Translation planes admitting a linear Abelian group of order $(q+1)^{2}$.

Esteban Diaz ${ }^{\text {i }}$
Department of Mathematics, University of Connecticut. diaz@math.uconn.edu
Oscar Vega
Department of Mathematics, California State University, Fresno. ovega@csufresno.edu

Abstract

Translation planes of order q^{2} and spread in $P G(3, q)$, where q is an odd prime power and $q^{2}-1$ has a p-primitive divisor, that admit a linear Abelian group of order $(q+1)^{2}$ containing at most three kernel homologies are shown to be associated to flocks of quadratic cones.

Keywords: Translation plane, flock of quadratic cone, homologies
MSC 2000 classification: Primary 51, 05; Secondary 20

1 Introduction

In a series of papers, that span more than fifteen years, translation planes of order q^{2} with spread in $P G(3, q)$ that admit a linear collineation group G of order $q(q+1)$ were completely classified as associated to conical flocks planes. It is also known that translation planes of order q^{2}, with spread in $P G(3, q)$, that admit a cyclic homology group of order $q+1$ are equivalent to conical flocks planes. Moreover, in this situation is possible to show that the full collineation group of the translation plane that admit the cyclic homology of order $q+1$ also admits a group of order $(q+1)^{2}$. In the spirit of this idea, it is possible to argue that the translation planes that admit a group of order $(q+1)^{2}$ may also be associated with conical flocks planes.

We will use standard notation and results found in the literature on finite translation planes and/or flocks of quadratic cones. More details may be found in $[2,10,11]$. In particular , we will use André's [1] theory of translation planes and spreads of vector spaces. A collineation of a translation plane π is a one-to-one mapping of the points onto the points of π that preserves incidence. The collineation group of π is denoted $\operatorname{Aut}(\pi)$, and the stabilizer of 0 is called the

[^0]translation complement of π. If $\Psi \in \operatorname{Aut}(\pi)$ fixes a line l pointwise and all the lines through a point P setwise, then Ψ is called a perspectivity of π, if $P \in l$ then Ψ is called and elation, otherwise it is called a homology. In either case, P is called the center of Ψ and l is called the axis of Ψ.

1 Theorem. [Johnson, [6]] Translation planes with spreads in $P G(3, q)$ admitting cyclic affine homology groups of order $q+1$ are equivalent to flocks of quadratic cones.

2 Theorem. [Johnson [7]] Let V be a vector space of dimension $2 n$ over a field $F \cong G F(q)$, for $q=p^{r}$, p a prime. Assume that a collineation $\sigma \in$ $G L(2 n, q)$ has order dividing $q^{n}-1$ but not dividing $q^{t}-1$ for $t<n$. If σ fixes at least three mutually disjoint n-dimensional F-subspaces then there is an associated Desarguesian spread Σ admitting σ as a kernel homology. Furthermore, the normalizer of $\langle\sigma\rangle$ is a collineation group of Σ. Let us call Σ an 'Ostrom phantom'.

The problem we will study in this paper is:
3 Problem. [Il problema Abeliano rosso] Determine the translation planes π of order q^{2} with spread in $P G(3, q)$ that admit an Abelian collineation group G of order $(q+1)^{2}$ in $G L(4, q)$.

A conjecture regarding this problem says that planes such as those described above must be associated to a flock of a quadratic cone. This comes after a series of papers (see for example $[3-5,8,9]$) that completely classified translation planes of order q^{2} with spread in $P G(3, q)$ admitting a collineation group $G \subset$ $G L(4, q)$ of order $q(q+1)$. Such translation planes turned out to be conical flocks planes or derived conical flocks planes, except in a few sporadic cases, see [3] for more details. Also, it was shown that the group G is solvable and that it has a subgroup H of order $q+1$ that normalizes an elation subgroup E of order q. Moreover, when G fixes two components of π there is an Ostrom phantom Σ associated to π, G is in $G L\left(2, q^{2}\right)$, and H fixes at least two components of π (one being the elation axis). It follows that H and G fix a regulus of the flock's plane.

