 11
19	17	2	578	512	Schwenk	[27]
21	19	2	722	684	Jørgensen	[14]
36	32	4	2048	2448	new	Ex. 12

In the third column, r indicates the (highest) feasible degrees for suitable graphs Π and Λ of girth ≥ 5 on q vertices. Graphs of degree an odd number have even order. This well known fact gives rise to a handicap: an odd value for r is eligible only if q is even. For q = 32, one might think of r = 5, but the feasibility of $C(\Pi, \Lambda)$ remains an open problem.

For the following examples, we chose \mathfrak{Q} to be the finite field \mathbb{F}_q of prime power order $q \geq 5$.

10 Example. Solutions for r = 2 and the prime numbers q = 5, 7, 11, 13, 17, 19 are quite obvious: $(\mathbb{F}_q, +)$ is cyclic and we can choose Π and Λ to be the q-cycles with edge sets

 $E(\Pi) = \{\{i, i+1\} : i \in \mathbb{F}_q\} \text{ and } E(\Lambda) = \{\{i, i+2\} : i \in \mathbb{F}_q\},\$

made up by edges of Cayley colours ± 1 and ± 2 , respectively.

11 Example. Let r = 3 and q = 16. Denote the elements of $(\mathbb{F}_{16}, +) \cong$ $((\mathbb{F}_2)^4, +)$ by defg instead of (d, e, f, g) where $d, e, f, g \in \mathbb{F}_2$. We take over an idea of Schwenk's [27] (cf. also [9, p. 39]). We choose the following two copies Π and Λ of the so-called Möbuis–Kantor graph (i.e. the Levi graph of the unique 8_3 configuration) as cubic subgraphs of $K_{16}((\mathbb{F}_2)^4)$. Being Levi graphs, both Π and Λ have girth 6. The Cayley colours of Π and Λ lie in

 $\{1000, 0100, 0010, 0001, 0111\}$ and $\{1100, 0110, 0011, 1011, 1110\}$,

respectively.

12 Example. Let r = 4 and q = 32. As before, denote the elements of $(\mathbb{F}_{32}, +) \cong ((\mathbb{F}_2)^5, +)$ by defgh instead of (d, e, f, g, h). A suitable pair Π and Λ of subgraphs in $K_{32}((\mathbb{F}_2)^5)$ can be constructed as follows. Choose Π to be the Levi graph of the elliptic semiplane \mathcal{C}_{16} of type C on 16 vertices given by entries 1 in the following incidence table M. This table can be found in [1, p. 182]: the transformation of coordinates

(a, b) and $[\alpha, \beta]$ with $a, b, \alpha, \beta \in \mathbb{F}_4 = \{0, 1, x, \overline{x} = x + 1\}$ into elements of $\mathbb{F}_{32} = \{defgh : d, e, f, g, h \in \mathbb{F}_2\}$ is given by the rules

It is usually formulated as an exercise to show that the block matrix $\begin{pmatrix} 0 & M \\ M^T & 0 \end{pmatrix}$ is an adjacency matrix for the Levi graph $\Pi := \Gamma(\mathcal{C}_{16})$ of girth 6. The Cayley colours of Π lie in

 $\{10000, 10001, 10010, 10011, 10100, 10111, 11000, 11010, 11100, 11101\}.$

To construct Λ , we start with the 16₃ configuration \mathcal{A} whose incidence matrix is obtained from the above table by substituting 1 for **0** and 0 for all the other entries (**1** or *o*), respectively. The Levi graph $\Gamma(\mathcal{A})$ is a cubic bipartite graph of girth 6 and Cayley colours belonging to

```
\{10110, 11001, 11011, 11110, 11111\}.
```

Then Λ is obtained from $\Gamma(\mathcal{A})$ by adding 16 further edges, namely the ones joining the first and second, the third and fourth, ..., the 15^{th} and 16^{th} vertices of type 0efgh on the one hand, and the first and forth, the second and third, the fifth and eighth, ..., the 13^{th} and 16^{th} , the 14^{th} and 15^{th} vertices of type 1efghon the other hand. The additional edges have Cayley colours in {00010,00011}. A computer verification (using [16]) shows that Λ is a rigid 4–regular graph of girth 5, whose edge set partitions into two Hamilton cycles.

4 Elliptic Semiplanes of Type L

In this Section, only Desarguesian semiplanes come into play since the application of Construction 2 fully relies on the facilities offered by homogeneous coordinates and the cyclic structure of the multiplicative group of finite fields. It will be convenient to identify the multiplicative group \mathbb{F}_q^* with the additive group \mathbb{Z}_{q-1} by the isomorphism

$$\iota \quad : \quad \begin{cases} \mathbb{F}_q^* & \longrightarrow & \mathbb{Z}_{q-1} \\ \epsilon^z & \longmapsto & z \end{cases}$$

for some fixed generator $\epsilon \in \mathbb{F}_q^*$. The projective line PG(1,q) is represented by $\mathbb{F}_q \cup \{\infty\}$.

13 Lemma. Let $\mathcal{L} = (P, L, |)$ be an elliptic semiplane of type L obtained from a Desarguesian projective plane \mathcal{P} over a field \mathbb{F}_q by deleting a Baer subset $\mathcal{B}(p \nmid l)$. Then points and lines are uniquely determined by polar coordinates

$$(a;b)$$
 with $a \in \mathbb{F}_q \cup \{\infty\}, b \in \mathbb{Z}_{q-1}$

and

$$[\alpha; \beta]$$
 with $\alpha \in \mathbb{F}_q \cup \{\infty\}, \beta \in \mathbb{Z}_{q-1}$

respectively. Incidence is given by the rule:

$$(a;b) \mid [\alpha;\beta] \quad if and only if \quad \epsilon^{\beta+b} = c_{a,\alpha} := \begin{cases} -\alpha & \text{if } a = \infty, \alpha \neq \infty \\ -a & \text{if } \alpha = \infty, a \neq \infty \\ -1 & \text{if } \alpha = a = \infty \\ -1 - \alpha a & \text{otherwise} \end{cases}$$

Two points and two lines of \mathcal{L} are parallel if and only if their first polar coordinates coincide.

