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Abstract. In contrast to the usual treatment (see e.g. J. J. Duistermaat [3]) convolution
groups are constructed for differential operators defined by non-homogeneous polynomials
(Proposition 5) and for quasi-hyperbolic systems, i.e. systems “correct in the sense of Petro-
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1 Introduction: convolution groups for homogeneous,

elliptic, hyperbolic and ultrahyperbolic operators

The explicit formulae for the electrostatic potential U caused by a charge
density ̺ and for the displacement u of an elastic plate loaded by a pressure
distribution p look quite differently:

U = − 1

4π|x| ∗ ̺ = − 1

4π

∫

R3

̺(x− ξ)
|ξ| dξ,

u =
|x|2
8π

log |x| ∗ p =
1

8π

∫

R2

p(x− ξ)|ξ|2 log |ξ| dξ.





(1)

U as well as u are convolutions with fundamental solutions of the three-
dimensional Laplacean ∆3 and of the two-dimensional biharmonic operator ∆2

2
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respectively, i.e.,

−∆3δ ∗
1

4π|x| = δ ,


 	

R−2


 	

R2

� �

R0

∆2
2δ ∗
|x|2
8π

log |x| = δ .


 	

R−4


 	

R4

� �

R0





(2)

M. Riesz succeeded in representing the five occurring distributions as special
values of a single distribution-valued function

C −→ S ′, λ 7−→ Rλ

(cf. [25, p. 586]; [12, p. 146, 154]; [13, p. 47, 49]). For 0 < Reλ < n, the elliptic
kernel of M. Riesz Rλ is defined by a locally integrable function, i.e.,

Rλ =
Γ
(

n−λ
2

)

2λπn/2Γ(λ
2 )
|x|λ−n.

For other complex values λ, Rλ is defined by analytic continuation and, finally,
at the poles λ = n + 2k, k ∈ N0, as the finite part of the Laurent series of
λ 7−→ Rλ. It results

R−2k = (−∆n)kδ if k ∈ N0.

Formulae (2) are special cases of the convolution relation Rλ ∗Rν = Rλ+ν , valid
if and only if Re(λ + ν) < n or −λ/2 ∈ N0, or −ν/2 ∈ N0 (cf. [19, p. 40, Satz
9]; [20, p. 12-05]).

Note that convolvability neither is implied by support properties since
suppRλ = R

n if λ 6∈ −2N0 nor by decay properties since – in general –
Rλ 6∈ D′Lp . Hence the general concept of convolution has to be used – as
defined by L. Schwartz in his “Théorie des distributions à valeurs vectorielles”
(cf. [28, p. 131,132] and [14, p. 185]).

For the iterated wave operators (∂2
t −∆n−1)k, M. Riesz defined the hy-

perbolic Riesz kernels Zλ by

Zλ =
1

π
n
2
−12λ−1Γ

(
λ
2

)
Γ
(

λ−n
2 + 1

)sλ−n, s(t, x) = (t2 − x2
1 − · · · − x2

n−1)1/2

if (t, x) belongs to the forward light cone

K =
{

(t, x) ∈ R
n; t2 − x2

1 − · · · − x2
n−1 ≥ 0, t ≥ 0

}
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and s = 0 if (t, x) 6∈ K. Due to suppZλ ⊂ K the convolution relation

Zλ ∗ Zν = Zλ+ν if λ, ν ∈ C ,

holds in the classical spaces D′+K of L. Schwartz [27, p. 177, (VI,5;19)], [21].
The generalization to the ultrahyperbolic operators (∂2

1 +· · ·+∂2
p−∂2

p+1−
· · · − ∂2

n)k follows the same pattern although the technical difficulties increase
if n − 1 > p > 1, n > 3. For a modern treatment see [17] (cf. also [32, § 28.1,
p. 555–562] or [18]).

The elliptic, hyperbolic and ultrahyperbolic kernels of M. Riesz have in com-
mon the property that both the iterated differential operators applied to δ and
their fundamental solutions appear as special values of the generalized distance
function

λ 7−→ c(λ, n)(x2
1 + · · ·+ x2

p − x2
p+1 − · · · − x2

n ± i 0)λ.

