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1 Introduction

In Riemannian geometry many authors have studied curvature properties
and to what extent they determined the manifold itself. Two important curva-
ture properties are conformal flatness and local symmetry. For the conformal
flatness, a recent development in contact geometry is due to K. Bang and D.
Blair (see [2]). They proved that a conformally flat contact metric manifold
such that the characteristic vector field is an eigenvector of the Ricci operator
everywhere has constant curvature 0 or +1. For the local symmetry, S. Tanno
(see [10]) showed that a locally symmetric K-contact manifold is of constant
curvature 1 and is Sasakian. And D. Blair (see [4]) obtained a necessary and
sufficient condition for the standard contact metric structure of the tangent
sphere bundle of a Riemannian manifold to be locally symmetric.

Recently, P. Alegre, D. Blair and A. Carriazo (see [1]) introduced and studied
generalized Sasakian-space-forms. These spaces are defined as follows: Given an
almost contact metric manifold (M,φ, ξ, η, g), we say that M is a generalized
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Sasakian-space-form if there exist three functions f1, f2 and f3 on M such that

R(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y }
+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ},

(1)

for any vector fields X, Y , Z on M , where R denotes the curvature tensor of
M . In such a case, we will write M(f1, f2, f3).

In this paper we study conformally flat generalized Sasakian-space-forms and
locally symmetric generalized Sasakian-space-forms, and obtain the following
two theorems.

1 Theorem. Let M(f1, f2, f3) be a (2n+ 1)-dimensional generalized Sasa-
kian-space-form. Then we have the following:

(i) If n > 1, then M is conformally flat if and only if f2 = 0.

(ii) If M is conformally flat and ξ is a Killing vector field, then it is flat,
or of constant curvature, or locally the product N1 × N2n, where N1 is
a 1-dimensional manifold and N2n is a 2n-dimensional almost Hermitian
manifold of constant curvature. In any case, M is locally symmetric and
has constant φ-sectional curvature.

2 Theorem. Let M(f1, f2, f3) be a (2n+ 1)-dimensional locally symmetric
generalized Sasakian-space-form with the scalar curvature τ . Then we have the
following:

(i) f1 − f3 is a constant c.

(ii) If τ = −2n(2n+ 1)c, then M(f1, f2, f3) is of a constant curvature − c.

(iii) If τ 6= −2n(2n+1)c, then M(f1, f2, f3) is flat, or of constant curvature, or
is locally the product N1×N2n, where N1 is a 1-dimensional manifold and
N2n is a 2n-dimensional almost Hermitian manifold of constant curvature
or a complex space form.

We note that there are many almost contact metric manifolds with very
different structures such that ξ is a Killing vector field (see [3]).

2 Preliminaries

An odd-dimensional Riemannian manifold (M,g) is said to be an almost
contact metric manifold if there exist on M a (1,1) tensor field φ, a vector field
ξ and a 1-form η such that η(ξ) = 1, φ2(X) = −X + η(X)ξ and g(φX,φY ) =
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g(X,Y ) − η(X)η(Y ), for any vector fields X,Y on M (see [3]). φξ = 0 and
η ◦ φ = 0 are deducible from these conditions. We define the fundamental 2-
form Φ on M by Φ(X,Y ) = g(X,φY ). An almost contact metric manifold
M is said to be a contact metric manifold if dη(X,Y ) = Φ(X,Y ). If ξ is a
Killing vector field, then the contact metric manifold is said to be a K-contact
manifold. The almost contact metric structure of M is said to be normal if
[φ, φ](X,Y ) = −2dη(X,Y )ξ, for any X,Y , where [φ, φ] denotes the Nijenhuis
torsion of φ. A normal contact metric manifold is called a Sasakian manifold.
A normal almost contact metric manifold M with closed forms η and Φ is
called a cosymplectic manifold. Cosymplectic manifolds are characterized by
∇Xξ = 0 and (∇Xφ)Y = 0, for any vector fields X,Y on M . Given an almost
contact metric manifold (M,φ, ξ, η, g), a φ-section of M at p ∈ M is a plane
section π ⊆ TpM spanned by a unit vector Xp orthogonal to ξp, and φXp. The
φ-sectional curvature of π is defined by g(R(X,φX)φX,X). A cosymplectic-
space-form, i.e., a cosymplectic manifold with constant φ-sectional curvature
c, is a generalized Sasakian-space-form with f1 = f2 = f3 = c

4 (see [7]). It
is known that the φ-sectional curvature of a generalized Sasakian-space-form
M(f1, f2, f3) is f1 + 3f2 (see [1, Proposition 3.11]).

