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Some partitions in Figueroa planes
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Abstract. Using Grundhöfer’s construction of the Figueroa planes from Pappian planes
which have an order 3 planar collineation α̂, we show that any Figueroa plane (finite or infinite)
has a partition of the complement of any proper 〈α̂〉-invariant triangle mostly into subplanes
together with a few collinear point sets (from the point set view) and a few concurrent line
sets (from the line set view). The partition shows that each Figueroa line (regarded as a set of
points) is either the same as a Pappian line or consists mostly of a disjoint union of subplanes
of the Pappian plane (most lines are of this latter type) and dually. This last sentence is true
with “Figueroa” and “Pappian” interchanged. There are many collinear subsets of Figueroa
points which are a subset of the set of points of a Pappian conic and dually.

Keywords: projective plane, Figueroa plane, Pappian plane, subplane, partition, conic, oval,
hyperoval
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1 Introduction

A class of non-Desarguesian, proper, finite projective planes of orders q3 for
prime powers q 6≡ 1 ( mod 3) and q > 2 were defined by Figueroa [6] in 1982.
This construction was generalized to all prime powers q > 2 by Hering and
Schaeffer [8] later in the same year. We [1] gave a group-coset description of
these finite Figueroa planes in 1983. The construction was extended to include
infinite planes in 1984 by Dempwolff [5]. These constructions were all algebraic
in the sense that they made essential use of collineation groups and coordinates.
In 1986 Grundhöfer [7] gave a beautiful synthetic construction which included
all these Figueroa planes.

We remind readers of Theo Grundhöfer’s elegant synthetic definition of the
Figueroa planes. Consider a Pappian plane which has an order 3 planar collinear
α̂. The point set (line set) of the Figueroa plane is the same as the point set
(line set) of the Pappian plane, but incidence is changed. Letting IP and IF

denote Pappian and Figueroa incidence, respectively, IF is defined in terms of
IP as follows: if either P<α̂> or ℓ<α̂> is not a proper triangle, then P IF ℓ ⇔ P
IP ℓ; if both P<α̂> and ℓ<α̂> are proper triangles, then P IF ℓ ⇔ the “vertex”
opposite ℓ in ℓ<α̂> IP the “side” opposite P in P<α̂>. In what follows we shall
denote the “vertex” opposite ℓ in ℓ ><>̂α> by opp(ℓ) and we shall denote the
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“side” opposite P in P<α̂> by opp(P ).
The map α̂ which is a planar collineation of the Pappian plane remains

a planar collineation of the Figueroa plane. Any collineation or polarity of the
Pappian plane which commutes with α̂ remains a collineation or polarity, respec-
tively, of the Figueroa plane. Letting α denote the field automorphism associ-
ated with the planar automorphism α̂, the Figueroa plane inherits a collineation
group isomorphic to PGL(3,Fix(α)). We describe the orbits of this group.

The set of points P for which P 〈α̂〉 is a single point is an orbit. We call points
in this orbit type I. The set of points P for which P 〈α̂〉 is three collinear points
is an orbit. We call points in this orbit type II. The set of points P for which
P 〈α̂〉 is a proper triangle is an orbit. We call points in this orbit type III. Line
orbits have dual descriptions and types of lines have dual definitions. (In general,
collinearity of three points (concurrency of three lines) may be different with
respect to IF and to IP . But for P 〈α̂〉 = {P, P α̂, P α̂2} (for ℓ〈α̂〉 = {ℓ, ℓα̂, ℓα̂2}) it is
the same. So the above definition of types is unambiguous.) Figueroa incidence
induces on the orbits of type I points and lines the structure of a subplane
isomorphic to PG(2,Fix(α)).

We define the characteristic of a Figueroa plane to be the the characteristic
of the field which coordinatises the Pappian plane from which the Figueroa plane
is constructed.

2 The partitions

We use Grundhöfer’s construction together with homogeneous coordinates
to show the following:

1 Theorem. For every (finite or infinite) Figueroa plane and every 〈α̂〉-
invariant proper triangle (and for the Pappian plane from which it is constructed
by Grundhöfer):

1. There is a partition of the point set complement of the vertices of the
triangle into point subsets each of which is either a collinear set of points or
is the point set of a subplane isormorphic to PG(2,Fix(α)). (The partition
is the same in both planes, but collinearity or planarity of the parts of the
partition differs in some cases.) In each plane the collection of planar
parts of the partition is a partition of the point set complement of the set
of points incident with the “sides” of triangle.

