Note di Matematica Note Mat. 29 (2009), suppl. n. 1, 59-68 ISSN 1123-2536, e-ISSN 1590-0932 DOI 10.1285/i15900932v29n1supplp59 http://siba-ese.unisalento.it, © 2009 Università del Salento

Translation planes admitting a linear Abelian group of order $(q+1)^2$.

Esteban Diazⁱ Department of Mathematics, University of Connecticut. diaz@math.uconn.edu

Oscar Vega

Department of Mathematics, California State University, Fresno. ovega@csufresno.edu

Abstract. Translation planes of order q^2 and spread in PG(3, q), where q is an odd prime power and $q^2 - 1$ has a p-primitive divisor, that admit a linear Abelian group of order $(q+1)^2$ containing at most three kernel homologies are shown to be associated to flocks of quadratic cones.

Keywords: Translation plane, flock of quadratic cone, homologies

MSC 2000 classification: Primary 51, 05; Secondary 20

1 Introduction

In a series of papers, that span more than fifteen years, translation planes of order q^2 with spread in PG(3,q) that admit a linear collineation group G of order q(q+1) were completely classified as associated to conical flocks planes. It is also known that translation planes of order q^2 , with spread in PG(3,q), that admit a cyclic homology group of order q + 1 are equivalent to conical flocks planes. Moreover, in this situation is possible to show that the full collineation group of the translation plane that admit the cyclic homology of order q + 1also admits a group of order $(q + 1)^2$. In the spirit of this idea, it is possible to argue that the translation planes that admit a group of order $(q + 1)^2$ may also be associated with conical flocks planes.

We will use standard notation and results found in the literature on finite translation planes and/or flocks of quadratic cones. More details may be found in [2, 10, 11]. In particular, we will use André's [1] theory of translation planes and spreads of vector spaces. A collineation of a translation plane π is a one-to-one mapping of the points onto the points of π that preserves incidence. The collineation group of π is denoted Aut(π), and the stabilizer of 0 is called the

ⁱThis article is dedicated to Norman Johnson on the occasion of his 70^{th} birthday.

translation complement of π . If $\Psi \in \operatorname{Aut}(\pi)$ fixes a line l pointwise and all the lines through a point P setwise, then Ψ is called a perspectivity of π , if $P \in l$ then Ψ is called and elation, otherwise it is called a homology. In either case, P is called the center of Ψ and l is called the axis of Ψ .

1 Theorem. [Johnson, [6]] Translation planes with spreads in PG(3,q) admitting cyclic affine homology groups of order q + 1 are equivalent to flocks of quadratic cones.

2 Theorem. [Johnson [7]] Let V be a vector space of dimension 2n over a field $F \cong GF(q)$, for $q = p^r$, p a prime. Assume that a collineation $\sigma \in$ GL(2n,q) has order dividing $q^n - 1$ but not dividing $q^t - 1$ for t < n. If σ fixes at least three mutually disjoint n-dimensional F-subspaces then there is an associated Desarguesian spread Σ admitting σ as a kernel homology. Furthermore, the normalizer of $< \sigma >$ is a collineation group of Σ . Let us call Σ an 'Ostrom phantom'.

The problem we will study in this paper is:

3 Problem. [Il problema Abeliano rosso] Determine the translation planes π of order q^2 with spread in PG(3,q) that admit an Abelian collineation group G of order $(q+1)^2$ in GL(4,q).

A conjecture regarding this problem says that planes such as those described above must be associated to a flock of a quadratic cone. This comes after a series of papers (see for example [3–5,8,9]) that completely classified translation planes of order q^2 with spread in PG(3,q) admitting a collineation group $G \subset$ GL(4,q) of order q(q+1). Such translation planes turned out to be conical flocks planes or derived conical flocks planes, except in a few sporadic cases, see [3] for more details. Also, it was shown that the group G is solvable and that it has a subgroup H of order q+1 that normalizes an elation subgroup E of order q. Moreover, when G fixes two components of π there is an Ostrom phantom Σ associated to π , G is in $GL(2, q^2)$, and H fixes at least two components of π (one being the elation axis). It follows that H and G fix a regulus of the flock's plane.