Theorem 1 implies that if a translation plane Π with spread in $P G(3, q)$ admits a regulus inducing affine homology H_{1} of order $q+1$ in the translation complement, for example H_{1} cyclic, then Π is equivalent to a conical flock plane \mathcal{F}. Now if one takes the normalizer N of H_{1}, then the quotient group N / H_{1} acts as a collineation group of \mathcal{F}, permuting q reguli and fixing one of the reguli of \mathcal{F}. Connecting the previous paragraph with this idea we would have that N / H_{1} has a subgroup of order $(q+1)$. Hence, the normalizer N should contain a subgroup of order $(q+1)^{2}$. This justifies the conjecture.

Our main result follows, it will be proved as a series of results in the next
section.
4 Theorem. Let π be a translation plane of order q^{2} (q an odd prime power) with spread in $P G(3, q)$ admitting a linear Abelian collineation group G of order $(q+1)^{2}$. Assume that G contains at most three kernel homologies and that $q^{2}-1$ admits a p-primitive divisor, then π is associated to a conical flock plane.

5 Remark. Johnson and Pomareda [8] prove that under the same condition of theorem 4, in the case q even, the translation plane admitting the collineation group of order $(q+1)^{2}$ is André or Desarguesian.

2 Proof of the main theorem

For the rest of this article we will assume the hypothesis of theorem 4. Also, S is a spread of π and u is a p-primitive divisor of $q^{2}-1$.

6 Lemma. Any Sylow u-subgroup S_{u} of G fixes 2 components of π.
Proof. Note that $u \neq 2$. Now let $u^{2 a}$ be the maximal power of u dividing $(q+1)^{2}$.

Since $q^{2}+1=(q+1)(q-1)+2$, then $\left(q^{2}+1, u^{2 a}\right)=1$. It follows that the action of S_{u} on the components of S must fix at least one component.

Now S_{u} acts on q^{2} components of S, but since $\left(q^{2}, u^{2 a}\right)=1$ then S_{u} must fix a second component.

QED
7 Lemma. Suppose an element $g \in S_{u}$ fixes a non-zero point in a component L that is being fixed by S_{u}. Then g is an affine homology with axis L.

Proof. Since g is linear, under the hypothesis given we have that g must fix a 1-dimensional $G F(q)$-subspace A of L. Now using that $\left(q, u^{2 a}\right)=1$ we get that A has a 1-dimensional Maschke complement B.

Now recall that the order of g is a power of u, and that the number of nonzero elements in $A(\operatorname{and} B)$ is $q-1$. So, since $\left(q-1, u^{t}\right)=1$ for any integer t, we have that g must fix a point in A (and B), and thus g must fix A and B pointwise. Hence, g fixes the component L pointwise.

QED
Now we change basis, if necessary, to get the two components that are fixed by S_{u} to be $x=0$ and $y=0$. Then we consider S_{u} acting on the 1-dimensional subspaces of $x=0$. Since the order of S_{u} is $u^{2 a}$, and it is acting on a set with $q+1=u^{a} r$ elements, where $(r, u)=1$ and $u^{2 a}>u^{a}$, then the stabilizer of at least one of these 1 -dimensional subspaces must be non-trivial. Using the 'Maschke argument' used in the proof of the previous lemma we can assure that there is a subgroup of S_{u} fixing $x=0$ pointwise, call $H_{x=0}^{(u)}$ to be the largest such a subgroup. Similarly, $H_{y=0}^{(u)}$ is the largest subgroup of S_{u} fixing every point in $y=0$. Moreover, they are normal in S_{u} and, by lemma 7, homology groups.

8 Lemma. $H_{x=0}^{(u)}$ and $H_{y=0}^{(u)}$ are cyclic. $S_{u}=H_{x=0}^{(u)} \oplus H_{y=0}^{(u)}$.
Proof. Since homology groups are Frobenius complements (see [12], for example), and Frobenius complements have cyclic odd-order Sylow subgroups, then both $H_{x=0}^{(u)}$ and $H_{y=0}^{(u)}$ are cyclic.