Essentially, this follows from the fact that Fourier transforms of powers of Eu-
clidean or Lorentzian distances are powers of such distances. Since the Fourier
transforms of powers of higher order homogeneous polynomials are no more
powers of polynomials, the construction of convolution groups for homo-
geneous higher order differential operators is connected with the Fourier
transform of their symbols – a “technique which M. Riesz disliked as being too
indirect” [3, p. 100].

A generalization to real-valued, homogeneous, elliptic polynomials
was given in [36].

1 Proposition. Let P be a homogeneous polynomial of degree m in n vari-
ables with P (ξ) > 0 for ξ 6= 0. P ought not to be expressible as a power of
another polynomial. Denoting by Tλ := F−1(P λ) the “convolution group” of P
the following assertions are equivalent:

(i) Tλ and Tν are convolvable.

(ii) λ ∈ N0 or ν ∈ N0 or Re(λ+ ν) > − n
m

.

In this case, we have Tλ ∗ Tν = Tλ+ν.

A generalization of the construction of hyperbolic Riesz kernels to homoge-
neous hyperbolic operators was given in [7], [1].

2 Proposition. ( [7, Thm. 3.1, p. 33 and Thm. 3.4, p. 34]; [1, p. 146])
Let P be a homogeneous polynomial in n variables (τ, ξ) ∈ R

n, hyperbolic in the
τ -direction, i.e., P (1, 0) 6= 0 and the polynomials in one variable, τ 7−→ P (τ, ξ)
have only real zeros for ξ ∈ R

n−1. Let Γ be the hyperbolicity cone, i.e., the
connected component of

{
(τ, ξ) ∈ R

n; P (τ, ξ) 6= 0
}

containing (1, 0). The dual
K of Γ, i.e. K := Γ∗ is the propagation cone. Then P does not vanish
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on the tube domain R
n + iΓ, which is simply connected, and hence log P can

be defined continuously thereon, uniquely up to a constant 2kπi, k ∈ Z. Set
log P (τ, ξ) := lim

ǫց0
logP (τ + i ǫ, ξ) and P (τ, ξ)λ := eλ log P (τ,ξ), Tλ := F−1(P λ)

for Reλ > 0. Then

(i) P λ and Tλ can be continued to entire distribution-valued functions
C −→ S ′(Rn) with Tλ ∈ D′+K .

(ii) Tλ ∗ Tν = Tλ+ν for λ, ν ∈ C.

3 Remark. Note that the convolution groups in Proposition 1 and 2 are
defined by Tλ = F−1(P λ) whereas Rλ = F−1

(
|ξ|−λ

)
and Zλ = F−1

((
−(τ −

i 0)2 + |ξ|2
)−λ/2)

. Riesz integrals for symmetric cones associated with a
simple Euclidean Jordan algebra are defined in [6, Thm. VII.2.2, p. 132, and
the Notes, p. 143]. Riemann-Liouville operators for homogeneous cones
are defined in [8, Thm.1, p. 99, Prop. 3 and Corollary, p. 105, Prop. 2, p. 118
and Thm. 2, p. 120].

The following considerations try to transfer the idea of convolution groups
to non-homogeneous differential operators (Section 3), and more generally, to
quasihyperbolic systems of differential operators (Section 4). As an example, we
shall construct the convolution group for the system of elastic waves in isotropic
media (∂2

t −M∆3)I3 − (Λ +M)∇∇T (Section 5).

The notations are those of [27] with the exception that the Fourier trans-
form is defined by

Fϕ(ξ) = Fx→ξ ϕ =

∫

Rn

e−i〈ξ,x〉ϕ(x) dx for ϕ ∈ S(Rn).

Moreover,

∂t =
∂

∂t
, ∇ =



∂1
...
∂n


 , ∂ = (∂t,∇T ), ∆n = ∇T∇, x =



x1
...
xn


 ;

Y is the Heaviside function.

A preliminary version of this contribution was presented at the “Third
Workshop on Functional Analysis” at Trier (September 2001).
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2 The construction of the convolution group

for the heat operator by Laurent Schwartz

In his “Séminaire: Equations aux dérivées partielles” ([29, exposé 10]; [30,
p. 44]), L. Schwartz defines

Eλ =
tλ−1

Γ(λ)
E1 ,

if Reλ > 1 and if E1 denotes the tempered fundamental solution of ∂t −∆n−1

with support in [0,∞)t × R
n−1
x , i.e.,

E1 =
Y (t)

(4πt)(n−1)/2
e−|x|

2/(4t) ∈ L1
loc(R

n)

(cf. also: [32, p. 563, (28.36), (28.38)]).
The simple relation (∂t − ∆n−1)Eλ = Eλ−1 for Reλ > 1 [29, 10-03, (10)]

shows that λ 7−→ Eλ can be extended to an entire distribution-valued function.
In fact, Eλ ∈ D′+(Rt)⊗̂D′L1(Rn−1

x ) = D′+(D′L1) [28, p. 52, Definition]. Using
vector-valued convolution with respect to t and partial Fourier transform with
respect to x he proves

Eλ ∗Eν = Eλ+ν for λ, ν ∈ C.