Theorem 1 implies that if a translation plane Π with spread in PG(3,q)admits a regulus inducing affine homology H_1 of order q + 1 in the translation complement, for example H_1 cyclic, then Π is equivalent to a conical flock plane \mathcal{F} . Now if one takes the normalizer N of H_1 , then the quotient group N/H_1 acts as a collineation group of \mathcal{F} , permuting q reguli and fixing one of the reguli of \mathcal{F} . Connecting the previous paragraph with this idea we would have that N/H_1 has a subgroup of order (q + 1). Hence, the normalizer N should contain a subgroup of order $(q + 1)^2$. This justifies the conjecture.

Our main result follows, it will be proved as a series of results in the next

section.

4 Theorem. Let π be a translation plane of order q^2 (q an odd prime power) with spread in PG(3,q) admitting a linear Abelian collineation group G of order $(q+1)^2$. Assume that G contains at most three kernel homologies and that q^2-1 admits a p-primitive divisor, then π is associated to a conical flock plane.

5 Remark. Johnson and Pomareda [8] prove that under the same condition of theorem 4, in the case q even, the translation plane admitting the collineation group of order $(q + 1)^2$ is André or Desarguesian.

2 Proof of the main theorem

For the rest of this article we will assume the hypothesis of theorem 4. Also, S is a spread of π and u is a p-primitive divisor of $q^2 - 1$.

6 Lemma. Any Sylow u-subgroup S_u of G fixes 2 components of π .

PROOF. Note that $u \neq 2$. Now let u^{2a} be the maximal power of u dividing $(q+1)^2$.

Since $q^2 + 1 = (q+1)(q-1) + 2$, then $(q^2 + 1, u^{2a}) = 1$. It follows that the action of S_u on the components of S must fix at least one component.

Now S_u acts on q^2 components of S, but since $(q^2, u^{2a}) = 1$ then S_u must fix a second component.

7 Lemma. Suppose an element $g \in S_u$ fixes a non-zero point in a component L that is being fixed by S_u . Then g is an affine homology with axis L.

PROOF. Since g is linear, under the hypothesis given we have that g must fix a 1-dimensional GF(q)-subspace A of L. Now using that $(q, u^{2a}) = 1$ we get that A has a 1-dimensional Maschke complement B.

Now recall that the order of g is a power of u, and that the number of nonzero elements in A (and B) is q - 1. So, since $(q - 1, u^t) = 1$ for any integer t, we have that g must fix a point in A (and B), and thus g must fix A and Bpointwise. Hence, g fixes the component L pointwise.

Now we change basis, if necessary, to get the two components that are fixed by S_u to be x = 0 and y = 0. Then we consider S_u acting on the 1-dimensional subspaces of x = 0. Since the order of S_u is u^{2a} , and it is acting on a set with $q + 1 = u^a r$ elements, where (r, u) = 1 and $u^{2a} > u^a$, then the stabilizer of at least one of these 1-dimensional subspaces must be non-trivial. Using the 'Maschke argument' used in the proof of the previous lemma we can assure that there is a subgroup of S_u fixing x = 0 pointwise, call $H_{x=0}^{(u)}$ to be the largest such a subgroup. Similarly, $H_{y=0}^{(u)}$ is the largest subgroup of S_u fixing every point in y = 0. Moreover, they are normal in S_u and, by lemma 7, homology groups. 8 Lemma. $H_{x=0}^{(u)}$ and $H_{y=0}^{(u)}$ are cyclic. $S_u = H_{x=0}^{(u)} \oplus H_{y=0}^{(u)}$.

PROOF. Since homology groups are Frobenius complements (see [12], for example), and Frobenius complements have cyclic odd-order Sylow subgroups, then both $H_{x=0}^{(u)}$ and $H_{y=0}^{(u)}$ are cyclic.