PROOF. Introduce homogeneous coordinates in \mathcal{P} such that $p \equiv (0:0:1)$ and l = [0:0:1]. Then the points of \mathcal{L} are exactly the affine points of \mathcal{P} other than the origin. Normalize either the second or the first coordinate to be 1 according as the first coordinate is zero or not. Thus we obtain

$$\{(0:1:c) \ : \ c \in \mathbb{F}_q^*\} \ \cup \ \{(1:a:c) \ : \ (a,c) \in \mathbb{F}_q^2 \ \text{with} \ c \neq 0\}$$

as point set of \mathcal{L} . The lines of \mathcal{L} are those affine lines of \mathcal{P} whose affine equations read either $y = \alpha' x + \beta'$ with $\beta' \neq 0$ or $x = \mu'$ with $\mu' \neq 0$. In terms of homogeneous coordinates, these lines become either $[\alpha': -1: \beta']$ or $[-1: 0: \mu']$. Again we can normalize either the second or the first coordinate to be 1 according as the first coordinate is zero or not, and obtain

$$\{[0:1:\gamma] : \gamma \in \mathbb{F}_q^*\} \cup \{[1:\alpha:\gamma] : (\alpha,\gamma) \in \mathbb{F}_q^2 \text{ with } \gamma \neq 0\}$$

as line set of \mathcal{L} . Since the third coordinate is never 0, it can be written as a power of the generator ϵ . A 1-1 correspondence between homogeneous and polar coordinates is given by the following rules:

In terms of homogeneous coordinates, incidence holds if the usual dot product of the coordinates is zero; hence

$$\begin{array}{c|cccc} (a;b) & \mid & [\alpha;\beta] & \iff & \epsilon^{\beta+b} = -1 - \alpha a \\ (a;b) & \mid & [\infty;\beta] & \iff & \epsilon^{\beta+b} = -a \\ (\infty;b) & \mid & [\alpha;\beta] & \iff & \epsilon^{\beta+b} = -\alpha \\ (\infty;b) & \mid & [\infty;\beta] & \iff & \epsilon^{\beta+b} = -1 \end{array}$$

Two points and two lines of \mathcal{L} are parallel if and only if their first polar coordinates coincide. In fact, in two distinct points (a : b : 1) and $(\lambda a : \lambda b : 1)$ are joined by a line of \mathcal{P} through the origin (0 : 0 : 1); two lines $[\alpha : \beta : 1]$ and $[\alpha' : \beta' : 1]$ of \mathcal{L} are parallel if and only if they meet in some point on $l \equiv [0 : 0 : 1]$, say (x : y : 0), and one obtains $\alpha x + \beta y = \alpha' x + \beta' y$, i.e. $(\alpha : \beta) = (\alpha' : \beta')$. Hence

$$\mathfrak{p}_a := \{(a; b) : b \in \mathbb{Z}_{q-1}\}$$
 and $\mathfrak{l}_\alpha := \{[\alpha; \beta] : \beta \in \mathbb{Z}_{q-1}\},\$

are hyperpencils of pairwise parallel points and lines, respectively. Choose $I := \mathbb{F}_q \cup \{\infty\}$ as convenient index set, as well as $(G, +) := (\mathbb{Z}_{q-1}, +)$. Next we formulate and prove the following analogue of Proposition 8.

14 Proposition. Denote by $K(\mathbb{Z}_{q-1})$ the complete graph on the vertex set \mathbb{Z}_{q-1} . Let r be a positive integer with $r \leq \frac{q-2}{2}$. Let Π and Λ be two subgraphs of $K(\mathbb{Z}_{q-1})$, which are both r-regular, of order q-1, and of girth at least 5. Then Π and Λ are suitable if they have disjoint Cayley colours.

PROOF. First determine the pairs (a, α) for which $\mathfrak{p}_a \times \mathfrak{l}_\alpha$ contains only anti-flags. This happens if and only if $c_{a,\alpha} = 0$ and the equation for incidence has no solution. These pairs are $(a, \alpha) = (0, \infty)$ or $(\infty, 0)$ or $(a, -a^{-1})$ with $a \in \mathbb{F}_q^*$. In the remaining cases, the rule characterizing incidence in terms of polar coordinates implies $\epsilon^{\beta+b} = \epsilon^{\beta} \epsilon^{b} = c_{a,\alpha}$, or, equivalently,

$$\beta = \iota(\epsilon^{\beta}) = \iota(c_{a,\alpha}\epsilon^{-b}) = \iota(c_{a,\alpha}) + \iota(\epsilon^{-b}) = \iota(c_{a,\alpha}) - b$$

. Hence $\mathfrak{p}_a \times \mathfrak{l}_\alpha$ gives rise to the following permutation:

$$\sigma_{a,\alpha} : \begin{cases} \mathbb{Z}_{q-1} & \longrightarrow & \mathbb{Z}_{q-1} \\ b & \longmapsto & \beta = \iota(c_{a,\alpha}) - b \end{cases}$$

This mapping leaves the Cayley colours of the edges of $K(\mathbb{Z}_{q-1})$ invariant since

$$v^{\sigma_{a,\alpha}} - w^{\sigma_{a,\alpha}} = \iota(c_{a,\alpha}) - v - (\iota(c_{a,\alpha}) - w) = -(v - w)$$

for all distinct $v, w \in K(\mathbb{Z}_{q-1})$. Thus " $\sigma_{a,\alpha}$ -disjoint Cayley colours" again mean "disjoint Cayley colours." QED