Our construction of the convolution group for the operator ∂t +R(−i ∂x)
only slightly modifies Schwartz’s procedure: We replace

• E1 by the fundamental solution F−1
ξ→x

(
Y (t)e−tR(ξ)

)
of ∂t +R(−i ∂x),

• D′+ by the smaller space D′[0,∞[,

• D′L1 by the smaller space O′C ,

• λ by −λ.

4 Remark. In [30, p. 44, Remark A], the resolvent R
(k)
x of the k-times

iterated equation

(
d

dt
+Ax(t)

)k

U(t) = 0 is represented as product of
tk−1

(k − 1)!
and the resolvent of the equation itself, i.e.,

R(k)
x (t, τ) =

(t− τ)k−1

(k − 1)!
Rx(t, τ).

An analogous formula for a fundamental solution of
(
∂t + P (∂x)

)k
in terms of

a fundamental solution of ∂t + P (∂x) is given in [35, Prop., p. 66].
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3 Generalized heat kernels

The case of the heat operator ∂t −∆n−1 = ∂t +R(−i ∂x), i.e. R(ξ) = |ξ|2 =
ξ21 + · · · + ξ2n−1, gives the idea to take for R a real-valued polynomial in n − 1
variables ξ = (ξ1, . . . , ξn−1), homogeneous and positive definite, i.e. R(ξ) > 0
for ξ 6= 0.

These assumptions exclude interesting operators like

∂t + ∂1 + · · ·+ ∂n−1 + c = ∂t + i(−i ∂1 − · · · − i ∂n−1) + c, c ∈ C,

or Sobolev’s operator

∂t − ∂x∂y∂z = ∂t + i(−i ∂x)(−i ∂y)(−i ∂z)

or Schrödinger’s operator

∂t ± i ∆n−1,

since the corresponding polynomials are not real-valued and/or not homoge-
neous.

Therefore, we shall only assume that R is a complex-valued polynomial
satisfying the condition

inf
ξ∈Rn

ReR(ξ) > −∞.

This condition is equivalent to the quasihyperbolicity of ∂t+R(−i ∂x) in the t-
direction (cf. [22, p. 442] and the definition of quasihyperbolic systems in Section
4) and is also called correctness in the sense of Petrovsky ( [16, p. 143,
(12.8.2)]; [33, p. 262]; [10, (64), p. 167; p. 168, Definition]; [11, p. 7]; [5, p. 204]; [2,
(3.15), p. 223]).

For P (−i∂t,−i∂x) = ∂t + R(−i∂x) let us now state the special case arising
from Proposition 9 in Section 4, which refers to an arbitrary quasihyperbolic
system A(−i∂t,−i∂x).

5 Proposition. Let R(ξ) be a complex-valued polynomial in n−1 variables
ξ = (ξ1, . . . , ξn−1) ∈ R

n−1 such that inf
ξ∈Rn−1

ReR(ξ) > −∞. Then

(i) the distribution

Hλ =
t−λ−1
+

Γ(−λ)
F−1

ξ→x(Y (t)e−tR(ξ)),

defined by

〈ϕ,Hλ〉 =
1

Γ(−λ)

∞∫

0

t−λ−1 dt

∫

Rn−1

F−1
x→ξ (ϕ(t, x)) e−tR(ξ) dξ
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for Reλ < 0 and ϕ ∈ D(Rn) and by analytic continuation for λ ∈ C, is
well-defined and belongs to the space D′[0,∞[⊗̂O′C(Rn−1);

(ii) For Reλ < −1, Hλ is the product of
t−λ−1
+

Γ(−λ)
⊗ 1x and F−1

ξ→x(Y (t)e−tR(ξ));

(iii) Hk =
(
∂t +R(−i∂x)

)k
δ if k ∈ N0;