If we look at the orbit equation of the action of S_u on the 1-dimensional subspaces of x = 0 (let's call them p_i 's) we get

$$u^{a}r = q + 1 = \sum \frac{u^{2a}}{|Stab(p_i)|}$$

where the sum considers only one p_i per orbit under S_u and (r, u) = 1. We notice that none of the summands can equal one because S_u cannot contain nontrivial elements that are homologies with two different axes. Also, if all the stabilizers contain less than u^a elements, then $(r, u) \neq 1$. It follows that at least one of the stabilizers has at least u^a elements. Since any element fixing a 1dimensional subspace of x = 0 fixes x = 0 pointwise, then all stabilizers have at least u^a elements. It follows that $\left|H_{x=0}^{(u)}\right| \geq u^a$ and, similarly, $\left|H_{y=0}^{(u)}\right| \geq u^a$. Hence, $|H_{x=0}^{(u)} \cap H_{y=0}^{(u)}| = 1$ implies $S_u = H_{x=0}^{(u)} \oplus H_{y=0}^{(u)}$.

9 Remark. Note that $H_{x=0}^{(u)}$ and $H_{y=0}^{(u)}$ commuting implies that they are symmetric homology groups.

Also, the previous three lemmas are valid even when G is not Abelian.

10 Theorem. There is $g \in S_u$ of order u that fixes 3 components of S (two of them being x = 0 and y = 0). Furthermore, there is an Ostrom phantom Σ induced by g, and $G \leq \Gamma L(2, q^2)$.

PROOF. We know $H_{x=0}^{(u)}$ is an affine homology group with axis x = 0 and coaxis y = 0 that acts on the remaining $q^2 - 1$ components of the given spread producing $(q^2-1)/u^a$ orbits. Note that $H_{y=0}^{(u)}$ acts on these orbits and that, since $(u^a, (q^2-1)/u^a) = 1$ then $H_{y=0}^{(u)}$ fixes at least one of them, call it M. Then, we can consider S_u acting on M. The orbit equation of this action is:

$$u^a = \sum \frac{u^{2a}}{|Stab(l_i)|}$$

where the sum is on the components of M, one l_i per orbit under S_u .

It is clear that none of the stabilizers can be trivial. In this way we obtain an element $g \in S_u$ of order u that fixes some l_i , x = 0 and y = 0. This element g satisfies the hypothesis of theorem 2, and thus there is an Ostrom phantom Σ and the normalizer of $\langle g \rangle$ in GL(4,q) is a collineation group of Σ . Since Gis Abelian then it is a collineation group of Σ . **11 Lemma.** G has a subgroup of order $(q + 1)^2/4$ which is the direct sum of two cyclic symmetric affine homology groups of order (q + 1)/2. Their axes/coaxes are x = 0 and y = 0.

PROOF. Let us denote by $(q + 1)_2$ the maximal power of 2 in q + 1, and by S_2 the 2-Sylow subgroup of G, which has order $(q + 1)_2$. Since G is Abelian, then S_2 acts on the fixed points of $H_{x=0}^{(u)}$, which forces S_2 to fix x = 0. Similarly, S_2 fixes y = 0.

Now, consider the restriction of S_2 to x = 0, this group is isomorphic to $S_2/(S_2)_{x=0}$, where $(S_2)_{x=0}$ is the subgroup of S_2 that fixes x = 0 pointwise. But, also $S_2/(S_2)_{x=0}$ is a subgroup of PGL(2, q), since it acts on y = 0, which can be regarded as a Desarguesian plane. It follows that

$$\left|\frac{S_2}{(S_2)_{x=0}}\right| = \frac{(q+1)_2^2}{|(S_2)_{x=0}|}$$

divides

$$|PGL(2,q)|_2 = (q-1)_2(q+1)_2 = 2(q+1)_2.$$

From that we get

$$\frac{(q+1)_2}{2} || (S_2)_{x=0} |.$$

Now consider H < G of order $(q+1)_{odd}^2 = (q+1)^2/(q+1)_2$. Using the same arguments used with $(S_2)_{x=0}$ we obtain

$$(q+1)_{odd} \mid |H_{x=0}|$$

Hence, the subgroup $G_{x=0}$ of G that fixes x = 0 pointwise has order a multiple of

$$|(S_2)_{x=0}| |H_{x=0}| = \frac{(q+1)_2}{2}(q+1)_{odd} = \frac{(q+1)_2}{2}(q+1)_{$$

Using the same argument with y = 0 we obtain that $G_{x=0} \times G_{y=0}$ is the desired subgroup of G.