For a (2n+1)-dimensional almost contact metric manifold (M,φ, ξ, η, g), n ≥
1, its Schouten tensor L is defined by

L = − 1

2n− 1
Q+

τ

4n(2n − 1)
I, (2)

where Q denotes the Ricci operator and τ is the scalar curvature, and the Weyl
conformal curvature tensor is given by

W (X,Y )Z = R(X,Y )Z

− [g(LX,Z)Y − g(Y,Z)LX − g(LY,Z)X + g(X,Z)LY ]. (3)

In dimensions > 3, that is n > 1, M is conformally flat if and only if W = 0
and in this case, L satisfies (∇XL)Y − (∇Y L)X = 0, for any vector fields X,Y
on M . In dimension 3, that is n = 1, W = 0 is automatically satisfied and M
is conformally flat if and only if L satisfies (∇XL)Y − (∇Y L)X = 0, for any
vector fields X,Y on M .

A symmetric tensor field T of type (1,1) is a Codazzi tensor if it satisfies

(∇XT )Y − (∇Y T )X = 0.

For the later use we give the following lemma which was proved by Derdzinski.

3 Lemma ( [5], [6]). Let T be a Codazzi tensor on a Riemannian manifold
M . Then we have the following: If T has more than one eigenvalue, then the
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eigenspaces for each eigenvalue ν form an integrable subbundle Vν of constant
multiplicity on open sets: If the multiplicity is greater than 1, then the inte-
gral submanifolds are umbilical submanifolds and each eigenfunction is constant
along the integral submanifolds of its subbundle. Moreover, if ν is constant on
M , then the integral submanifolds of Vν are totally geodesic.

3 Proof of Theorem 1

Let M(f1, f2, f3) be a (2n+1)-dimensional generalized Sasakian-space-form.
Then the curvature tensor R of M is given by (1). From (1) we can easily see
that

QX = (2nf1 + 3f2 − f3)X − {3f2 + (2n− 1)f3}η(X)ξ, (4)

τ = 2n(2n + 1)f1 + 6nf2 − 4nf3. (5)

Moreover, we can see that

LX = [−1

2
f1 −

3

2(2n − 1)
f2]X + [

3

2n− 1
f2 + f3]η(X)ξ. (6)

Therefore, the Weyl conformal curvature tensor W can be written as

W (X,Y )Z = − 3

2n− 1
f2[g(Y,Z)X − g(X,Z)Y ]

+ f2[g(Z, φY )φX − g(Z, φX)φY + 2g(X,φY )φZ]

− 3

2n − 1
f2[η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ].

(7)

Suppose that M(f1, f2, f3) is conformally flat and n > 1. Then we have
W = 0.

If we put X = φY in (7), we find

f2[(2− n){g(Y,Z)φY − g(φY,Z)Y − η(Y )η(Z)φY + g(φY,Z)η(Y )ξ}
− (2n − 1){g(Y, Y )− η(Y )η(Y )}φZ] = 0.

If we choose a unit vector U such that g(U, ξ) = 0 and put Y = U in the above
equation, then we have

f2[(2− n){g(U,Z)φU − g(φU,Z)U} − (2n − 1)φZ] = 0.

Putting Z = U gives f2(1− n) = 0 and hence we get f2 = 0.
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Conversely, if f2 = 0, then from (7) we have W (X,Y )Z = 0 and hence
M(f1, f2, f3) is conformally flat. Therefore, when n > 1, M(f1, f2, f3) is con-
formally flat if and only if f2 = 0. Thus the first part (i) of the Theorem 1 is
proved.

For the proof of the second part (ii), we assume that M(f1, f2, f3) is con-
formally flat and ξ is Killing. Then the Schouten tensor L of the manifold is a
Codazzi tensor, that is,

(∇XL)Y − (∇Y L)X = 0 (8)

for any vector fields X,Y on M . Also, if n > 1, then we have f2 = 0 by the first
part (i) and hence from (6) the Schouten tensor is given by

LX = −1

2
f1X + f3η(X)ξ. (9)

If n = 1, then W = 0 is automatically satisfied. From (3) we get

R(X,Y )Z = g(LX,Z)Y − g(Y,Z)LX − g(LY,Z)X + g(X,Z)LY

for any vector fields X,Y,Z. In the 3-dimensional manifold M(f1, f2, f3) the
Schouten tensor is given by

LX = −1

2
(f1 + 3f2)X + (3f2 + f3)η(X)ξ.