(iv) the function H : C −→ D′[0,∞[⊗̂O′C is entire;

(v) Hλ and Hν are convolvable for all λ, ν ∈ C;

(vi) Hλ ∗Hν = Hλ+ν for all λ, ν ∈ C;

(vii) u := H−k ∗ T ∈ D′[c,∞[⊗̂S ′(Rn−1) is the unique solution of the inhomoge-
neous equation

(
∂t +R(−i∂x)

)k
u = T if T ∈ D′[c,∞[⊗̂S ′(Rn−1)

for some c ∈ R, k ∈ N0. The mapping

D′[c,∞)⊗̂S ′(Rn−1) −→ D′[c,∞)⊗̂S ′(Rn−1),

u 7−→
(
∂t +R(−i∂x)

)k
u

is an isomorphism.

(viii) H−k is the uniquely determined fundamental solution of
(
∂t+R(−i∂x)

)k
in D′[0,∞[⊗̂S ′(Rn−1).

6 Example. The convolution group of the differential operator ∂t + a has

the representation Hλ =
t−λ−1
+

Γ(−λ)
e−at ⊗ δx (cf. [27, (VI,5;15), p. 176]: “fractional

differentiation and integration”).

4 The convolution group for quasihyperbolic systems

of differential operators

Let us define quasihyperbolic systems of linear differential operators (with
constant coefficients):

7 Definition. (Cf. [23, p. 530]) The m×m matrix A(−i∂t,−i∂x) of differ-
ential operators is called quasihyperbolic in the t-direction iff

∃σ0 ∈ R : ∀σ < σ0, ∀ξ ∈ R
n−1 : detA(τ + iσ, ξ) 6= 0.
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8 Remark.

(1) Note that such systems are called “correct in the sense of Petrovsky”
in [9, Ch. III, 2., p. 107].

(2) If A(−i∂t,−i∂x) is quasihyperbolic, then the matrix-valued function

A : U −→ Glm(C), (z, ξ) 7−→ A(z, ξ),

is well-defined and continuous on the simply connected domain U :={
(z, ξ) ∈ C × R

n−1; Im z < σ0

}
. Let us suppose that the algebraic mul-

tiplicities of the eigenvalues of A(z, ξ) do not change when (z, ξ) varies
in U , i.e. A(z, ξ) has p different eigenvalues µ1(z, ξ), . . . , µp(z, ξ) of re-
spective multiplicity r1, . . . , rp. Then

∑p
j=1 rj = m and µj(z, ξ) depend

analytically on (z, ξ). In this case logA(z, ξ) and thus A(z, ξ)λ, λ ∈ C,
can be continued analytically throughout U from some chosen starting
value at (z0, ξ0) ∈ U . In fact, for each (z, ξ) ∈ U we define logA(z, ξ) by
using a Jordan decomposition of the matrix A(z, ξ):
If e1, . . . , ek ∈ C

m span an irreducible generalized eigenspace for the eigen-
value µ ∈ C, i.e.

A(z, ξ)e1 = µe1,

A(z, ξ)ej = µej + ej−1, j = 2, . . . , k,

then (cf. also [15, Thm. 2.6 h, p. 131])

(
logA(z, ξ)

)
ej :=

j−1∑

r=0

1

r!
g(r)(µ)ej−r,

where g(µ) = log µ is assigned first for the p different eigenvalues µ1(z0, ξ0),
. . . , µp(z0, ξ0) and then continued analytically into (z, ξ) ∈ U . Explicitly
we then obtain

A(z, ξ)λej =

j−1∑

r=0

(
λ

r

)
µλ−rej−r

with µλ−r = e(λ−r) log µ.

Scholium.

Note that the differential of the exponential map

exp : C
m×m −→ C

m×m
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satisfies

det(dA exp) =

p∏

i=1

eµir2
i

∏

1≤i<j≤p

(
eµi − eµj

µi − µj

)2rirj

,

where µ1, . . . , µp are the different eigenvalues of A with multiplicities rj. There-
fore, log cannot be defined analytically at B = eA such that A = logB if
det(dA exp) vanishes, i.e. if two different eigenvalues µi 6= µj of A fulfill eµi = eµj ,

i.e. if they differ by a multiple of 2πi. E.g. there is no analytic inverse l̃og of exp
at

I =

(
1 0
0 1

)

which fulfills

l̃ogI =

(
0 0
0 2πi

)
.