12 Corollary. Let $G_{x=0}$ and $G_{y=0}$ be the cyclic homology groups of order (q+1)/2 found in lemma 11. Then, after a change of basis if necessary, $G = G_1 \times G_2$ with

- (1) $G_{x=0} < G_1 \cong \mathbb{Z}_{q+1}$ and $G_{y=0} < G_2 \cong \mathbb{Z}_{q+1}$,
- (2) $G_{x=0} < G_1 \cong \mathbb{Z}_{2(q+1)}, \ G_{y=0} = G_2 \cong \mathbb{Z}_{\frac{q+1}{2}}, \ and \ (q+1)/2 \ is \ odd, \ or$
- (3) $G \cong \mathbb{Z}_{2(q+1)} \times \mathbb{Z}_{\frac{q+1}{2}}, (q+1)/2$ is even, and at least one of $G_{x=0}$ or $G_{y=0}$ is a subgroup of one factor of G.

PROOF. If (q+1)/2 is odd, then the 2-Sylow subgroup of G intersects $G_{x=0} \times G_{y=0}$ trivially, and thus we are done.

If (q+1)/2 is even then having G to be the direct product of three or more factors would force Σ to admit an elementary Abelian group of order 8 or 16, this is a contradiction. It follows that either $G \cong \mathbb{Z}_{q+1} \times \mathbb{Z}_{q+1}$ or $G \cong \mathbb{Z}_{2(q+1)} \times \mathbb{Z}_{q+1}$.

In the former case we break $G_{x=0} \times G_{y=0}$ into the direct product of its 2-Sylow subgroup H_2 with its complement. The idea used in the case (q+1)/2odd is applicable to the complement of the H_2 , thus we will look at this group.

Assume that $H_2 \cong \mathbb{Z}_{2^n} \times \mathbb{Z}_{2^n}$ is a subgroup of $G_2 \cong \mathbb{Z}_{2^{n+1}} \times \mathbb{Z}_{2^{n+1}}$ (the 2-Sylow subgroup of G). An element in G_2 of order 2^n looks like $(\overline{a}, \overline{b})$ where both a and b are congruent to 2 modulo 4, it follows that $(\overline{a}, \overline{b}) = 2(\overline{a/2}, \overline{b/2})$. Hence, each of the \mathbb{Z}_{2^n} 's in H_2 is contained in some $\mathbb{Z}_{2^{n+1}}$ in G_2 , thus a change of generators of G_2 implies that we can consider each of the factors of H_2 to be contained in one of the factors of G_2 , which is what we wanted.

If $G \cong \mathbb{Z}_{2(q+1)} \times \mathbb{Z}_{\frac{q+1}{2}}$ and (q+1)/2 we break again $G_{x=0} \times G_{y=0}$ into the direct product of its 2-Sylow subgroup H_2 with its complement. In this case, an element of order 2^n can be either four times an element in G, twice but not four times an element in G, or not twice an element in G. If a generator of one of the factors of H_2 is either the first or third case, then we assure that one of the factors of $G_{x=0} \times G_{y=0}$ is a subgroup of one of the factors of G.

