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Abstract. Two long exact sequences . . . → Ai−1 → Ai → Ai+1 → . . . and . . . → Bi−1 →
Bi → Bi+1 → . . . are called bonded at level a mod 3, if Aj ∼= Bj for all j ≡ a mod 3. A
tree (or compound) of long exact sequences is a tree, whose vertices carry a spectral sequence
and whose edges are labelled by a number a mod 3, such that the two long exact sequences
adjacent to an edge are bonded at level a. Furthermore the edges incident to a common vertex
carry different labels mod 3. Then I show that there is a spectral sequence associated to
every compound of long exact sequences. As an example for this approach I construct the
Grothendieck spectral sequence for the derived functors of a composition of two functors.
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A long exact sequence can be viewed as a composition of short exact se-
quences coinciding in the last and first entries respectively. The exact sequence

. . .→M i−1 →M i →M i+1 → . . .

corresponds to

. . .
0 → Ai−1 → M i−1 → Ai → 0

||
0 → Ai → M i → Ai+1 → 0

||
0 → Ai+1 → M i+1 → Ai+2 → 0

. . .

The connecting modules Ai do not appear explicitly in the long exact se-
quence. In analogy to chemistry a short exact sequence could be called of valence
two, because it can bind to at most two other short exact sequences to give a
linear structure.

Now long exact sequences can bind to each other as well. In the chemical
analogy a long exact sequence will be of valence three. The resulting structure
will be a tree.
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A compound of long exact sequences gives rise to a spectral sequence. Two
long exact sequences are said to form a bond, if they coincide at every third
entry:

. . . → Ai → Ai+1 → Ai+2 → Ai+3 → . . .
|| ||

. . . → Bi → Bi+1 → Bi+2 → Bi+3 → . . .

We say (Ai) forms a bond with (Bi) at level a mod 3, if there is a distinguished
a mod 3 such that Aj = Bj for all j ≡ a mod 3.

1 Definition. A tree (or compound) of bonded long exact sequences is a
tree, whose vertices are long exact sequences and whose edges are bonds between
them, such that the bonds corresponding to the edges adjacent to a given vertex
are all of a different level. Especially the degree of each vertex is ≤ 3.

A finite tree of long exact sequences gives rise to a spectral sequence. This
will be shown in the sequel. I will only consider spectral sequences starting with
the E1-term and confined to merely finitely many columns (the analogous result
for the E2-term and spectral sequences confined to finitely many lines arises by
shearing along the diagonal).

2 Proposition. Let Ep,q
1 = Ap,q ⇒ Bp+q be a spectral sequence, such that

Ap,q = 0 for p < 0 or p > n. Then there are two spectral sequences converging
to 0, whose E1-term has the form:

. . . . . .
A0,q+1 . . . An,q+1 Bn+q+1 Bq+1 A0,q+1 . . . An,q+1

A0,q . . . An,q Bn+q or Bq A0,q . . . An,q

A0,q−1 . . . An,q−1 Bn+q−1 Bq−1 A0,q−1 . . . An,q−1

. . . . . .

The additional maps are given by the filtration on the Bi.

Proof. There are filtrations on the Ar,s, decomposing each module into
parts (composition factors). The maps of the spectral sequence identify various
such parts:
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part n of Ar,s maps isomorphically to part 0 of Ar+1,s

part n− 1 of Ar,s maps isomorphically to part 1 of Ar+2,s−1

. . .
part r + 1 of Ar,s maps isomorphically to part n− r − 1 of An,−n+s+r+1

———————
part 0 of Ar,s is the isomorphic image of part n of Ar−1,s

part 1 of Ar,s is the isomorphic image of part n− 1 of Ar−2,s+1

. . .
part r − 1 of Ar,s is the isomorphic image of part n− r + 1 of A0,s+r−1

———————
part r of Ar,s maps isomorphically to part n− r of Br+s.
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Putting the column with the B as described in the theorem in front of or after
the other columns of the original spectral sequence, will produce a spectral
sequence converging to 0. QED

In this theorem a cyclic symmetry appears between the columns of the spec-
tral sequence together with the convergence target. It is possible to rotate the
entries of such a spectral sequence by column (with the correct shift), while
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the formation remains a spectral sequence: (Ep,q
1 )0≤p≤n ⇒ 0 implies (Ẽp,q

1 )⇒ 0

with Ẽp,q
1 = Ep−1,q

1 for p 6= 0 and Ẽ0,q
1 = En,q−n+1

1 .