Therefore log cannot be defined continuously on the curve

(
1 t
0 eit

)
∈ C

2×2, t ∈ [0, 2π]

starting with log I =

(
0 0
0 0

)
, since the double eigenvalue 1 at t = 0 splits for

t > 0 (e.g., for the hyperbolic system A(−i∂t) =

(
−1 ∂t

0 ∂4
t

)
it is impossible to

define logA(z) = log

(
−1 iz
0 z4

)
in the half-plane σ = Re z < 0 in a continuous

let alone an analytic way). That is why we assumed the multiplicities of the
eigenvalues of A(z, ξ) to remain constant in U , in order to ensure the analyticity
of

U −→ C
m×m, (z, ξ) 7−→ logA(z, ξ)

(cf. [26, in particular p. 404 and p. 412]).

The next proposition generalizes the propositions 2 and 5.

9 Proposition. Let the m×m matrix of linear differential operators (with
constant coefficients) be quasihyperbolic in the t-direction and let σ0 be as in
the definition of quasihyperbolicity. We assume that the algebraic multiplicities
of the eigenvalues of A(z, ξ) remain constant for Im z < σ0, ξ ∈ R

n−1. Let us
define A(τ + iσ, ξ)λ, σ < σ0, (τ, ξ) ∈ R

n, λ ∈ C, as in Remark 3, and finally,

Tλ := e−σtF−1
(τ,ξ)7→(t,x)

(
A(τ + iσ, ξ)λ

)
.

Then:
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(i) For all λ ∈ C, Tλ is well-defined;

(ii) ∀λ ∈ C:
Tλ ∈ (D′[0,∞)⊗̂O′C)m×m;
Tλ does not depend on σ < σ0;
the function C −→ (D′[0,∞)⊗̂O′C)m×m, λ 7−→ Tλ, is an entire distribution-
valued function;

(iii) Tk = A(−i∂t,−i∂x)kδ, k ∈ N0;

(iv) Tλ and Tν are convolvable for all λ, ν ∈ C;

(v) Tλ ∗ Tν = Tλ+ν for all λ, ν ∈ C;

(vi) u := T−k ∗ f ∈
(
D′[c,∞[⊗S ′(Rn−1)

)m
is the unique solution of the inhomo-

geneous system

A(−i∂t,−i∂x)ku = f

if f ∈
(
D′[c,∞[⊗̂S ′(Rn−1)

)m
for some c ∈ R, k ∈ N0.

The mapping f 7−→ u is a continuous right-inverse of A(−i∂t,−i∂x)k.

(vii) T−k is the only fundamental matrix of A(−i∂t,−i∂x)k, k ∈ N0 satisfying

eσtT−k ∈
(
S ′(Rn)

)m×m
for some σ < σ0.

Proof. (i) To show first that Tλ is well-defined, let us apply Seidenberg-
Tarski’s theorem [16, Thm. A.2.2, p. 364] to the zeros of det

(
µIm−A(τ +

iσ, ξ)
)

to conclude that the eigenvalues µ of A(τ + iσ, ξ) can converge to
0 or ∞ only algebraically, i.e.

∃ c1, c2, k > 0 : ∀(τ, ξ) ∈ R
n, ∀σ < σ0, ∀ eigenvalues µ of A(τ + iσ, ξ) :

c1(1 + |ξ|2 + σ2 + τ2)−k(σ0 − σ)k ≤ |µ| ≤ c2(1 + |ξ|2 + σ2 + τ2)k.

The same argument applies to the eigenvalues of A(τ + iσ, ξ)∗A(τ + iσ, ξ)

and thereby shows the at most algebraic growth of
(
‖A(τ + iσ, ξ)‖2

)±1

with respect to (τ, σ, ξ)—since ‖B‖22 is the maximal eigenvalue of B∗B for
B ∈ C

m×m.