From these two equations we obtain

R(X,Y )Z = f∗1 [g(Y,Z)X − g(X,Z)Y ]

+ f∗3 [η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ],
(10)

where f∗1 and f∗3 are given by

f∗1 = f1 + 3f2, f∗3 = 3f2 + f3.

Hence the Schouten tensor is written as

LX = −1

2
f∗1X + f∗3η(X)ξ.

Consequently, we also use the same symbols f1 and f3 instead of f∗1 and f∗3 for
the 3-dimensional manifold M(f1, f2, f3). Equation (9) gives

Lξ = (f3 −
1

2
f1)ξ. (11)
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If X is a vector orthogonal to ξ, then we get

LX = −1

2
f1X. (12)

Let ξ,E1, . . . , E2n be local orthonormal vector fields on M(f1, f2, f3). Then from
(8), (9) and (12) we get

(∇EiL)Ej−(∇EjL)Ei = −1

2
(Eif1)Ej +

1

2
(Ejf1)Ei +f3η(∇EjEi−∇EiEj)ξ = 0.

Taking the inner product with Ej, we have Eif1 = 0 (i = 1, 2, . . . , 2n). Since
∇Eiξ is orthogonal to ξ,

(∇EjL)ξ + L∇Ejξ = (Ejf3)ξ + (f3 −
1

2
f1)∇Ejξ

which gives

(∇EjL)ξ = (Ejf3)ξ + f3∇Ejξ.

Since ξ is Killing,

(∇ξL)Ej + L∇ξEj = −1

2
(ξf1)Ej −

1

2
f1∇ξEj,

L∇ξEj = −1

2
f1∇ξEj + f3g(ξ,∇ξEj)ξ

= −1

2
f1∇ξEj − f3g(∇ξξ,Ej)ξ = −1

2
f1∇ξEj ,

and we have

(Ejf3)ξ + f3∇Ejξ = −1

2
(ξf1)Ej . (13)

Taking the inner product with Ej implies ξf1 = 0. Thus f1 is constant on
M .

Taking the inner product with ξ gives Ejf3 = 0 (j = 1, 2, . . . , 2n) and
f3∇Ejξ = 0 (j = 1, 2, . . . , 2n). Combining this with ∇ξξ = 0 gives

f3∇Xξ = 0, (14)

for any vector field X.

From (14) we get

(Y f3)∇Xξ + f3∇Y∇Xξ = 0.
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This equation and (14) give

(Xf3)∇Y ξ − (Y f3)∇Xξ + f3[∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ] = 0.

Multiplying this equation with f3 and using (14) give

f2
3R(X,Y )ξ = 0.

This equation and (1) imply

f2
3 (f1 − f3)[η(Y )X − η(X)Y ] = 0,

from which we obtain f3(f1 − f3) = 0.
Consider the case f1 = 0. In this case we have f3 = 0 on M and hence M is

flat.
Next consider the case f1 6= 0. Differentiating f3(f1 − f3) = 0 with ξ gives

(f1 − 2f3)(ξf3) = 0. If f3(p) = 0 at a point p ∈ M , then ξf3 = 0 at p. If
f3(p) 6= 0, then f3 = f1 in an open neighborhood O of p. Hence we get ξf3 = 0
in O. Thus we have ξf3 = 0 on M . Since Ejf3 = 0 (j = 1, 2, . . . , 2n) f3 is
constant on M . Hence we have

(a) If f3 = 0, then M is of constant curvature f1,
(b) If f3 6= 0, then we have f1 = f3 and ∇Xξ = 0 for any vector X on M .

Hence the Schouten tensor L has two distinct constant eigenvalues 1
2f1 with

multiplicity 1 and −1
2f1 with multiplicity 2n. Therefore, we have the decom-

position D ⊕ [ξ], where D is the distribution defined by η = 0 and [ξ] is the
distribution spanned by the vector ξ. By Lemma 3, D is integrable. Hence, M
is locally the product of an integral submanifold N1 of [ξ] and an integral sub-
manifold N2n of D. Since the eigenvalue is constant on M , N2n is a totally
geodesic submanifold of M by Lemma 3. If we denote the restriction of φ in D

by J , then
J2X = φ2X = −X + η(X)ξ = −X

for any X ∈ D. Hence J defines an almost complex structure on N2n.
Also, g′(JX, JY ) = g(φX,φY ) = g(X,Y ) − η(X)η(Y ) = g′(X,Y ) for any