The next proposition shows, that it is possible to combine two spectral
sequences coinciding in one column into a single spectral sequence which will
no longer contain the doubly appearing column (splicing or, in the chemical
analogon, binding).

3 Proposition. Let Ep,q
1 = (Ap,q)0≤p≤n ⇒ 0 and Ēp,q

2 = (Bp,q)0≤p≤m ⇒ 0
be two spectral sequences converging to 0. Furthermore let An,q = B0,q for all q.
Then there is a spectral sequence converging to 0 with E1-term:

A0,q+1 . . . An−1,q+1 B1,q+1 . . . Bm,q+1

A0,q . . . An−1,q B1,q . . . Bm,q

A0,q−1 . . . An−1,q−1 B1,q−1 . . . Bm,q−1

The maps within the A-section of the spectral sequence stay the same as before.
The same goes for the B-section. The maps from the A-section to the B-section
arise essentially by composition of the respective maps of the two original spectral
sequences.

Proof. Explicitly there are defined on each A = An,q = B0,q two filtrations
0 ⊆ N1 ⊆ . . . ⊆ Nn = A and 0 ⊆ M1 ⊆ . . . ⊆ Mm = A (one from each spectral
sequence). These induce the filtration ((Ni ∩ Mj) + Ni−1)/Ni−1 on Ni/Ni−1

and ((Mj ∩Ni) +Mj−1)/Mj−1 on Mj/Mj−1. The quotients of these filtrations
are canonically isomorphic to Ni ∩Mj/Ni−1 ∩Mj−1. These isomorphisms will
produce the desired maps:

The filtration on the Ar,s and the Bt,u decomposes these into n parts (part
1,. . . , part n) respectively m parts (part 1,. . . , part m).

In the composed spectral sequence the parts of Ar,s for r < n are mapped as
before, except part r+1. This originally was mapped to part n−r of An,−n+r+s+1

(namely Nn−r/Nn−r−1). Now this further decomposes by the M -filtration into
m subparts.

The parts of Bt,u are also mapped as before except part t. This one originally
came from part m−t+1 of B0,t+u−1 (namely Mm−t+1/Mm−t). Now this further
decomposes by the N -filtration into n finer subparts.

In the composed spectral sequence now subpart t of part r + 1 of Ar,s is
defined to map to subpart r+1 of part t of Bt,u. These are isomorphic according
to the above discussion. QED
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The long exact sequences → Ai → Ai+1 → Ai+2 → exactly correspond to
those E1-spectral sequences which consist of three columns and converge to 0,
i. e.:




. . .
Ai+3 Ai+4 Ai+5

Ai Ai+1 Ai+2

. . .




The coinciding of two long exact sequences at every third entry exactly corre-
sponds to the coinciding of the associated spectral sequences in one column.

By repeated splicing and rotating according to the above propositions every
tree of bonded long exact sequences can be transformed into a spectral sequence.
The ordering of columns will be uniquely determined up to cyclic shift and does
not depend on the sequence of the splicing along the graph, which can be seen
as follows: At first make every existing vertex of the graph 3-valued by adjoining
new edges and as vertices the third part of an exact sequence. Number the edges
of the new graph Γ with the level 0, 1, 2 of the bond. Now every such graph can
be embedded uniquely into the plane such that the respective three levels of a
vertex are given the same predetermined orientation. The loose ends of edges,
respectively the third parts of exact sequences are the columns of the spectral
sequence according to the cyclic order in which they appear when looked at
from one vertex of Γ.