15 Remark. Construction 2 furnishes k-regular graphs of girth 5, some of whose orders tie with or even improve the known upper bounds rec(k, 5):

k	q	r	order of	smallest	first	reference(s)
			$\mathcal{L}(\Pi, \Lambda)$	currently	constructed	
				known order	by	
9	7	2	96	96	Jørgensen	[14], Ex. 16
11	9	2	160	156	Jørgensen	[14]
13	11	2	240	240	Exoo	[10], Ex. 16
16	13	3	336	336	Jørgensen	[14], Ex. 17
18	16	2	510	480	Schwenk	[27]
20	17	3	576	576	Jørgensen	[14], Ex. 18
22	19	3	720	720	Jørgensen	[14], Ex. 18
27	23	4	1056	1200	new	Ex. 18
29	25	4	1248	1404	new	Ex. 18
31	27	4	1456	1624	new	Ex. 18

In the third column, r indicates the (highest) feasible degrees for suitable graphs Π and Λ of girth ≥ 5 on q-1 vertices. The handicap described in Remark 9 here affects the choice of r if q is an even prime power. Thus oddly regular graphs of girth at least 5 are eligible for all odd prime powers q. For r = 3 and q = 11 one might think of two copies of the Petersen graph for Π and Λ but any embedding of the first copy into $K_{10}(\mathbb{Z}_{10})$ already absorbs at least four Cayley colours out of five. Hence this idea is not feasible. For r = 5 and q = 31, an analogous idea would assign two (5, 5)-cages as Π and Λ , to be embedded into $K_{30}(\mathbb{Z}_{30})$ with disjoint Cayley colours. Its feasibility remains an open problem.

16 Example. For r = 2 and q = 7, 11 we choose Π and Λ to be the following (q - 1)-cycles:

q-1	$E(\Pi)$	Cayley	$E(\Lambda)$	Cayley
		colours		colours
6	$\{\{i, i+1\} : i \in \mathbb{Z}_6\}$	±1	$\{\{0,3\},\{3,1\},\{1,5\},$	$\pm 2, \pm 3$
			$\{5,2\},\{2,4\},\{4,0\}\}$	
10	$\{\{i, i+1\} : i \in \mathbb{Z}_{10}\}$	±1	$\{\{i, i+3\} : i \in \mathbb{Z}_{10}\}$	± 3

17 Example. A solution for r = 3 and q = 13 is due to Jørgensen [14], who pointed out that the two non–isomorphic cubic graphs of girth 5 and order 12 can be embedded into $K_{12}(\mathbb{Z}_{12})$ using disjoint Cayley colours, namely $\{\pm 2, \pm 3, 6\}$ and $\{\pm 1, \pm 4, \pm 5\}$ for Π_{12} and Λ_{12} , respectively:

Recall that the generalized Petersen graph $P(\kappa, \mu)$ is defined as the cubic graph on 2κ vertices u_i, v_i with edges $\{u_i, u_{i+1}\}, \{u_i, v_i\}, \{v_i, v_{i+\mu}\}$, indices taken modulo κ , cf. e. g. [13]. Extent this notion and denote by $P(\kappa, \mu; \nu)$ the 4-regular graph obtained from $P(\kappa, \mu)$ by adding the edges $\{u_i, v_{i+\nu}\}$.

18 Example. Some suitable pairs of graphs Π and Λ with $r \geq 3$ and $q \geq 17$ are listed in the following table.

q-1	r	graph	edges (numbers taken mod $q-1$)	Cayley colours
16	3	Π_{16}	$\{i, i+1\}, \{2i, 2i-5\}$	$\pm 1, \pm 5$
		Λ_{16}	$\{i, i+7\}, \{2i, 2i-3\}$	$\pm 3,\pm 7$
18	3	Π_{18}	$\{i, i+1\}, \{2i, 2i+5\}$	$\pm 1, \pm 5$
		Λ_{18}	$\{i, i+9\}, \{2i, 2i+7\},$	$\pm 7,\pm 9$
			$\{4i, 4i+3\}, \{4i+2, 4i+5\}$	± 3
22	4	Π_{22}	$\{2i, 2i+1\}, \{2i, 2i+2\},\$	$\pm 1, \pm 2$
			${2i+1, 2i+6}, {2i+1, 2i+11}$	$\pm 5, \pm 10$
		Λ_{22}	$\{2i, 2i+4\}, \{2i, 2i+7\}$	$\pm 4, \pm 7$
			$\{2i, 2i+9\}, \{2i+1, 2i+9\}$	$\pm 8, \pm 9$
24	4	Π_{24}	${2i, 2i+1}, {2i, 2i+2}$	$\pm 1, \pm 2$
			${2i+1, 2i+6}, {2i+1, 2i+11}$	$\pm 5, \pm 10$
		Λ_{24}	$\{3i, 3i+3\}$	± 3
			${3i+1, 3i+8}, {3i+2, 3i+10}$	$\pm 7,\pm 8$
			${3i, 3i \pm 11}, {3i + 2, 3i + 13}$	±11
26	4	Π_{26}	${i, i+1}, {2i, 2i+7}, {2i, 2i+11}$	$\pm 1, \pm 7, \pm 11$
		Λ_{26}	${i, i+5}, {2i, 2i+3}, {2i, 2i+9}$	$\pm 3,\pm 5,\pm 9$

 $\Pi_{16} \cong \Lambda_{16} \cong \Gamma(8_3)$ is again the Möbius–Kantor graph (cf. the Figure below), while $\Pi_{18} \cong \Lambda_{18}$ is the Levi graph of the cyclic 9₃ configuration. In terms of generalized Petersen graphs, one has $\Pi_{22} \cong \Lambda_{22} \cong P(11,5;3)$ as well as

 $\Pi_{24} \cong \Lambda_{24} \cong P(12,5;3)$. Finally, $\Pi_{26} \cong \Lambda_{26}$ is isomorphic to the Levi graph of the projective plane PG(2,3).