X,Y ∈ D, where g′ is the induced metric on N2n from g. Hence (N2n, J, g′) is
an almost Hermitian manifold. Since N2n is a totally geodesic hypersurface of
M , the equation of Gauss is given by

R(X,Y )Z = R′(X,Y )Z

for any vector fields X,Y and Z tangent to N2n, where R′ is the curvature
tensor of N2n. Thus, we get

R′(X,Y )Z = f1[g
′(Y,Z)X − g′(X,Z)Y ],
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and hence N2n is a space of constant curvature f1. In any case, from the above
arguments we can easily see that M(f1, f2, f3) is locally symmetric. Since f1

and f3 are constants, we can see that M is of constant φ-sectional curvature.
This completes the proof of the Theorem 1.

4 Remark. In the Theorem 1 the condition “ξ is a Killing vector field”
cannot be removed. For example, given (N,J, g) with constant curvature c, say, a
6-dimensional sphere with nearly Kaehler structure (see [7]), the warped product
M = R ×f N , where f > 0 is a nonconstant function on R, can be endowed
with an almost contact metric structure (φ, ξ, η, gf ). Moreover, M = R×f N is
a generalized Sasakian-space-form M(f1, f2, f3) with functions

f1 =
c− f ′2

f2
, f2 = 0, f3 =

c− f ′2

f2
+
f ′′

f

(see [1, Theorem 4.8]). Since f2 = 0, M is conformally flat. Also, we can see
that

gf (∇Xξ,X) = gf (
ξf

f
X,X),

where X is a nonzero vector field on N (see [8]).
But, it is easy to find a function f on R such that ξf = ∂

∂tf = f ′ 6= 0 and f1

is not constant. In such a manifold M = R×f N the characteristic vector is not
a Killing vector field and the conclusion (ii) of the Theorem 1 is not satisfied.

4 Proof of Theorem 2

Let M(f1, f2, f3) be a (2n + 1)-dimensional locally symmetric generalized
Sasakian-space-form. Then the curvature tensor is given by (1). From (1) we
can see that

QX = (2nf1 + 3f2 − f3)X − {3f2 + (2n− 1)f3}η(X)ξ, (15)

τ = 2n(2n + 1)f1 + 6nf2 − 4nf3. (16)

From (1) we get

R(X,Y )ξ = (f1 − f3){η(Y )X − η(X)Y }. (17)

From (17) we get R(X, ξ)ξ = (f1−f3){X−η(X)ξ}. SinceM is locally symmetric,
this equation gives

R(∇ZX, ξ)ξ +R(X,∇Zξ)ξ +R(X, ξ)∇Zξ = Z(f1 − f3)[X − η(X)ξ]

+ (f1 − f3)[∇ZX − (∇Zη)(X)ξ − η(∇ZX)ξ − η(X)∇Zξ].
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From the equation (17) and R(X, ξ)∇Zξ = −(f1 − f3)g(X,∇Zξ)ξ we get

Z(f1 − f3)[X − η(X)ξ] = 0,

which shows that f1 − f3 is a constant. Hence, we can put f3 − f1 = c for
a constant c. Thus, using (15) and (16) the Ricci operator Q and the scalar
curvature τ are given by

QX = [(2n − 1)f1 + 3f2 − c]X − [3f2 + (2n − 1)f1 + (2n − 1)c]η(X)ξ, (18)

τ = 2n[(2n − 1)f1 + 3f2 − 2c]. (19)

Since Q is parallel and τ is constant, (18) gives

[3f2 + (2n − 1)f1 + (2n − 1)c]∇Y ξ = 0, (20)

where 3f2 + (2n − 1)f1 + (2n− 1)c is a constant.
On the other hand, since R is parallel we have from (1)

(V f1)[g(Y,Z)X−g(X,Z)Y ]+(V f2)[g(X,φZ)φY −g(Y, φZ)φX+2g(X,φY )φZ]

+ f2[g(X, (∇V φ)Z)φY + g(X,φZ)(∇V φ)Y − g(Y, (∇V φ)Z)φX

− g(Y, φZ)(∇V φ)X + 2g(X, (∇V φ)Y )φZ + 2g(X,φY )(∇V φ)Z]

+ (V f1)[η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ]

+ (f1 + c)[(∇V η)(X)η(Z)Y + η(X)(∇V η)(Z)Y − (∇V η)(Y )η(Z)X

− η(Y )(∇V η)(Z)X + g(X,Z)(∇V η)(Y )ξ + g(X,Z)η(Y )∇V ξ

− g(Y,Z)(∇V η)(X)ξ − g(Y,Z)η(X)∇V ξ] = 0. (21)

If we put Z = ξ in (21), we get

f2[g(X, (∇V φ)ξ)φY − g(Y, (∇V φ)ξ)φX + 2g(X,φY )(∇V φ)ξ]

+ (f1 + c)[(∇V η)(X)Y − (∇V η)(Y )X + η(X)(∇V η)(Y )ξ

− η(Y )(∇V η)(X)ξ] = 0.