If we look at the orbit equation of the action of S_{u} on the 1-dimensional subspaces of $x=0$ (let's call them p_{i} 's) we get

$$
u^{a} r=q+1=\sum \frac{u^{2 a}}{\left|\operatorname{Stab}\left(p_{i}\right)\right|}
$$

where the sum considers only one p_{i} per orbit under S_{u} and $(r, u)=1$. We notice that none of the summands can equal one because S_{u} cannot contain nontrivial elements that are homologies with two different axes. Also, if all the stabilizers contain less than u^{a} elements, then $(r, u) \neq 1$. It follows that at least one of the stabilizers has at least u^{a} elements. Since any element fixing a 1dimensional subspace of $x=0$ fixes $x=0$ pointwise, then all stabilizers have at least u^{a} elements. It follows that $\left|H_{x=0}^{(u)}\right| \geq u^{a}$ and, similarly, $\left|H_{y=0}^{(u)}\right| \geq u^{a}$. Hence, $\left|H_{x=0}^{(u)} \cap H_{y=0}^{(u)}\right|=1$ implies $S_{u}=H_{x=0}^{(u)} \oplus H_{y=0}^{(u)}$.

9 Remark. Note that $H_{x=0}^{(u)}$ and $H_{y=0}^{(u)}$ commuting implies that they are symmetric homology groups.

Also, the previous three lemmas are valid even when G is not Abelian.
10 Theorem. There is $g \in S_{u}$ of order u that fixes 3 components of S (two of them being $x=0$ and $y=0$). Furthermore, there is an Ostrom phantom Σ induced by g, and $G \leq \Gamma L\left(2, q^{2}\right)$.

Proof. We know $H_{x=0}^{(u)}$ is an affine homology group with axis $x=0$ and coaxis $y=0$ that acts on the remaining $q^{2}-1$ components of the given spread producing $\left(q^{2}-1\right) / u^{a}$ orbits. Note that $H_{y=0}^{(u)}$ acts on these orbits and that, since $\left(u^{a},\left(q^{2}-1\right) / u^{a}\right)=1$ then $H_{y=0}^{(u)}$ fixes at least one of them, call it M. Then, we can consider S_{u} acting on M. The orbit equation of this action is:

$$
u^{a}=\sum \frac{u^{2 a}}{\left|\operatorname{Stab}\left(l_{i}\right)\right|}
$$

where the sum is on the components of M, one l_{i} per orbit under S_{u}.
It is clear that none of the stabilizers can be trivial. In this way we obtain an element $g \in S_{u}$ of order u that fixes some $l_{i}, x=0$ and $y=0$. This element g satisfies the hypothesis of theorem 2, and thus there is an Ostrom phantom Σ and the normalizer of $\langle g>$ in $G L(4, q)$ is a collineation group of Σ. Since G is Abelian then it is a collineation group of Σ.

11 Lemma. G has a subgroup of order $(q+1)^{2} / 4$ which is the direct sum of two cyclic symmetric affine homology groups of order $(q+1) / 2$. Their axes/coaxes are $x=0$ and $y=0$.

Proof. Let us denote by $(q+1)_{2}$ the maximal power of 2 in $q+1$, and by S_{2} the 2-Sylow subgroup of G, which has order $(q+1)_{2}$. Since G is Abelian, then S_{2} acts on the fixed points of $H_{x=0}^{(u)}$, which forces S_{2} to fix $x=0$. Similarly, S_{2} fixes $y=0$.

Now, consider the restriction of S_{2} to $x=0$, this group is isomorphic to $S_{2} /\left(S_{2}\right)_{x=0}$, where $\left(S_{2}\right)_{x=0}$ is the subgroup of S_{2} that fixes $x=0$ pointwise. But, also $S_{2} /\left(S_{2}\right)_{x=0}$ is a subgroup of $P G L(2, q)$, since it acts on $y=0$, which can be regarded as a Desarguesian plane. It follows that

$$
\left|\frac{S_{2}}{\left(S_{2}\right)_{x=0}}\right|=\frac{(q+1)_{2}^{2}}{\left|\left(S_{2}\right)_{x=0}\right|}
$$

divides

$$
|P G L(2, q)|_{2}=(q-1)_{2}(q+1)_{2}=2(q+1)_{2} .
$$

From that we get

$$
\frac{(q+1)_{2}}{2}\left|\left|\left(S_{2}\right)_{x=0}\right| .\right.
$$

Now consider $H<G$ of order $(q+1)_{o d d}^{2}=(q+1)^{2} /(q+1)_{2}$. Using the same arguments used with $\left(S_{2}\right)_{x=0}$ we obtain

$$
(q+1)_{\text {odd }}| | H_{x=0} \mid .
$$

Hence, the subgroup $G_{x=0}$ of G that fixes $x=0$ pointwise has order a multiple of

$$
\left|\left(S_{2}\right)_{x=0}\right|\left|H_{x=0}\right|=\frac{(q+1)_{2}}{2}(q+1)_{\text {odd }}=\frac{(q+1)}{2}
$$