Next, we note that Lagrange’s interpolation formula [26, formula (2.1),
p. 397] implies for f(B), B ∈ C

m×m, f Cm−1 at the eigenvalues of B, the
following estimate: ∃Cm > 0 : ∀B ∈ C

m×m:

∥∥f(B)
∥∥ ≤ Cm max(‖B‖, 1)m−1 · max

j=1,...,p
1≤k≤rj−1

∣∣f (k)(µj)
∣∣ ·min

i6=j
(1, |µi − µj|)1−m
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where B has the different eigenvalues µj , j = 1, . . . , p, with the respective

algebraic multiplicities rj , j = 1, . . . , p,
p∑

j=1
rj = m. Applying Seidenberg-

Tarski’s theorem to |µi−µj| for different eigenvalues µi, µj of A(τ + iσ, ξ)
finally yields that

∀σ < σ0 : ∀λ ∈ C : A(τ + iσ, ξ)λ ∈
(
OM (Rn

τ,ξ)
)m×m

since ∣∣µλ−k
∣∣ = |µ|Re λ−ke− Im λ arg µ

and argµ remains bounded for σ < σ0, (τ, ξ) ∈ R
n. Because of OM ⊂ S ′

we infer that

Tλ = e−σtF−1
(τ,ξ)→(t,x)

(
A(τ + iσ, ξ)λ

)

is well-defined, and, furthermore,

eσtTλ ∈ O′C(Rn)m×m ≃
(
O′C(R1

t )⊗̂O′C(Rn−1
x )

)m×m

by the nuclearity of the spaces O′C [28, Prop. 28, p. 98].

(ii) Let us next show that Tλ does not depend on σ < σ0. We fix λ ∈ C and
use the analyticity of the function z 7−→ A(τ + iz, ξ)λ ∈ C

m×m in the
half-plane Re z < σ0 (for fixed (τ, ξ)). Hence

∫

Rn

ϕ(τ, ξ)A(τ + iz, ξ)λ dτdξ

depends analytically on z if ϕ ∈ S(Rn) (by making use of the estimate in
(i) and Lebesgue’s theorem on dominated convergence), and we conclude
that {z ∈ C; Re z < σ0} −→ S ′(Rn

τ,ξ), z 7−→ A(τ + iz, ξ)λ is weakly
holomorphic and thus holomorphic [13, Theorem 1.1.4, p. 57]. The same
is true then for z 7−→ e−ztF−1

(
A(τ+iz, ξ)λ

)
=: S(z), and since, obviously,

S depends only on Re z = σ < σ0, this implies that S is constant and thus
Tλ is independent of the choice of σ < σ0. In order to prove that Tλ = 0
on H := (−∞, 0)× R

n−1, it is sufficient to show that

lim
σ→−∞

e−σtF−1
(
A(τ + iσ, ξ)λ

)
= 0 in D′(H).

But this follows from the facts that lim
σ→−∞

e−σtσk = 0 in E(H) for k ∈ N

and that the set
{
σ−kA(τ+iσ, ξ)λ; σ < σ0−1

}
is bounded in S ′(Rn

τ,ξ) for
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suitable k ∈ N (again using the estimates in (i)). (We also use the hypocon-
tinuity of the multiplication mapping E(H)×D′(H) −→ D′(H), (ψ, T ) 7−→
ψ · T : [27, Theorem III, p. 119]). Hence,

Tλ ∈
(
D′[0,∞[⊗̂O′C(Rn−1

x )
)m×m

.

Finally, the holomorphy of λ 7−→ Tλ follows from that of

C −→ OM (Rn
τ,ξ)

m×m, λ 7−→ A(τ + iσ, ξ)λ,

which in turn is implied by the Seidenberg-Tarski estimates in (i).

(iii) follows from

Tk = e−σtF−1
(
A(τ + iσ, ξ)k

)
= e−σtA

(
−i(∂t − σ),−i∂x)kδ

= A(−i∂t,−i∂x)k(e−σtδ) = A(−i∂t,−i∂x)kδ.

(iv),(v) The spaces D′[c,∞),S ′,O′C are nuclear (cf. [34, Corollary, p. 530, and Prop.

50.1, 50.3, p. 514]; [28, Prop. 28, p. 98]) and thus, e.g.,

D′[c,∞[⊗̂πS ′ = D′[c,∞[⊗̂ǫS ′ =: D′[c,∞)⊗̂S ′

by Theorem 50.1 in [34, p. 511]. Two distributions in D′[0,∞[⊗̂O′C(Rn−1)

and D′[c,∞[⊗̂S ′(Rn−1) are convolvable and their convolution product be-

longs to D′[c,∞[⊗̂S ′(Rn−1). This implies (iv) and (vi).