Let us assume that both of the generators of the factors of H_2 are twice but not four times an element of G. These elements look like $(\overline{8a+4}, \overline{4b+2})$ and $(\overline{8a+4}, \overline{4\beta+2})$, where $a, b, \alpha, \beta \in \mathbb{Z}$. However,

$$2^{n-1}(\overline{8a+4}, \overline{4b+2}) = 2^{n-1}(\overline{8\alpha+4}, \overline{4\beta+2}) = (\overline{2^{n+1}}, \overline{0})$$

and thus the groups these elements generate intersect non-trivially. That is a contradiction.

13 Lemma. The elements in G have the form

$$(x,y) \to (xa,yb)$$

where $a, b \in GF(q^2)$. In particular, $G < GL(2, q^2)$.

PROOF. We know there exists an Ostrom phantom Σ associated to π , and that G is a collineation group of Σ that fixes x = 0 and y = 0. Then, a generic element $g \in G$ looks like

$$g: (x, y) \to (x^{\sigma}a, y^{\sigma}b)$$

where σ is 1 or q, and $a, b \in GF(q^2)^*$.

We also know that $H_{y=0}^{(u)}$ is a cyclic homology group of π , thus it is generated by

$$\tau: (x, y) \to (x, yc)$$

where |c| must divide $(q+1)_{odd}$, which forces $c^{\sigma} = c$. Using that G is Abelian we check $g^{-1}\tau^{-1}g\tau$ for $g \in G$, as above, to obtain that $\sigma = 1$ for all $g \in G$.

14 Theorem. $G_{x=0} < G_1$ and $G_{y=0} < G_2$.

PROOF. We just need to show that in the case $G_1 \cong \mathbb{Z}_{2(q+1)}, G_2 \cong \mathbb{Z}_{(q+1)/2}$, and (q+1)/2 even, it is true that $G_{x=0} \subset G_1$ if and only if $G_{y=0} = G_2$.

Assume that $G_{x=0} \subset G_1 \cong \mathbb{Z}_{2(q+1)}$. Using the previous lemma we can assume that $G_1 = \langle f: (x, y) \mapsto (ax, by) \rangle$ and $G_{x=0} = \langle f^4: (x, y) \mapsto (a^4x, y) \rangle$, where |a| = 2(q+1), and |b| is divisible by 4. Similarly, $G_2 = \langle g: (x, y) \mapsto (cx, dy) \rangle$ where lcm(|c|, |d|) = (q+1)/2.

Recall that $a, b, c, d \in GF(q^2)$ and note that that a^4 has order (q+1)/2, thus $c = a^{4i}$ for some positive integer *i*. So, if the order of *d* were a proper divisor of (q+1)/2 then

$$e \neq g^{|d|} : (x,y) \mapsto (c^{|d|},y)$$

which is $f^{4|d|} \in G_1$, that is a contradiction. Hence, |d| = (q+1)/2, and thus the element $f^{-4i}g$ generates $G_{x=0}$.

Now assume that $G_{y=0} = G_2 \cong \mathbb{Z}_{(q+1)/2}$. Using the previous lemma we can assume that $G_2 = \langle g : (x, y) \mapsto (x, by) \rangle$, where |b| = (q+1)/2. We can also say that G_1 is generated by $f : (x, y) \mapsto (\alpha x, \beta y)$, where $\alpha, \beta \in GF(q^2)$ and $lcm(|\alpha|, |\beta|) = 2(q+1)$.

Note that $f^4 : (x, y) \mapsto (\alpha^4 x, \beta^4 y)$ has order (q+1)/2, and thus both α^4 and β^4 are powers of b. Hence, composing f^4 with some power of g gives us the collineation of G

$$(x,y) \mapsto (\alpha^4 x, y)$$

which is a homology of order (q+1)/2. It follows that G is spanned by g and $h: (x, y) \mapsto (ax, cy)$, where the order of c is divisible by 4. It is clear that $G_{y=0}$ is contained in $\langle h \rangle$, which will be our new G_1 .

We now investigate each of the cases described in corollary 12 separately. Our goal is to show that π admits a cyclic affine homology group of order q+1, as having this will force π to be associated to a conical flock by [6].