5 Elliptic Semiplanes of Type D

In this Section we discuss two constructions working in Hughes planes over the regular nearfields N(2,3) and N(2,5) of orders 9 and 25. Lacking an analogue of Propositions 8 and 14 for elliptic semiplanes of type D, we shall individually determine a subgraph Π invariant under each permutation $\sigma_{a,\alpha}$ and look for a suitable subgraph Λ in the complement of Π . These constructions will furnish k-regular graphs of girth 5, whose orders tie with or even improve the known upper bounds rec(k, 5):

k	q^2	r	order of	smallest	first	reference(s)
			$\mathcal{D}(\Pi, \Lambda)$	currently constructed		
				known order	by	
11	9	2	156	156	Jørgensen	[14], Ex. 5.4
28	25	3	1240	1248	new	Ex. 5.5

The case $q^2 = 9$ will be preceded by a general construction of G-coordinates, where $G := N(2, q) \setminus \mathbb{F}_q$ is the subset of "imaginary" elements in the nearfield. In the case $q^2 = 25$, we adopt Room's somewhat different approach to obtain G-coordinates and use his incidence table WII(25), see [25, p. 301].

Let $\mathfrak{N} = N(2,q)$ be the regular nearfield of (odd) order q^2 (cf. e.g. [7, p. 34]): \mathfrak{N} is obtained by taking the elements of the finite field \mathbb{F}_{q^2} , using the field

addition, and defining a new multiplication in terms of the field multiplication:

$$x \cdot y = \begin{cases} x \, y & \text{if } y \text{ is a square in } \mathbb{F}_{q^2} \, ; \\ x^q \, y & \text{otherwise.} \end{cases}$$

In $(\mathfrak{N}, +, \cdot)$, the non-zero elements make up a group under \cdot and the right distributive law holds, i.e.

$$(a+b) \cdot c = a \cdot c + b \cdot c \,.$$

The centre and kernel of \mathfrak{N} is the field \mathbb{F}_q . The automorphism group of N(2,3) is the symmetric group S_3 , which is sharply transitive on the elements not belonging to the kernel \mathbb{F}_3 of N(2,3). If $q^2 \neq 9$, the automorphism group of $\mathfrak{N} = N(2, p^d)$ is cyclic of order dividing 2d (see e.g. [7, p. 229]).

The points of the Hughes plane \mathcal{H}_{q^2} of order q^2 are the equivalence classes (x : y : z) of 3-tuples in \mathfrak{N}^3 with $(x, y, z) \neq (0, 0, 0)$ under the equivalence relation

$$(x, y, z) \equiv (x', y', z') \quad \text{if and only if} \quad (x', y', z') = (x \cdot t, y \cdot t, z \cdot t) \\ \text{for some } t \in \mathfrak{N} \text{ with } t \neq 0 \,.$$

The points (x : y : z) with $x, y, z \in \mathbb{F}_q$ make up a Desarguesian Baer subplane \mathcal{B} of order q and will be referred to as *central* points of \mathcal{H}_{q^2} . The set

$$l_{\beta} := \{ (x : y : z) : x + \beta \cdot y + z = 0 \}$$

is said to be a *special line* of \mathcal{H}_{q^2} if $\beta = 1$ or $\beta \notin \mathbb{F}_q$. Choose a Singer matrix S for the Baer subplane. Then the set of all the lines of \mathcal{H}_{q^2} is

$$\{l_{\beta} S^{\alpha} : \alpha \in \mathbb{Z}_{q^2+q+1}, \beta = 1 \text{ or } \beta \notin \mathbb{F}_q\}.$$

Incidence is defined by set theoretic inclusion. Thus the lines are uniquely determined by the coordinates $[\alpha; \beta]$ with $\alpha \in \mathbb{Z}_{q^2+q+1}$ and $\beta = 1$ or $\beta \notin \mathbb{F}_q$. The *central* lines (belonging to the Baer subplane) are those with $\beta = 1$. The non-central points incident with the special line l_1 are the points (b:1:-1-b)with $b \notin \mathbb{F}_q$. The orbits

$$\{(b:1:-1-b) S^a : a \in \mathbb{Z}_{q2+q+1}\}$$

of these points partition the set of non-central points into $q^2 - q$ subsets of size $q^2 + q + 1$ each. The central points make up one further orbit, namely

$$\{(1:1:-2) S^a : a \in \mathbb{Z}_{q^2+q+1}\}.$$

Hence each point is uniquely determined by the coordinates (a; b) with $a \in \mathbb{Z}_{q^2+q+1}$ and b = 1 or $b \notin \mathbb{F}_q$.

19 Lemma. Incidence is given by the following rule:

$$(a;b) \mid [\alpha;\beta] \iff (b,1,-1-b) S^{a-\alpha} \equiv \begin{cases} (x,1,-x-\beta) \text{ for some } x \notin \mathbb{F}_q \\ or \\ (1,0,-1) \end{cases}$$

PROOF. $(a; b) | [\alpha; \beta]$ holds if and only if $(b, 1, -1 - b) S^a \in l_\beta S^\alpha$ or, equivalently, $(b, 1, -1 - b) S^{a-\alpha} =: (\xi, \eta, \zeta) \in l_\beta$. By definition, this holds if and only if $\xi + \beta \cdot \eta + \zeta = 0$. Now distinguish two cases: if $\eta \neq 0$, we conclude

$$(b,1,-1-b) S^{a-\alpha} = (\xi,\eta,-\xi-\beta\cdot\eta) \equiv (\xi\cdot\eta',1,-\xi\cdot\eta'-\beta)$$

where $\eta \cdot \eta' = 1$ and the statement follows if we put $x := \xi \cdot \eta'$; if $\eta = 0$, one has

$$(b, 1, -1 - b) S^{a-\alpha} = (\xi, 0, -\xi) \equiv (1, 0, -1).$$

QED

Let $\mathcal{H}_{q^2}^D$ be the elliptic semiplane of type D obtained from \mathcal{H}_{q^2} by deleting the central Baer subplane \mathcal{B} . In terms of the above coordinates, this means just to exclude the options b = 1 and $\beta = 1$. Hence the points and lines of $\mathcal{H}_{q^2}^D$ have $\mathfrak{N}\setminus\mathbb{F}_q$ -coordinates (a;b) and $[\alpha;\beta]$ with $a, \alpha \in \mathbb{Z}_{q^2+q+1}$ and $b, \beta \in \mathfrak{N}\setminus\mathbb{F}_q$, incidence being given by

$$(a;b) \mid [\alpha;\beta] \iff (b,1,-1-b) S^{a-\alpha} \equiv (x,1,-x-\beta) \text{ for some } x \notin \mathbb{F}_q.$$