Not every spectral sequence arises in this manner from a compound of long
exact sequences, but all of practical importance: For a complex C filtered by
subcomplexes 0 = C0 ⊆ C1 ⊆ C2 . . . ⊆ Cn = C there is a well-known construc-
tion leading to a spectral sequence. In our setting this arises as follows: There
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are short exact sequences of complexes

. . .
0 → Ci → Ci + 1 → Ci+1/Ci → 0

||
0 → Ci+1 → Ci+2 → Ci+2/Ci+1 → 0

. . .

These are bonded such that the corresponding long exact homology sequences
are bonded in the above sense, giving a linear tree of long exact sequences and
by the above argument a spectral sequence.

The construction of a spectral sequence by an exact couple is also contained
in the above. An exact couple is a special linear tree of long exact sequences.

4 Example. As an example the spectral sequence of Grothendieck for
the derived functors of a composition of two functors will be established. Let
F : A → B and G : B → C be two left exact functors of abelian categories A,B, C,
where A and B have enough injectives and such that F maps injective objects
to G-acyclic objects.

Let 0 → M → I → Q → 0 the first step of an injective resolution of
M ∈Ob(A).

Then 0→ F (I)/F (M) → F (Q)→ R1F (M)→ 0 is exact in B (F-sequence).
The associated G-Sequence is the line in the following commutative diagram in
C

0 0
↓ ↓

0→GF (I)/GF (M) = GF (I)/GF (M)
↓ ↓

0→G(F (I)/F (M)) −→ GF (Q) → G(R1F (M))→ R1G(F (I)/F (M))
↓ ↓

R1G(F (M)) − − → R1(GF )(M)
↓ ↓
0 0

The first column is the G-sequence for 0→ F (M)→ F (I)→ F (I)/F (M)→ 0.
This furthermore gives isomorphisms RiG(F (I)/F (M)) = Ri+1G(F (M)) for
i ≥ 1. The second column is the GF -sequence for 0 → M → I → Q → 0.
The snake lemma for the two columns gives an identification of the two last
cokernels. This establishes the long exact sequence

0→ R1G(F (M))→ R1(GF )(M)→ G(R1F )(M)→
R2G(F (M))→ R1G(F (Q))→ (R1G)(R1F )(M)→
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R3G(F (M))→ R2G(F (Q))→ (R2G)(R1F )(M)→ . . .

At every third place we have the entry RiG(F (M)) and similarly RiG(F (Q)).
If the same sequence is written for a resolution of Q instead of M , the two long
exact sequences are bonded. Let Q0 = M and Q1 = Q and 0 → Qi → Ii →
Qi+1 → 0 be exact. Then this leads to a compound of long exact sequences.
Schematically this looks as follows:

0 → • → • → • → • → • → • → • → • → • → •
|| ||

0 → • → • → • → • → • → •
||

0 → • → •

The long exact sequences are independent of the choice of injective resolution
of M . This follows from the homotopy of any two resolutions.

To make it into a proper compound of long exact sequences add further
objects and isomorphisms as follows:

0 → • → • → • → • → • → • → • → • → • → •
|| || ||
• = • 0 → • → • → • → • → • → •

|| || ||
• = • • = • 0 → • → •

|| || ||
The respective third entries which are unmatched are in sequence number i:

RqG(R1F )(Qi) = RqG(Ri+1F )(M), q ≥ 0

The additional unmatched entries in sequence number 1 are RqG(F (M)), q ≥ 0.
The sequence of unmatched entries in the last sequence starts asR1(GF )(Qi), i ≥
0 or Rq(GF )(M), q ≥ 1.

To form an E2-spectral sequence these will have to be the lines of the spectral
sequence. If one writes the spectral sequence as

Ep,q
2 = RpG(RqF (M))⇒ Rp+q(GF )(M)

one easily checks that the lines are in the correct relative position.
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