When $G_{x=0} < G_1 \cong \mathbb{Z}_{q+1}$ and $G_{y=0} < G_2 \cong \mathbb{Z}_{q+1}$, we represent G as follows

$$G = \langle f : (x, y) \to (x\alpha, ya) \rangle \times \langle g : (x, y) \to (xb, y\beta) \rangle$$

where a and b have order q + 1, and α and β have order 2. Also, without loss of generality, $G_{x=0} \subset \langle f \rangle$ and $G_{y=0} \subset \langle g \rangle$.

15 Lemma. G is the direct sum of two symmetric cyclic affine homology groups of order q + 1.

PROOF. If (q+1)/2 is even. Note that $f^{-(q+1)/2}g$ is defined by $(x, y) \rightarrow (xb, y)$, which is a homology of order q+1. Similarly, $g^{-(q+1)/2}f$ is a homology of order q+1 that is symmetric to $f^{-(q+1)/2}g$.

If (q+1)/2 is odd. Compose f and g with $(x,y) \to (-x,-y)$ to obtain

 $(x,y) \to (x,-ya) \qquad \quad \text{and} \qquad \quad (x,y) \to (-xb,y)$

It is clear that these elements are affine homologies of order q + 1 that generate G and that have symmetric axis/coaxis.

Now we will look at $G \cong \mathbb{Z}_{2(q+1)} \times \mathbb{Z}_{(q+1)/2}$. In this case

$$\mathbb{Z}_{2(q+1)} = \langle f : (x, y) \mapsto (x\alpha, ya) \rangle \qquad \mathbb{Z}_{(q+1)/2} = \langle g : (x, y) \to (xb, y) \rangle$$

where $a, b, \alpha \in GF(q^2)$ with $lcm[|a|, |\alpha|] = 2(q+1)$, |b| = (q+1)/2 and, since $f^4 \in G_{y=0}$, $|\alpha|$ divides 4.

16 Theorem. G admits a cyclic homology group of order q + 1.

PROOF. If $|\alpha| = 1$ or 2 then $f^2 \in G_{y=0}$ and thus the plane admits a cyclic homology group of order q + 1.

If $|\alpha| = 4$ and (q+1)/2 is even, then $\alpha^2 = -1 = b^{(q+1)/4}$. It follows that $g^{(q+1)/4}f^2 \in G_{y=0}$ and it has order q+1.

Now assume that $|\alpha| = 4$ and (q+1)/2 is odd. In the case of |a| = (q+1)/2, then $f^{(q+1)/2} \in G_{x=0}$. It follows that $f^{(q+1)/2}g \in G_{x=0}$ and has order 2(q+1). Similarly, if |a| = q + 1, then $f^{q+1} \in G_{x=0}$, and thus $f^{q+1}g \in G_{x=0}$ and has order q + 1. In either case the plane admits a cyclic homology group of order q + 1.

Finally, consider $|\alpha| = 4$, |a| = 2(q+1), and (q+1)/2 odd. Note that $| < \alpha b > | = 2(q+1)$. So, there is a positive integer *i* such that either $a = \alpha b^i$ or $a^{-1} = \alpha b^i$.

In the first case, $f^{(q+1)/2}$ is a kernel homology of order 4, which contradicts our hypothesis.

In the second case, $a^{-1} = \alpha b^i$ forces $a^{-(q+1)/2} = \alpha^{(q+1)/2} = \alpha^{\pm 1}$. We will now look at these two cases separately.

If $a^{-(q+1)/2} = \alpha$, we use $\alpha^{-1} = ab^i$ to get $\alpha^{-(q+1)/2} = a^{(q+1)/2}$. It follows that $\alpha^{(q+1)/2} = \alpha$. All this implies that $f^{(q+1)/2}$ is defined by

$$f^{(q+1)/2}: (x,y) \mapsto (x\alpha, y\alpha^{-1})$$

Since (q+1)/2 odd then $q \equiv 1 \pmod{3}$, thus $\alpha \in GF(q)$. It follows that the map

$$\sigma: (x, y) \mapsto (x\alpha, y\alpha)$$

is a kernel homology, which put together with $f^{(q+1)/2}$ yields

$$\sigma f^{(q+1)/2} : (x,y) \mapsto (-x,y)$$

Hence, the map $\sigma f^{(q+1)/2}g$ is an element of $G_{x=0}$ of order q+1.