Two points and two lines are parallel if and only if their first $\mathfrak{N}\setminus\mathbb{F}_q$ -coordinates coincide: in \mathcal{H}_{q^2} , two distinct points (a; b), (a; b') are joined by the central line $l_1 S^a$ with coordinates [a; 1] and two distinct lines $[\alpha; \beta], [\alpha; \beta']$ meet in the central point $(1:0:-1) S^{\alpha} \equiv (1:1:-2) S^{\alpha+\gamma}$ with coordinates $(\alpha + \gamma; 1)$ for some $\gamma \in \mathbb{Z}_{q^2+q+1}$.

Hence

$$\mathfrak{p}_a := \{(a; b) : b \in \mathfrak{N} \setminus \mathbb{F}_q\} \quad \text{and} \quad \mathfrak{l}_\alpha := \{[\alpha; \beta]) : \beta \in \mathfrak{N} \setminus \mathbb{F}_q\}$$

are pencils of pairwise parallel points and lines, respectively.

20 Lemma. Let b range in $\mathfrak{N}\setminus\mathbb{F}_q$. The m flags (if any) $(a;b) \mid [\alpha;\beta]$ belonging to $\mathfrak{p}_a \times \mathfrak{l}_{\alpha}$ give rise to the permutation

$$\sigma_{a,\alpha}: \begin{cases} \mathfrak{N}\backslash \mathbb{F}_q & \longrightarrow & \mathfrak{N}\backslash \mathbb{F}_q \\ b & \longmapsto & x \end{cases}$$

where x is defined by $(b, 1, -1 - b) S^{a-\alpha} \equiv (x, 1, -x - \beta)$.

PROOF. The image of b under $\sigma_{a,\alpha}$ is well defined by normalizing the second coordinate of $(b, 1, -1 - b) S^{a-\alpha}$ to be 1 again. Note that the second coordinate would be zero only if $(b, 1, -1 - b) S^{a-\alpha}$ were a central point.

To go ahead, we need more concreteness concerning the Singer matrix S:

21 Example. Let $q^2 = 9$. We use additive notations and, for typographic reason, prefer to write 2 instead of -1. So $\mathbb{F}_3 = \{0, 1, 2\}$ and \mathbb{F}_9 can be written as $\mathbb{F}_3[\omega]/(\omega^2 + 2\omega + 2)$. The elements of \mathbb{F}_9 are represented by residues $a + b\omega$ with $a, b \in \mathbb{F}_3$. We shall write ab instead of $a+b\omega$. In the following multiplication table of $\mathfrak{N} = N(2, 3)$, the elements are ordered lexicographically:

•	01	02	10	11	12	20	21	22
01	20	10	01	12	22	02	11	21
02	10	20	02	21	11	01	22	12
10	01	02	10	11	12	20	21	22
11	21	12	11	20	01	22	02	10
12	11	22	12	02	20	21	10	01
20	02	01	20	22	21	10	12	11
21	22	11	21	01	10	12	20	02
22	12	21	22	10	02	11	01	20

The central elements in \mathfrak{Q} are 00, 10, 20. Let the matrix

$$S = \begin{pmatrix} 20 & 00 & 10 \\ 10 & 00 & 00 \\ 00 & 10 & 00 \end{pmatrix}$$

act on row vectors of coordinates. S induces a Singer cycle in the Baer subplane. Order the elements of $\mathfrak{N}\setminus\mathbb{F}_3$ lexicographically. Together with the canonic order in \mathbb{Z}_{13} , this induces a lexicographic order for all points (a; b) and lines $[\alpha; \beta]$ of \mathcal{H}_9^D , to which all the following incidence matrices refer. A calculation shows that, for $i \neq 2, 3, 5, 11$, the flags in $\mathfrak{p}_i \times \mathfrak{l}_0$ give rise to four distinct incidence matrices, and consequently, to four permutations:

$\left.\begin{array}{c} \mathfrak{p}_0\times\mathfrak{l}_0\\ \mathfrak{p}_9\times\mathfrak{l}_0\\ \mathfrak{p}_{10}\times\mathfrak{l}_0\end{array}\right\}$	$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right)$	$\sigma_{0,0} = \sigma_{9,0} = \sigma_{10,0} = id$
$\left. \begin{array}{c} \mathfrak{p}_1 \times \mathfrak{l}_0 \\ \mathfrak{p}_7 \times \mathfrak{l}_0 \end{array} \right\}$	$\left(\begin{array}{c} 0 \ 1 \ 0 \ 0 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ 0$	$\sigma_{1,0} = \sigma_{7,0} = (01 \ 02) (11 \ 22) (12 \ 21)$
$\left. \begin{array}{c} \mathfrak{p}_4 \times \mathfrak{l}_0 \\ \mathfrak{p}_{12} \times \mathfrak{l}_0 \end{array} \right\}$	$\left(\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{smallmatrix}\right)$	$\sigma_{4,0} = \sigma_{12,0} = (01 \ 22)(02 \ 21)(11 \ 12)$
$\left. \begin{smallmatrix} \mathfrak{p}_6 \times \mathfrak{l}_0 \\ \mathfrak{p}_8 \times \mathfrak{l}_0 \end{smallmatrix} \right\}$	$\left(\begin{array}{cccc} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$\sigma_{6,0} = \sigma_{8,0} = (01 \ 12) (11 \ 02)(21 \ 22)$