2. There is a partition of the line set complement of the sides of the triangle
into line subsets each of which is either a concurrent set of lines or is the
line set of a subplane isomorphic to PG(2,Fix(α)). (The partition is the
same in both planes, but concurrency or coplanarity of the parts of the
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partition differs in some cases.) In each plane the collection of coplanar
parts of the partition is a partition of the line set complement of the set
of lines incident with the “vertices” of triangle.

3. For each of our big planes there is a one to one correspondence between
the planar point set parts of the point partition and the coplanar line set
parts of the line partition such that corresponding parts are the point set
and line set of the same subplane. (This correspondence is not the same
in the two planes. It is not the same in the sense that the domains and
images of the correspondence differ. It is also not the same in the sense
that the the elementwise correspondence is mostly not the same.) There is
a collineation group S which acts as a Singer group on every one of these
subplane parts (the same group S in both big planes).

Proof. Without loss of generality we may choose as our planar automor-
phism the map α̂ which acts on points as 〈(x, y, z)〉 7→ 〈(zα, xα, yα)〉 and on
lines as 〈


d
e
f



〉
7→
〈

fα

dα

eα



〉
.

Define

m(x, y, z) =



x y z
zα xα yα

yα
2

zα
2

xα
2




and

m



d
e
f


 =



d fα eα

2

e dα fα
2

f eα dα
2


 .

A point P = 〈(x, y, z)〉 is of type III ⇔ detm(x, y, z) 6= 0 and a line

ℓ =

〈

d
e
f



〉

is of type III ⇔ detm



d
e
f


 6= 0. By transitivity of our PGL group on points

(and lines) of type III we may assume that our special proper 〈α̂〉-triangle has

vertex set 〈(1, 0, 0)〉〈α̂〉 and line set

〈

1
0
0



〉〈α̂〉

.
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The point action of the PGL group acting on this representation of the
Figueroa plane becomes the action of the group of all invertible matrices



a b c
cα aα bα

bα
2

cα
2

aα
2


 ,

acting by right matrix multiplication on the point coordinates, modulo the in-
vertible Fix(〈α〉)-multiples of the identity matrix. The group induced by all
matrices of this form with b = c = 0 will be used very often and will be denoted
by S. The plane is self dual under the polarity

〈(x, y, z)〉 ↔
〈

x
y
z



〉
.

The parts of our partitions will be the nonsingleton orbits of the group
S. Note that S acts semiregularly on the union of these orbits and therefore
regularly on each orbit.

For detm(x, y, z) = 0 or detm



yz
zx
xy


 = 0 distinct points of 〈(x, y, z)〉S

are incident, in both planes, with a line of

〈

yz
zx
xy



〉S

. (It is an immediate

application of the definition of incidence that, in both planes, the line incident
with distinct points 〈(bx, bαy, bα2

z)〉 and 〈(cx, cαy, cα2
z)〉 is

〈


(bcα − bαc)αyz
(bcα − bαc)α2

zx
(bcα − bαc)xy



〉
).

For detm(x, y, z) 6= 0 and detm



yz
zx
xy


 6= 0, in the Pappian plane distinct

points of 〈(x, y, z)〉S are incident with a line of

〈

yz
zx
xy



〉S

by the same imme-

diate application.

For detm(x, y, z) 6= 0 and detm



yz
zx
xy


 6= 0, in the Figueroa plane we shall





Some partitions in Figueroa planes 37

show that distinct points of 〈(x, y, z)〉S are incident with a line of

〈

xY Zα2

yZXα2

zXY α2



〉S

where X = x1+α − yzα, Y = y1+α − zxα, Z = z1+α − xyα.
We shall use the easy facts

XY αZα2
= (xyαzα

2
)α

2
detm(x, y, z) − detm



yz
zx
xy


 ,

Xα2+1 − Y α2
Z = x detm(x, y, z),

Y α2+1 − Zα2
X = y detm(x, y, z),

Zα2+1 −Xα2
Y = z detm(x, y, z)

and

N(X)−N(x) detm(x, y, z) =

N(Y )−N(y) detm(x, y, z) =

N(Z)−N(z) detm(x, y, z) =

− detm



yz
zx
xy


 ∈ Fix(α).

(Here N(t) denotes t1+α+α2
that is N is the relative norm function.) We shall

also use several times:

xα+α2
Y α2

Z − yαzα2
Xα2+1 = yα+α2

Zα2
X − zαxα2

Y α2+1

= zα+α2
Xα2

Y − xαyα2
Zα2+1 = − detm



yz
zx
xy


 .