Applying φ and taking account of (∇V φ)ξ = −φ∇V ξ we have

(f1 + c)[g(∇V ξ,X)φY − g(∇V ξ, Y )φX] + f2[g(∇V ξ, φX)(−Y + η(Y )ξ)

− g(∇V ξ, φY )(−X + η(X)ξ) + 2g(X,φY )∇V ξ] = 0.

If we put Y = φX in the above equation and we take a unit vector X orthogonal
to ξ, then we have

(f1 + f2 + c)[g(∇V ξ,X)X + g(∇V ξ, φX)φX] + 2f2∇V ξ = 0.
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Take a local φ-basis ξ, e1, . . . , en, φe1, . . . , φen. Then we have

∇V ξ = g(∇V ξ, e1)e1 + g(∇V ξ, φe1)φe1 + · · ·+ g(∇V ξ, en)en + g(∇V ξ, φen)φen.

Combining the last two equations we get

[f1 + (2n + 1)f2 + c]∇V ξ = 0. (22)

Case 1. τ = −2n(2n+ 1)c
In this case we have 3f2 + (2n − 1)f1 + (2n − 1)c = 0. Hence the Schouten

tensor L is given by L = c
2I. Therefore, we have

W (X,Y )Z = R(X,Y )Z + c[g(Y,Z)X − g(X,Z)Y ]. (23)

If n = 1, then W is automatically zero and hence

R(X,Y )Z = −c[g(Y,Z)X − g(X,Z)Y ].

This shows that M is of constant curvature −c.
Now consider the case n > 1. If f1(p) + (2n+ 1)f2(p) = −c at some p ∈M ,

then we have f2(p) = 0 since (2n − 1)f1(p) + 3f2(p) = (1− 2n)c. Suppose that
there exists a point p ∈ M such that f2(p) 6= 0. Then we have f1(p) + (2n +
1)f2(p) 6= −c and hence (22) implies ∇Xξ = 0 in an open neighborhood O of
p. We now give equation (21) by using components. Since ∇Xξ = 0 in O the
equation can be written as

(∇lf1)(gjigkh − gkigjh) + (∇lf2)(φikφjh − φijφkh + 2φjkφih)

+f2[(∇lφik)φjh+(∇lφjh)φik−(∇lφij)φkh−φij∇lφkh+2(∇lφjk)φih+2φjk∇lφih]

+ (∇lf1)(ηkηigjh − ηjηigkh + gkiηjηk − gjiηkηh) = 0, (24)

where ∇j denotes the operator of covariant differentiation. Applying φkh gives

[∇lf1 + (2n + 1)(∇lf2)]φji + f2(2n+ 2)∇lφji = 0 (25)

in O. Applying φji again gives

∇lf1 + (2n + 1)∇lf2 = 0, ∇lφji = 0 (26)

in O. Therefore, the open submanifold O of M is a cosymplectic manifold. Since
(2n−1)∇lf1 +3∇lf2 = 0 from the condition 3f2 +(2n−1)f1 +(2n−1)c = 0 we
have, by the help of (26), ∇lf2 = 0 and ∇lf1 = 0. So f1 and f2 are constants
in O. Since M(f1, f2, f3) has φ-sectional curvature f1 + 3f2 and since f1 and f2

are constants in O, the open submanifold O of M is a cosymplectic space form.
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So, we have f1 = f2 = f3 = f1 + c. Therefore we have c = 0. But, in our case
we have (2n + 2)f2 = (2n − 1)f1 + 3f2 = (1 − 2n)c = 0. Hence we get f2 = 0
in O. This is a contradiction. Thus, there does not exist a point p in M such
that f2(p) 6= 0 and hence f2 = 0 in M . By (i) of Theorem 1, M is conformally
flat. This and (23) imply that M is of constant curvature −c. This completes
the proof of (ii) of the Theorem 2.