The point–line–pairs in

 $\mathfrak{p}_2 \times \mathfrak{l}_0, \ \mathfrak{p}_3 \times \mathfrak{l}_0, \ \mathfrak{p}_5 \times \mathfrak{l}_0, \ \mathfrak{p}_{11} \times \mathfrak{l}_0,$

are all anti-flags. The 6-cycle

$$\Pi$$
 : 01, 22, 11, 02, 21, 12, 01

turns out to be invariant under all four permutations. The Cayley colours of this 6-cycle belong to $\{\pm 12, \pm 11\}$. Choose

$$\Lambda$$
 : 01, 11, 21, 22, 12, 02, 01

as an edge–disjoint 6–cycle. Since the edges of Λ have Cayley colours lying in $\{\pm 10, \pm 01\}$, the Cayley colours of Π and Λ are $\sigma_{a,\alpha}$ -disjoint for all $a, \alpha \in \mathbb{Z}_{13}$. Applying Construction 2, we obtain an 11–regular graph $\mathcal{D}(\Pi, \Lambda)$ of girth 5 on 156 vertices.

22 Remark. $\mathcal{D}(\Pi, \Lambda)$ is isomorphic to the graph constructed by Jørgensen [14, Example 12]. The vertex set of his graph is $\mathbb{Z}_{13} \times S_3 \times \{1, 2\}$. He distinguishes edges of types I, II.1, and II.2, which correspond to edges in $\Gamma(\mathcal{H}_9^D)$, Π , and Λ , respectively. The edges of type I are defined in terms of a (13, 6, 9, 1) relative difference set with forbidden subgroup $\{0\} \times S_3$ in the group $\mathbb{Z}_{13} \times S_3$, pointed out by Pott [22, Example 1.1.10.6]. The permutations $\sigma_{1,0}$, $\sigma_{4,0}$, and $\sigma_{6,0}$ generate a subgroup of S_6 acting on the elements in $\mathfrak{N}\setminus\mathbb{F}_3$. This subgroup turns out to be isomorphic to S_3 . With these data, an isomorphism between the two constructions of $\Gamma(\mathcal{H}_9^D)$ can easily be established if the elements in $\mathfrak{N}\setminus\mathbb{F}_3$ are ordered in the following way: 01, 11, 21, 22, 02, 12.

Room's approach [25] to construct incidence tables for Hughes planes of order q^2 differs slightly from the construction described above. First, the rôle of the special line is played by the set

$$l_{\beta} := \{ (x : y : z) : y + \beta \cdot z = 0 \}.$$

Secondly, Room by-passes the notion of a regular nearfield $\mathfrak{N}(2, q)$. Instead, he constructs \mathcal{H}_{q^2} from the Desarguesian plane $PG(2, q^2)$ by "transferring points from some line l to the conjugate line l^* " (cf. [25, p. 136]. But when defining these new incidences, Room's case distinction (i) and (ii) [25, p. 297] can easily be unified using multiplication in $\mathfrak{N}(2, q)$ rather than in \mathbb{F}_{q^2} .

23 Example. Let $q^2 = 25$. Let $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$ and consider $\mathbb{F}_{25} = \mathbb{F}_5[\omega]/(\omega^2 + 3)$. The elements of \mathbb{F}_{25} are represented by residues $a + b\omega$ with $a, b \in \mathbb{F}_5$. Again we write ab instead of $a + b\omega$. From Room [25, Section 5], we take over the order for the elements in $G := \mathfrak{N}(2, 5) \setminus \mathbb{F}_5$, namely

$$01, 11, 42, 44, 32, 24, 13, 23, 34, 02, 03, 31, 22, 12, 21, 33, 41, 43, 14, 04$$

In [25], these elements are respectively denoted by

 $1, 2, \ldots, 10, -10, -9, \ldots, -1.$

We greatly appreciate, and willingly rely on, the calculations for \mathcal{H}_{25} reported in [25]. Room's points $W_{j,r}$ and lines $w_{i,0}$ have *G*-coordinates (r; j) and [0; i], respectively. Equivalently, (a; b) and $[\alpha; \beta]$ represent the point $W_{b,a}$ and the line $w_{\beta,\alpha}$.

Two points and lines are parallel if their first G-coordinates coincide.