Then
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detm



xY Zα2

yZXα2

zXY α2


 = −

(
detm(x, y, z)

)(
detm



yz
zx
xy



)2

which shows that under our hypotheses the lines of

〈

xY Zα2

yZXα2

zXY α2



〉S

are of type III.
For distinct points Pb = 〈(bx, bαy, bα

2
z)〉, Pc = 〈(cx, cαy, cα2

z〉 in 〈(x, y, z)〉S ,

opp(Pb) =

〈

bα+α2

Xα

bα
2+1Y α

b1+αZα



〉
, opp(Pc) =

〈

cα+α2

Xα

cα
2+1Y α

c1+αZα



〉

and both of these are Pappian incident with

opp(ℓf ) = opp

〈


fxY Zα2

fαyZXα2

fα
2
zXY α2



〉

= 〈(f−1(Y Z)α, f−α(ZX)α, fα
−2
(XY )α)〉

for f = (bc)α+α2
(bαc− bcα)−α.

The 〈(x, y, z)〉S with exactly one of x, y, z equal to zero are collinear sets of
points in the Pappian plane. Each of the other 〈(x, y, z)〉S is, in the Pappian
plane, the point set of a subplane as can be seen by the isomorphism:

〈(bx, bαy, bα2
z)〉 7→ 〈(b, bα, bα2

)〉,
〈


dyz
dαzx

dα
2
xy



〉S

7→
〈


d
dα

dα
2



〉S

from

(
〈(x, y, z)〉S ,

〈

yz
zx
xy



〉S)

to

(
points of type I, lines of type I

)
.

In the Figueroa plane case, the collinear 〈(x, y, z)〉S consist of all 〈(x, y, z)〉S
with exactly one of x, y, z equal to zero and either detm(x, y, z) = 0 or

detm



yz
zx
xy


 = 0
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together with all 〈(x, y, z)〉S with none of x, y, z equal to zero, exactly one of

X,Y, Z equal to zero, and detm(x, y, z) 6= 0, detm



yz
zx
xy


 6= 0. Each of the

other 〈(x, y, z)〉S , in the Figueroa case, is the point set of a subplane. An iso-
mophism which shows this has the same formula as the one in the Pappian case

if detm(x, y, z) = 0 or detm



yz
zx
xy


 = 0. Otherwise an isomorphism is:

〈(bx, bαy, bα2
z)〉 7→ 〈(b−1, b−α, b−α2〉,

〈


dxY Zα2

dαyZXα2

dα
2
zXY α2



〉
7→
〈

d−1

d−α

d−α2



〉

from

(
〈(x, y, z)〉S ,

〈

xY Zα2

yZXα2

zXY α2



〉S)

to (points of type I, lines of type I).

This proves part 1 of the theorem. Part 2 follows by duality.

The one to one correspondence claimed in part 3 of the theorem is, in the
Pappian case:

〈(x, y, z)〉S ↔
〈

yz
zx
xy



〉S

with domain x, y, z 6= 0. (Note that x, y, z 6= 0 ⇔ yz, zx, xy 6= 0.)

The one to one correspondence, in the Figuera case, has a two piece defini-
tion:

One piece of the correspondence is:

〈(x, y, z)〉S ↔
〈

yz
zx
xy



〉S

for x, y, z 6= 0 and either detm(x, y, z) = 0 or detm



yz
zx
xy


 = 0. (Again note:
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x, y, z 6= 0 ⇔ yz, zx, xy = 0. Also note that in this case detm



yz
zx
xy


 = 0 or

detm
(
(yz)(zx), (zx)(xy), (xy)(yz)

)
= N(xyz) detm(z, x, y) = 0⇔ detm(x, y, z) = 0

or detm



yz
zx
xy


 = 0.)

The other piece of the correspondence, in the Figueroa case, is:

〈(x, y, z)〉 ↔
〈

xY Zα2

yZXα2

zXY α2



〉

for X,Y, Z 6= 0, detm(x, y, z) 6= 0, detm



yz
zx
xy


 6= 0. To verify this it helps to let

x̂ = xY Zα2
, ŷ = yZXα2

, ẑ = zXY α2
and X̂ = x̂1+α−ŷẑα, Ŷ = ŷ1+α−ẑx̂α, Ẑ =

ẑ1+α − x̂ŷα. Then

X̂ = −Y Z detm



yz
zx
xy




Ŷ = −ZX detm



yz
zx
xy




Ẑ = −XY detm



yz
zx
xy




and

x̂Ŷ Ẑα2
= x(XY Z)α

2+1

(
detm



yz
zx
xy



)2

ŷẐX̂α2
= y(XY Z)α

2+1

(
detm



yz
zx
xy



)2
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ẑX̂Ŷ α2
= z(XY Z)α

2+1

(
detm



yz
zx
xy



)2

which shows that the second power of the correspondence is the identity.