Using the same argument with $y=0$ we obtain that $G_{x=0} \times G_{y=0}$ is the desired subgroup of G.

12 Corollary. Let $G_{x=0}$ and $G_{y=0}$ be the cyclic homology groups of order $(q+1) / 2$ found in lemma 11. Then, after a change of basis if necessary, $G=$ $G_{1} \times G_{2}$ with
(1) $G_{x=0}<G_{1} \cong \mathbb{Z}_{q+1}$ and $G_{y=0}<G_{2} \cong \mathbb{Z}_{q+1}$,
(2) $G_{x=0}<G_{1} \cong \mathbb{Z}_{2(q+1)}, G_{y=0}=G_{2} \cong \mathbb{Z}_{\frac{q+1}{2}}$, and $(q+1) / 2$ is odd, or
(3) $G \cong \mathbb{Z}_{2(q+1)} \times \mathbb{Z}_{\frac{q+1}{2}},(q+1) / 2$ is even, and at least one of $G_{x=0}$ or $G_{y=0}$ is a subgroup of one factor of G.

Proof. If $(q+1) / 2$ is odd, then the 2-Sylow subgroup of G intersects $G_{x=0} \times$ $G_{y=0}$ trivially, and thus we are done.

If $(q+1) / 2$ is even then having G to be the direct product of three or more factors would force Σ to admit an elementary Abelian group of order 8 or 16, this is a contradiction. It follows that either $G \cong \mathbb{Z}_{q+1} \times \mathbb{Z}_{q+1}$ or $G \cong \mathbb{Z}_{2(q+1)} \times \mathbb{Z}_{\frac{q+1}{2}}$.

In the former case we break $G_{x=0} \times G_{y=0}$ into the direct product of its 2Sylow subgroup H_{2} with its complement. The idea used in the case $(q+1) / 2$ odd is applicable to the complement of the H_{2}, thus we will look at this group.

Assume that $H_{2} \cong \mathbb{Z}_{2^{n}} \times \mathbb{Z}_{2^{n}}$ is a subgroup of $G_{2} \cong \mathbb{Z}_{2^{n+1}} \times \mathbb{Z}_{2^{n+1}}$ (the 2-Sylow subgroup of G). An element in G_{2} of order 2^{n} looks like (\bar{a}, \bar{b}) where both a and b are congruent to 2 modulo 4 , it follows that $(\bar{a}, \bar{b})=2(\overline{a / 2}, \overline{b / 2})$. Hence, each of the $\mathbb{Z}_{2^{n}}$'s in H_{2} is contained in some $\mathbb{Z}_{2^{n+1}}$ in G_{2}, thus a change of generators of G_{2} implies that we can consider each of the factors of H_{2} to be contained in one of the factors of G_{2}, which is what we wanted.

If $G \cong \mathbb{Z}_{2(q+1)} \times \mathbb{Z}_{\frac{q+1}{2}}$ and $(q+1) / 2$ we break again $G_{x=0} \times G_{y=0}$ into the direct product of its 2-Sylow subgroup H_{2} with its complement. In this case, an element of order 2^{n} can be either four times an element in G, twice but not four times an element in G, or not twice an element in G. If a generator of one of the factors of H_{2} is either the first or third case, then we assure that one of the factors of $G_{x=0} \times G_{y=0}$ is a subgroup of one of the factors of G.

Let us assume that both of the generators of the factors of H_{2} are twice but not four times an element of G. These elements look like $(\overline{8 a+4}, \overline{4 b+2})$ and $(\overline{8 \alpha+4}, \overline{4 \beta+2})$, where $a, b, \alpha, \beta \in \mathbb{Z}$. However,

$$
2^{n-1}(\overline{8 a+4}, \overline{4 b+2})=2^{n-1}(\overline{8 \alpha+4}, \overline{4 \beta+2})=\left(\overline{2^{n+1}}, \overline{0}\right)
$$

and thus the groups these elements generate intersect non-trivially. That is a contradiction.