With these data, the permutations $\sigma_{a,0}$ can be extracted from Room's incidence table WII(25) [25, p. 301]:

```
(11\ 41)(12\ 42)(13\ 43)(14\ 44)(21\ 31)(22\ 32)(23\ 33)(24\ 34)
\sigma_{1,0}
        =
             (01\ 03)(02\ 04)(11\ 44)(12\ 21)(13\ 24)(14\ 41)(31\ 42)(34\ 43)
        _
\sigma_{2,0}
             (01\ 11)(02\ 12)(03\ 13)(04\ 14)(21\ 41)(22\ 42)(23\ 43)(24\ 44)
        _
\sigma_{3,0}
             (01\ 33)(02\ 22)(03\ 23)(04\ 32)(12\ 13)(21\ 43)(24\ 42)(31\ 34)(41\ 44)
\sigma_{4,0}
             (01\ 12)(02\ 03)(04\ 13)(11\ 21)(14\ 24)(22\ 31)(23\ 34)(32\ 33)(41\ 44)
\sigma_{5,0}
        =
             (01\ 33)(02\ 43)(03\ 42)(04\ 32)(12\ 44)(13\ 41)(21\ 22)(23\ 24)
        _
\sigma_{6,0}
             (01\ 02)(03\ 04)(12\ 34)(13\ 31)(21\ 43)(22\ 33)(23\ 32)(24\ 42)
\sigma_{7.0}
        =
             (01\ 41)(02\ 42)(03\ 43)(04\ 44)(11\ 31)(12\ 32)(13\ 33)(14\ 34)
        =
\sigma_{8,0}
             (01\ 23)(02\ 32)(03\ 33)(04\ 22)(11\ 14)(12\ 34)(13\ 31)(21\ 24)(42\ 43)
        _
\sigma_{9,0}
             (01\ 24)(02\ 41)(03\ 44)(04\ 21)(11\ 13)(12\ 14)(22\ 31)(23\ 34)
\sigma_{10,0}
        =
             (02\ 03)(11\ 33)(12\ 42)(13\ 43)(14\ 32)(21\ 24)(22\ 44)(23\ 41)(31\ 34)
        =
\sigma_{11,0}
             (01\ 31)(02\ 32)(03\ 33)(04\ 34)(11\ 21)(12\ 22)(13\ 23)(14\ 24)
        _
\sigma_{12,0}
             (01\ 04)(02\ 24)(03\ 21)(11\ 14)(12\ 44)(13\ 41)(22\ 42)(23\ 43)(32\ 33)
        _
\sigma_{14,0}
             (02\ 24)(03\ 21)(11\ 33)(12\ 23)(13\ 22)(14\ 32)(41\ 42)(43\ 44)
        =
\sigma_{15,0}
             (01\ 23)(02\ 13)(03\ 12)(04\ 22)(11\ 43)(14\ 42)(31\ 32)(33\ 34)
\sigma_{16,0}
        _
             (01\ 04)(11\ 22)(12\ 13)(14\ 23)(21\ 31)(24\ 34)(32\ 41)(33\ 44)(42\ 43)
        _
\sigma_{17,0}
             (01\ 21)(02\ 22)(03\ 23)(04\ 24)(31\ 41)(32\ 42)(33\ 43)(34\ 44)
        =
\sigma_{18,0}
             (01\ 41)(02\ 11)(03\ 14)(04\ 44)(12\ 13)(21\ 24)(31\ 42)(32\ 33)(34\ 43)
\sigma_{20,0}
        =
             (01\ 11)(02\ 41)(03\ 44)(04\ 14)(12\ 21)(13\ 24)(22\ 23)(31\ 34)(42\ 43)
        =
\sigma_{21,0}
             (01\ 04)(02\ 34)(03\ 31)(11\ 43)(12\ 32)(13\ 33)(14\ 42)(22\ 23)(41\ 44)
\sigma_{22,0}
        _
             (01\ 42)(02\ 03)(04\ 43)(11\ 14)(21\ 32)(22\ 23)(24\ 33)(31\ 41)(34\ 44)
        =
\sigma_{24,0}
             (01\ 42)(04\ 43)(11\ 22)(14\ 23)(21\ 44)(24\ 41)(31\ 33)(32\ 34)
        =
\sigma_{25,0}
             (02\ 34)(03\ 31)(11\ 12)(13\ 14)(22\ 44)(23\ 41)(32\ 43)(33\ 42)
        =
\sigma_{26,0}
             (01\ 12)(04\ 13)(11\ 34)(14\ 31)(21\ 23)(22\ 24)(32\ 41)(33\ 44)
        =
\sigma_{27.0}
             (01\ 34)(02\ 11)(03\ 14)(04\ 31)(21\ 32)(24\ 33)(41\ 43)(42\ 44)
\sigma_{29.0}
        =
```

The point–line–pairs in

 $\mathfrak{p}_0\times\mathfrak{l}_0\,,\ \mathfrak{p}_{13}\times\mathfrak{l}_0\,,\ \mathfrak{p}_{19}\times\mathfrak{l}_0\,,\ \mathfrak{p}_{23}\times\mathfrak{l}_0\,,\ \mathfrak{p}_{28}\times\mathfrak{l}_0\,,\ \mathfrak{p}_{30}\times\mathfrak{l}_0\,,$

are all anti-flags. In Table WII(25), we encounter six blank entries in each row and column. Extract a (0, 1)-matrix, say M, from WII(25) by writing 1 for each blank entry and 0 otherwise. Being symmetric, we can interpret M as the adjacency matrix of a 6-regular graph Φ with vertices in G. With the help of the software *Groups and Graphs* [16], we check that each $\sigma_{a,0}$ is an automorphism of Φ . In particular, we can partition the edge set of Φ into two subsets indicated by entries 1 and 1, respectively:

The entries **1** and I represent two (edge–disjoint) bipartite cubic graphs of girth 6, say Π and Π' , which are Levi graphs of 10₃ configurations. Using Kantor's classification [15], one has $\Pi \cong \Gamma(10_3 B) \cong P(10,3)$ and $\Pi' \cong \Gamma(10_3 A)$. In the complement of Φ , let $\Lambda \cong P(10,4)$ be the cubic graph of girth 5 whose adjacency matrix is obtained from M by substituting 1 for the entries **0** and 0 for all the other entries (**1**, 1, or o), respectively. Then Π and Λ are $\sigma_{a,\alpha}$ –disjoint for all $a, \alpha \in \mathbb{Z}_{31}$. The Cayley colours of Π and Π' belong to

$$\{\pm 12, \pm 13, \pm 21, \pm 24, \},\$$

whereas those of Λ lie in

$$\{\pm 01, \pm 14, \pm 20, \pm 22, \pm 23\}$$

Applying Construction 2, we obtain a 28–regular graph $\mathcal{D}(\Pi, \Lambda)$ of girth 5 on 1240 vertices, which has eight vertices less than the instance in Jørgensen's series [14, Theorem 17].

6 Appendix: Deletion of Parallel Classes

We survey a well known deletion technique, eligible for all elliptic semiplanes S of types C and L. Fix a permutation $\pi \in S_{\mu}$, acting on I. If S is of type L, we additionally assume that $\mathfrak{p}_i \times \mathfrak{l}_{i\pi}$ consists only of anti-flags for all $i \in I$; this

holds true if we put $i^{\pi} := i'$ in the Proof of Lemma 3. For a positive integer $\lambda < \mu$, choose a λ -subset $J \subseteq I$. Let $\mathcal{S}^{(\lambda)}$ be the configuration obtained from \mathcal{S} by deleting, for each $j \in J$, the m points and m lines belonging to \mathfrak{p}_j and \mathfrak{l}_j , respectively. Then $\mathcal{S}^{(\lambda)}$ is a configuration of type $(m(\mu - \lambda))_{n-\lambda}$ and its Levi graph $\Gamma(\mathcal{S}^{(\lambda)})$ is an $(n - \lambda)$ -regular bipartite graph of girth ≥ 6 and order $2m(\mu - \lambda)$. Construction 2 still works and for any suitable pair Π , Λ and one has the following

24 Theorem. The amalgam $\mathcal{S}^{(\lambda)}(\Pi, \Lambda)$ is an $(n + r - \lambda)$ -regular simple graph of girth 5 and order $2m(\mu - \lambda)$.