Finally, if $a^{(q+1)/2} = \alpha$, just as we did above, we get $\alpha^{(q+1)/2} = \alpha^{-1}$ and thus

$$f^{(q+1)/2}: (x,y) \mapsto (x\alpha^{-1}, y\alpha)$$

The kernel homology $\tau : (x, y) \mapsto (x\alpha^{-1}, y\alpha^{-1})$ finishes the proof. QED

17 Remark. The kernel homologies assumption of theorem 4, is minimal in the sense that, as the situation of two cyclic homology groups of order q + 1shows, we have a kernel homology of order 2 in the group G. It is an open problem to determine what happens when four or more kernel homologies are in G.

References

- J. ANDRÉ: Über Perspektivitäten in endlichen affinen Ebenen (German), Arch. Math., 9 (1958), 228–235.
- [2] M. BILIOTTI, V. JHA, N. L. JOHNSON: Handbook of Finite Translation Planes, Pure and Applied Mathematics (Boca Raton), 289. Chapman & Hall/CRC, Boca Raton, FL, 2007.
- [3] V. JHA, N. L. JOHNSON: The classification of spreads in PG(3,q) admitting linear groups of order q(q+1) I: Odd order, J. Geom., no. 1-2 81 (2004), 46–80.
- [4] V. JHA, N. L. JOHNSON: Multiple nests, Note Mat., no. 1 23 (2004-05), 123-149.
- [5] V. JHA, N. L. JOHNSON: Nests of reguli and flocks of quadratic cones, Simon Stevin, no. 3-4 63 (1989), 311–338.
- [6] N.L. JOHNSON: Homology groups of translation planes and flocks of quadratic cones, I: The structure, Bull, Belg. Math. Soc. Simon Stevin, no. 5 12 (2006), 827–844.
- [7] N.L. JOHNSON: Translation planes of order q^2 that admit q+1 elations, Geom. Dedicata, no. 4 15 (1984), 329–337.
- [8] N.L. JOHNSON, R. POMAREDA, André planes and nests of reguli, Geom. Dedicata, no. 3 31 (1989), 245–260.
- [9] N. L. JOHNSON, R. POMAREDA: Mixed Nests, J. Geom., no. 1-2 56 (1996), 59-86.
- [10] H. LÜNEBURG: Translation Planes, Springer-Verlag, Berlin–New York, 1980.
- [11] T. G. OSTROM: Finite Translation Planes, Lecture Notes in Mathematics, No. 158, Berlin-Heidelberg-New York, Springer-Verlag, 1970.
- [12] D.S. PASSMAN: Permutation Groups, Benjamin, New York, 1968.
- [13] J. ANDRÉ: Über nicht-Desarguesian Ebenen mit transitiver translation gruppen, Math. Z. 60, 156–186.
- [14] R. D. BAKER, G. L. EBERT, T. PENTTILIA: Hyperbolic fibrations and q-clans, Des. Codes Cryptogr., no. 2-3 34 (2005), 295–305.

- [15] G. L. EBERT: Spreads Admitting Regular Elliptic Covers, Europ. J. Comb., no. 4 10 (1989), 319–330.
- [16] G. L. EBERT: Nests, Covers, and Translation Planes, Proc. 11th Brithish Combinatorial Conference (London, 1987), Ars Combin., no. C 25 (1988), 213–233.
- [17] N.L. JOHNSON: Subplane Covered Nets, Monographs and Textbooks in Pure and Applied Mathematics, vol. 222, Marcel Dekker, Inc., New York, 2000.
- [18] K. ZSIGMONDY: ZUR THEORIE DER POTENZRESTE, Monatshefte Math. Phys., 3 (1982), 265–284.