13 Lemma. The elements in G have the form

$$
(x, y) \rightarrow(x a, y b)
$$

where $a, b \in G F\left(q^{2}\right)$. In particular, $G<G L\left(2, q^{2}\right)$.
Proof. We know there exists an Ostrom phantom Σ associated to π, and that G is a collineation group of Σ that fixes $x=0$ and $y=0$. Then, a generic element $g \in G$ looks like

$$
g:(x, y) \rightarrow\left(x^{\sigma} a, y^{\sigma} b\right)
$$

where σ is 1 or q, and $a, b \in G F\left(q^{2}\right)^{*}$.

We also know that $H_{y=0}^{(u)}$ is a cyclic homology group of π, thus it is generated by

$$
\tau:(x, y) \rightarrow(x, y c)
$$

where $|c|$ must divide $(q+1)_{\text {odd }}$, which forces $c^{\sigma}=c$. Using that G is Abelian we check $g^{-1} \tau^{-1} g \tau$ for $g \in G$, as above, to obtain that $\sigma=1$ for all $g \in G$. 区ED

14 Theorem. $G_{x=0}<G_{1}$ and $G_{y=0}<G_{2}$.
Proof. We just need to show that in the case $G_{1} \cong \mathbb{Z}_{2(q+1)}, G_{2} \cong \mathbb{Z}_{(q+1) / 2}$, and $(q+1) / 2$ even, it is true that $G_{x=0} \subset G_{1}$ if and only if $G_{y=0}=G_{2}$.

Assume that $G_{x=0} \subset G_{1} \cong \mathbb{Z}_{2(q+1)}$. Using the previous lemma we can assume that $G_{1}=\langle f:(x, y) \mapsto(a x, b y)\rangle$ and $G_{x=0}=\left\langle f^{4}:(x, y) \mapsto\left(a^{4} x, y\right)\right\rangle$, where $|a|=2(q+1)$, and $|b|$ is divisible by 4 . Similarly, $G_{2}=\langle g:(x, y) \mapsto(c x, d y)\rangle$ where $\operatorname{lcm}(|c|,|d|)=(q+1) / 2$.

Recall that $a, b, c, d \in G F\left(q^{2}\right)$ and note that that a^{4} has order $(q+1) / 2$, thus $c=a^{4 i}$ for some positive integer i. So, if the order of d were a proper divisor of $(q+1) / 2$ then

$$
e \neq g^{|d|}:(x, y) \mapsto\left(c^{|d|}, y\right)
$$

which is $f^{4|d|} \in G_{1}$, that is a contradiction. Hence, $|d|=(q+1) / 2$, and thus the element $f^{-4 i} g$ generates $G_{x=0}$.

Now assume that $G_{y=0}=G_{2} \cong \mathbb{Z}_{(q+1) / 2}$. Using the previous lemma we can assume that $G_{2}=\langle g:(x, y) \mapsto(x, b y)\rangle$, where $|b|=(q+1) / 2$. We can also say that G_{1} is generated by $f:(x, y) \mapsto(\alpha x, \beta y)$, where $\alpha, \beta \in G F\left(q^{2}\right)$ and $\operatorname{lcm}(|\alpha|,|\beta|)=2(q+1)$.

Note that $f^{4}:(x, y) \mapsto\left(\alpha^{4} x, \beta^{4} y\right)$ has order $(q+1) / 2$, and thus both α^{4} and β^{4} are powers of b. Hence, composing f^{4} with some power of g gives us the collineation of G

$$
(x, y) \mapsto\left(\alpha^{4} x, y\right)
$$

which is a homology of order $(q+1) / 2$. It follows that G is spanned by g and $h:(x, y) \mapsto(a x, c y)$, where the order of c is divisible by 4. It is clear that $G_{y=0}$ is contained in $\langle h\rangle$, which will be our new G_{1}. QED

We now investigate each of the cases described in corollary 12 separately. Our goal is to show that π admits a cyclic affine homology group of order $q+1$, as having this will force π to be associated to a conical flock by [6].