(Note thatX̂, Ŷ , Ẑ 6= 0⇔ X,Y, Z 6= 0. Also note that under these conditions

detm



x̂
ŷ
ẑ


 = detm



xY Zα2

yZXα2

zXY α2


 = −

(
detm(x, y, z)

)(
detm



yz
zx
xy



)2

6= 0

and

detm



x̂Ŷ Ẑα2

ŷẐX̂α2

ẑX̂Ŷ α2


 =

(
N(XY Z)

)2
(

detm



yz
zx
xy



)6

detm(x, y, z) 6= 0

⇔ detm(x, y, z) 6= 0, detm



yz
zx
xy


 6= 0.) This proves part 3 of the theorem.

This proves the theorem. QED

2 Remark. If the Pappian plane has an α̂-invariant subplane on which the
restriction of α̂ is an order 3 planar collineation, the Figueroa plane constructed
using the subplane and the restriction of α̂ to the subplane is a Figueroa sub-
plane of the (first) big Figueroa plane. (From this it follows that the Figueroa
plane of order q3 is a subplane of the Figueroa plane of order q3r for any prime
power q and any r ≡ 1 or 2( mod 3)). Let partitions be based, both in the
big plane and in the subplane, on the same α̂-invariant proper triangle of the
subplane. Then the partition of the subplane embeds in the partition of the big
plane in the sense that any part of the the big plane partition either meets the
subplane in a part of the subplane partition or has empty intersection with the
subplane.

3 Corollary. Every type I line and every type II line is incident with exactly
the same set of points in the Figueroa plane as in the Pappian plane. Every type
III line ℓ in the two planes is incident with the same set of type II points and
with the two points (opp(ℓ))α and (opp(ℓ))α

2
, but all other incident points are

different: the Figueroa (Pappian) line is incident with the points of a disjoint
union of Pappian (Figueroa) subplanes, with both points and lines of type III,
from the partition associated with ℓ〈α〉.
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Proof. By the definition of incidence and the transitivity of the PGL group
on the set of type III lines, it is sufficieint to prove the last sentence for

ℓ =

〈

0
0
1



〉
.

Note that the type III line

〈

0
0
1



〉

is Figueroa incident with all the points

in the disjoint union ∪z,N(z) 6=0,1〈(z1+α, 1, z)〉S which is the set of all the points
in the disjoint union of Pappian subplanes

(
〈(z1+α, 1, z)〉S ,

〈


1
z1+α

zα



〉S)

; z,N(z) 6= 0, 1.

Also the type III line

〈

0
0
1



〉

is Pappian incident with all the points in the

disjoint union ∪x,N(x) 6=0,−1〈(x, 1, 0)〉S which is the set of all the points in the

disjoint union of Figueroa subplanes

(
〈x, 1, 0)〉S ,

〈

1
x
0



〉S)

; x,N(x) 6= 0,−1.

This proves the corollary. QED

4 Corollary. Let L be the set of points of a line of one of these subplanes,
of the partition, which is formed from points of type III and lines of type III.
(The majority of the subplanes of the partition are of this type.) In the Figueroa
case L is the intersection of the set of points of the subplane with the set of
points of a Pappian conic through the vertices of the triangle.

Proof. Any part of the Figueroa partition of this type is

(
< a, b, c)S ,

〈

aBCα2

bCAα2

cABα2



〉S)

where detm(a, b, c) 6= 0, detm



bc
ca
ab


 6= 0 and where A = a1+α − bcα, B =

b1+α − caα, C = c1+α − abα and where a, b, c, A,B,C 6= 0. Let L be the set
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of points of point part 〈(a, b, c)〉S which are IF with line

〈

taBCα2

tαbCAα2

tα
2
cABα2



〉

for

some fixed t 6= 0. Then L is the set of points 〈(sa, sαb, sα2
c)〉 satisfying s−1t−1+

s−αt−α+s−α2
t−α2

= 0 which is the same as the set of points of 〈(a, b, c)〉S which
are Pappian incident with the conic having equation t−α2

cxy+t−1ayz+t−αbzx =
0.

This proves the corollary. QED

5 Remark. It is tempting to conjecture that the last sentence of the above
corollary might be true, in characteristic not two, with Figueroa and Pappian
planes interchanged and with Pappian conics replaced by (Figueroan) Ovali di
Roma [2, 3]. But such a conjecture is not the true. A general reason for this
is that there are not enough Ovali di Roma. More specifically, if the conjecture
were true, then most of the Ovali di Roma would have to be constructed from
a conic which was not α̂ invariant (violating a hypothesis of the construction
of Ovali di Roma). Also we cannot prove a converse in the finite characteristic
two case using the Figueroa hyperovals of de Resmini and Hamilton [4] because
these hyperovals are also hyperovals in the Pappian planes.
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