25 Remark. This deletion technique successfully applies in the following cases, yielding graphs whose orders tie with those of the (currently known) smallest girth 5 graphs of the same degree:

ell.	cfg.	parameters		degree	order	known graph	ref.
spl.	type	n, r, k, m, μ	λ	$k-\lambda$	$2m(\mu - \lambda)$	of same order	
type						and degree	
C	25_{5}	5,2,7,5,5	1	6	40	(5,6)-cage	([9])
			2	5	30	(5,5)-cage:	
						Aut = 20	([9])
L	168_{13}	13,3,16,12,14	1	15	312	Jørgensen	[14]
			2	14	288	Jørgensen	[14]
C	256_{16}	16,3,19,16,16	1	18	480	Schwenk	[27]
			2	17	448	Schwenk	[27]

References

- M. ABREU, M. FUNK, D. LABBATE, V. NAPOLITANO: A (0,1)-Matrix Framework for Elliptic Semiplanes, Ars Comb. 88 (2008), 175–191.
- [2] R. D. BAKER: An elliptic semiplane, J. of Combin. Th. A, 25 (1978), 193–195.
- [3] J. A. BONDY, U. S. R. MURTY: Graph theory with applications, Elsevier, North Holland, New York 1976.
- W. G. BROWN: On the non-existence of a type of regular graphs of girth 5, Canad. J. Math. 19 (1967), 644–648.
- [5] H.S.M. COXETER: Self-dual configurations and regular graphs, Bull. Amer. Math. Soc., 56 (1950), 413–455; also in: Twelve Geometric Essays, Southern Illinois University Press, Carbondale, 1968, pp. 106–149.
- [6] A. CRONHEIM: T-groups and their geometry, Illinois J. Math. 9 (1965), 1–30.
- [7] P. DEMBOWSKI: Finite Geometries, Springer, Berlin Heidelberg New York, 1968 (reprint 1997).
- [8] L. EROH, A. SCHWENK: Cages of girth 5 and 7, Congr. Numer. 138 (1999), 157-173.

- [9] G. EXOO, R. JAJCAY: Dynamic Cage Survey, the electronic journal of combinatorics 15 (2008), #DS 16, (http://www.combinatorics.org/Surveys/ds16.pdf).
- [10] G. Exoo: Regular graphs of given degree and girth, (http://ginger.indstate.edu/ge/ CAGES).
- [11] M. HALL: Projective planes, Trans. Amer. Math. Soc. 54 (1943), 229-277.
- [12] A. J. HOFFMAN, R. R. SINGLETON: On Moore Graphs with Diameters 2 and 3, IBM Journal, November (1960), 497–504.
- [13] D. HOLTON, J. SHEEHAN: The Petersen Graph, Cambridge University Press, Cambridge, 1993.
- [14] L. K. JØRGENSEN: Girth 5 graphs from relative difference sets, Discrete Math. 293 (2005), 177–184.
- [15] S. KANTOR: Die Configurationen (3,3)₁₀, Sitzungsber. Wiener Akad. 84 (1881), 1291– 1314.
- [16] W. KOCAY: Groups and Graphs, software package, University of Manitoba.
- [17] P. KOVÁCS: The nonexistence of certain regular graphs of girth 5, J. Combin. Theory Ser. B 30 (1981), 282–284.
- [18] H. LÜNEBURG: Charakterisierungen der endlichen desarguesschen projektiven Ebenen, Math. Z. 85 (1964), 419–450.
- [19] M. MERINGER: Fast Generation of Regular Graphs and Construction of Cages, J. Graph Theory 30 (1999), 137–146.
- [20] M. O'KEEFE, P. K. WONG: A smallest graph of girth 5 and valency 6, J. Combin. Theory Ser. B 26 (1979), 145–149.
- [21] J. PETERSEN: Sur le théorèm de Tait, L'Intermédiare des Mathématiciens, 5 (1898), 225– 227.
- [22] A. POTT: Finite Geometry and Character Theory, Springer Lecture Notes 1601, Berlin Heidelberg New York, 1995.
- [23] N. ROBERTSON: The smallest graph of girth 5 and valency 4, Bull. Amer. Math. Soc. 70 (1964), 824–825.
- [24] N. ROBERTSON: Graphs minimal under girth, valency and connectivity constraints, Dissertation, Univ. of Waterloo, 1969.
- [25] T. G. ROOM: The combinatorial structure of the Hughes plane, Proc. Cambridge Phil. Soc. (Math. Phys. Sci.) 68 (1970), 291–301. (II) ibid. 72 (1972), 135–139.
- [26] G. ROYLE: Cubic Cages, (http://people.csse.uwa.edu.au/gordon/cages).
- [27] A. SCHWENK: Construction of a small regular graph of girth 5 and degree 19, conference presentation given at Normal, IL, USA, 18. April, 2008.
- [28] G. WEGNER: A smallest graph of girth 5 and valency 5, J. Combin. Theory Ser. B 14 (1973), 203–208.
- [29] P. K. WONG: On the uniqueness of the smallest graphs of girth 5 and valency 6, J. Graph Theory 3 (1978), 407–409.
- [30] P. K. WONG: Cages a survey, J. Graph Theory 6 (1982), 1–22.
- [31] Y. S. YANG, C. X. ZHANG: A new (5,5) cage and the number of (5,5) cages (Chinese),
 J. Math. Res. Exposition 9 (1989), 628–632.