When $G_{x=0}<G_{1} \cong \mathbb{Z}_{q+1}$ and $G_{y=0}<G_{2} \cong \mathbb{Z}_{q+1}$, we represent G as follows

$$
G=\langle f:(x, y) \rightarrow(x \alpha, y a)\rangle \times\langle g:(x, y) \rightarrow(x b, y \beta\rangle
$$

where a and b have order $q+1$, and α and β have order 2 . Also, without loss of generality, $G_{x=0} \subset<f>$ and $G_{y=0} \subset<g>$.

15 Lemma. G is the direct sum of two symmetric cyclic affine homology groups of order $q+1$.

Proof. If $(q+1) / 2$ is even. Note that $f^{-(q+1) / 2} g$ is defined by $(x, y) \rightarrow$ $(x b, y)$, which is a homology of order $q+1$. Similarly, $g^{-(q+1) / 2} f$ is a homology of order $q+1$ that is symmetric to $f^{-(q+1) / 2} g$.

If $(q+1) / 2$ is odd. Compose f and g with $(x, y) \rightarrow(-x,-y)$ to obtain

$$
(x, y) \rightarrow(x,-y a) \quad \text { and } \quad(x, y) \rightarrow(-x b, y)
$$

It is clear that these elements are affine homologies of order $q+1$ that generate G and that have symmetric axis/coaxis.

QED
Now we will look at $G \cong \mathbb{Z}_{2(q+1)} \times \mathbb{Z}_{(q+1) / 2}$. In this case

$$
\mathbb{Z}_{2(q+1)}=\langle f:(x, y) \mapsto(x \alpha, y a)\rangle \quad \mathbb{Z}_{(q+1) / 2}=\langle g:(x, y) \rightarrow(x b, y)\rangle
$$

where $a, b, \alpha \in G F\left(q^{2}\right)$ with $l c m[|a|,|\alpha|]=2(q+1),|b|=(q+1) / 2$ and, since $f^{4} \in G_{y=0},|\alpha|$ divides 4 .

16 Theorem. G admits a cyclic homology group of order $q+1$.
Proof. If $|\alpha|=1$ or 2 then $f^{2} \in G_{y=0}$ and thus the plane admits a cyclic homology group of order $q+1$.

If $|\alpha|=4$ and $(q+1) / 2$ is even, then $\alpha^{2}=-1=b^{(q+1) / 4}$. It follows that $g^{(q+1) / 4} f^{2} \in G_{y=0}$ and it has order $q+1$.

Now assume that $|\alpha|=4$ and $(q+1) / 2$ is odd. In the case of $|a|=(q+1) / 2$, then $f^{(q+1) / 2} \in G_{x=0}$. It follows that $f^{(q+1) / 2} g \in G_{x=0}$ and has order $2(q+1)$. Similarly, if $|a|=q+1$, then $f^{q+1} \in G_{x=0}$, and thus $f^{q+1} g \in G_{x=0}$ and has order $q+1$. In either case the plane admits a cyclic homology group of order $q+1$.

Finally, consider $|\alpha|=4,|a|=2(q+1)$, and $(q+1) / 2$ odd. Note that $|\langle\alpha b\rangle|=2(q+1)$. So, there is a positive integer i such that either $a=\alpha b^{i}$ or $a^{-1}=\alpha b^{i}$.

In the first case, $f^{(q+1) / 2}$ is a kernel homology of order 4, which contradicts our hypothesis.

In the second case, $a^{-1}=\alpha b^{i}$ forces $a^{-(q+1) / 2}=\alpha^{(q+1) / 2}=\alpha^{ \pm 1}$. We will now look at these two cases separately.