Case 2. τ 6= −2n(2n+ 1)c.
In this case we have 3f2 + (2n − 1)f1 + (2n − 1)c 6= 0. From (20) we get

∇Xξ = 0 on M .
First, we consider the case n = 1. The Schouten tensor is given by

LX = −QX +
τ

4
X.

Since Q is parallel and τ is constant, L is parallel. Therefore we have (∇XL)Y −
(∇Y L)X = 0 and hence M is conformally flat. Since∇Xξ = 0, the characteristic
vector field ξ is a Killing vector field. Hence, we have the same conclusion as
(ii) of Theorem 1.

Second, we consider the case n > 1. Since τ is constant we have

(2n− 1)X(f1) + 3X(f2) = 0.

Since ∇Xξ = 0, we also have (25) and hence

X(f1) + (2n + 1)X(f2) = 0, f2(∇Xφ)Y = 0.

These equations imply that f1 and f2 are constant on M . If f2 6= 0, then we
have (∇Xφ)Y = 0, for any vector fields X,Y on M . Hence M is a cosymplectic
manifold and since f1 and f2 are constants M is a cosymplectic space form.
Hence we have f1 = f2 = f3 = f1 + c and c = 0. Equations (15) and (16) give
the Schouten tensor

LX = − n+ 1

2n− 1
f2X +

2(n+ 1)

2n− 1
f2η(X)ξ. (27)

This equation shows that

Lξ =
n+ 1

2n − 1
f2ξ, (28)

LX = − n+ 1

2n− 1
f2X, (29)

for any vector field X orthogonal to ξ. Hence L has distinct two constant eigen-
values −(n+ 1)f2/(2n − 1) and (n + 1)f2/(2n − 1) with multiplicity 2n and 1,
respectively. The equation (27) and ∇Xξ = 0 give (∇Y L)X = 0. Therefore, L
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is a Codazzi tensor. Consequently, we have the decomposition [ξ] ⊕ D, where
[ξ] is the distribution spanned by the vector ξ and D is the distribution defined
by η = 0. By the Lemma 3 D is integrable. Hence, M is locally the product of
an integral submanifold N1 of [ξ] and an integral submanifold N2n of D. Since
eigenvalue −(n+1)f2/(2n− 1) is constant on M , N2n is a totally geodesic sub-
manifold of M . The restriction J of φ in D defines an almost complex structure
on N2n. Hence (N2n, J, g′) is an almost Hermitian manifold, where g′ is the
induced metric on N2n. Since N2n is a totally geodesic hypersurface of M , the
Gauss formula is given by ∇XY = ′∇XY for any vector fields X,Y on N2n.
Since

0 = (∇Xφ)Y = ∇X(φY )− φ(∇XY ) = ′∇X(JY )− J(′∇XY ) = (′∇XJ)Y,

for any vector fields X, Y on N2n, it is a Kaehler manifold. Since N2n is a
totally geodesic hypersurface with ξ as the normal vector field, the curvature
tensor R′ of N2n is given by

R′(X,Y )Z = f2[g
′(Y,Z)X − g′(X,Z)Y

+ g′(X,JZ)JY − g′(X,JY )JZ + 2g′(X,JY )JZ].

Therefore N2n is a complex space form.
If f2 = 0, then by (i) of Theorem 1 M is conformally flat. Since ∇Xξ = 0

on M ξ is a Killing vector field. Hence we have the same conclusion as (ii) of
Theorem 1. This completes the proof of (iii) of the Theorem 2.
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Boston 2002.

[4] D. Blair: When is the tangent sphere bundle locally symmetric? Geometry and Topology,
World Scientific, Singapore, 15–30.

[5] A. Derdzinski: Some remarks on the local structure of Codazzi tensors, Lecture Notes
in Math. vol. 838, Springer, Berlin 1981, 251–255.

[6] A. Derdzinski: Classification of Certain Compact Riemannian Manifolds with Harmonic
Curvature and non-parallel Ricci Tensor, Math. Z., 172, (1980), 273–280.



Generalized Sasakian-space forms 67

[7] G. Ludden: Submanifolds of cosymplectic manifolds, J. Differential Geometry, 4, (1970),
237–244.

[8] B. O’Neill: Semi-Riemannian Geometry with Applications to Relativity, Pure and Ap-
plied Mathematics 103, Academic Press, New York 1983.

[9] S. Tanno: Constancy of holomorphic sectional curvature in almost Hermitian manifolds,
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