If $a^{-(q+1) / 2}=\alpha$, we use $\alpha^{-1}=a b^{i}$ to get $\alpha^{-(q+1) / 2}=a^{(q+1) / 2}$. It follows that $\alpha^{(q+1) / 2}=\alpha$. All this implies that $f^{(q+1) / 2}$ is defined by

$$
f^{(q+1) / 2}:(x, y) \mapsto\left(x \alpha, y \alpha^{-1}\right)
$$

Since $(q+1) / 2$ odd then $q \equiv 1(\bmod 3)$, thus $\alpha \in G F(q)$. It follows that the map

$$
\sigma:(x, y) \mapsto(x \alpha, y \alpha)
$$

is a kernel homology, which put together with $f^{(q+1) / 2}$ yields

$$
\sigma f^{(q+1) / 2}:(x, y) \mapsto(-x, y)
$$

Hence, the map $\sigma f^{(q+1) / 2} g$ is an element of $G_{x=0}$ of order $q+1$.
Finally, if $a^{(q+1) / 2}=\alpha$, just as we did above, we get $\alpha^{(q+1) / 2}=\alpha^{-1}$ and thus

$$
f^{(q+1) / 2}:(x, y) \mapsto\left(x \alpha^{-1}, y \alpha\right)
$$

The kernel homology $\tau:(x, y) \mapsto\left(x \alpha^{-1}, y \alpha^{-1}\right)$ finishes the proof. QED
17 Remark. The kernel homologies assumption of theorem 4, is minimal in the sense that, as the situation of two cyclic homology groups of order $q+1$ shows, we have a kernel homology of order 2 in the group G. It is an open problem to determine what happens when four or more kernel homologies are in G.

References

[1] J. André: Über Perspektivitäten in endlichen affinen Ebenen (German), Arch. Math., 9 (1958), 228-235.
[2] M. Biliotti, V. Jha, N. L. Johnson: Handbook of Finite Translation Planes, Pure and Applied Mathematics (Boca Raton), 289. Chapman \& Hall/CRC, Boca Raton, FL, 2007.
[3] V. Jha, N. L. Johnson: The classification of spreads in $P G(3, q)$ admitting linear groups of order $q(q+1)$ I: Odd order, J. Geom., no. 1-2 81 (2004), 46-80.
[4] V. Jha, N. L. Johnson: Multiple nests, Note Mat., no. 123 (2004-05), 123-149.
[5] V. Jha, N. L. Johnson: Nests of reguli and flocks of quadratic cones, Simon Stevin, no. 3-4 63 (1989), 311-338.
[6] N.L. Johnson: Homology groups of translation planes and flocks of quadratic cones, I: The structure, Bull, Belg. Math. Soc. Simon Stevin, no. 512 (2006), 827-844.
[7] N.L. Johnson: Translation planes of order q^{2} that admit $q+1$ elations, Geom. Dedicata, no. 415 (1984), 329-337.
[8] N.L. Johnson, R. Pomareda, André planes and nests of reguli, Geom. Dedicata, no. 3 31 (1989), 245-260.
[9] N. L. Johnson, R. Pomareda: Mixed Nests, J. Geom., no. 1-2 56 (1996), 59-86.
[10] H. Lüneburg: Translation Planes, Springer-Verlag, Berlin-New York, 1980.
[11] T. G. Ostrom: Finite Translation Planes, Lecture Notes in Mathematics, No. 158, Berlin-Heidelberg-New York, Springer-Verlag, 1970.
[12] D.S. Passman: Permutation Groups, Benjamin, New York, 1968.
[13] J. André: Über nicht-Desarguesian Ebenen mit transitiver translation gruppen, Math. Z. 60, 156-186.
[14] R. D. Baker, G. L. Ebert, T. Penttilia: Hyperbolic fibrations and q-clans, Des. Codes Cryptogr., no. 2-3 34 (2005), 295-305.
[15] G. L. Ebert: Spreads Admitting Regular Elliptic Covers, Europ. J. Comb., no. 410 (1989), 319-330.
[16] G. L. Ebert: Nests, Covers, and Translation Planes, Proc. 11th Brithish Combinatorial Conference (London, 1987), Ars Combin., no. C 25 (1988), 213-233.
[17] N.L. Johnson: Subplane Covered Nets, Monographs and Textbooks in Pure and Applied Mathematics, vol. 222, Marcel Dekker, Inc., New York, 2000.
[18] K. Zsigmondy: Zur Theorie der Potenzreste, Monatshefte Math. Phys., 3 (1982), 265-284.

[^0]: ${ }^{i}$ This article is dedicated to Norman Johnson on the occasion of his $70^{\text {th }}$ birthday.