(vi) By the Fourier exchange theorem for OM and O′C , we have

Tλ ∗ Tν = e−σtF−1
(
A(τ + iσ, ξ)λ ·A(τ + iσ, ξ)ν

)

= e−σtF−1
(
A(τ + iσ, ξ)λ+ν

)
= Tλ+ν ,

since
A(τ + iσ, ξ)z = ez log A(τ+iσ,ξ) for z ∈ C

by definition, and

ezB · ewB = e(z+w)B for z,w ∈ C.

(vii) If S ∈ D′(Rn)m×m fulfills

eσtS ∈ S ′(Rn)m×m for σ < σ0 and A(−i∂t,−i∂x)S = 0,

then also A(−i(∂t−σ),−i∂x)(eσtS) = 0 and hence A(τ+iσ, ξ)F(eσtS) = 0
which implies that F(eσtS) and thus S vanishes.

QED



Convolution groups for quasihyperbolic systems 151

10 Remark. Let us observe that A(z, ξ)λ can also be defined in certain
cases where the algebraic multiplicities of the eigenvalues of A(z, ξ) vary for
Im z < σ0, ξ ∈ R

n−1. E.g., if “Agmon’s ray condition” is fulfilled, i.e. there
exists a fixed ray R+ω, ω ∈ C \ 0, such that no eigenvalue of A(z, ξ) lies on
this ray for Im z < σ0, ξ ∈ R

n−1 (cf. [31, Def. 2, p. 890]). In fact, we can fix
a branch of the logarithm on C \ R+ · ω and define logA(z, ξ) analytically for
Im z < σ0, ξ ∈ R

n−1 by applying this branch of the logarithm to the eigenvalues
of A(z, ξ).

5 The convolution group of the isotropic

elastodynamic system

Let us consider the matrix of differential operators describing waves in linear,
isotropic homogeneous elastic media, i.e.

A(−i∂t,−i∂x) = (∂2
t −M∆3)I3 − (Λ +M)∇ · ∇T

where Λ,M > 0 are the Lamé constants.

5.1 Definition of the convolution group Tλ

For the elastodynamic system,

A(τ, ξ) = (−τ2 +M |ξ|2)I3 + (Λ +M)ξξT

is a hyperbolic 3× 3-matrix, since

detA(τ + iσ, ξ) =
(
−(τ + iσ)2 +M |ξ|2

)2(−(τ + iσ)2 + (Λ + 2M) · |ξ|2
)
6= 0

for σ < σ0 := 0 and (τ, ξ) ∈ R
4. On the other hand, the eigenvalues of A(z, ξ)

are

µ1(z, ξ) = −z2 +M |ξ|2 and µ2(z, ξ) = −z2 + (Λ + 2M)|ξ|2

with multiplicities r1 = 2, r2 = 1, respectively, if ξ 6= 0, whereas A(z, 0) = −z2I3
and hence µ1, µ2 coincide for ξ = 0, Therefore, the assumption on constant
multiplicities of the eigenvalues in Proposition 9 is not fulfilled. But

µj(z, ξ) ∈ C \ (−∞, 0] = C \ (−R+), j = 1, 2,

and hence Agmon’s ray condition is satisfied, cf. the Remark 10. Thus the loga-
rithm and the powers of A(z, ξ) are defined as follows. For ξ 6= 0 we diagonalize
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A(z, ξ) with respect to a basis η, ζ, ξ with η, ζ ⊥ ξ and we obtain the diagonal
matrix 


µ1 0 0
0 µ1 0
0 0 µ2


 .

Hence Aλ, λ ∈ C, fulfills Aλη = µλ
1η, A

λζ = µλ
1ζ, A

λξ = µλ
2ξ and thus is given

by

A(z, ξ)λ = µλ
1I3 + (µλ

2 − µλ
1 )
ξξT

|ξ|2 .

If ξ = 0, then µ1 = µ2 and A(z, ξ) = µλ
1I3. According to Remark 10, all

statements of Proposition 9 then hold for

Tλ := e−σtF−1
(
A(τ + iσ, ξ)λ

)
, σ < 0.

5.2 Calculation of Tλ

The above representation of A(z, ξ)λ yields Tλ = T 1
λ + T 2

λ , where T 1
λ :=

e−σtF−1
(
µ1(τ + iσ, ξ)λ

)
I3 is built up from the convolution group of the wave

operator ∂2
t −M∆3, i.e.

T 1
λ = F−1

((
−τ2 + iτ · 0 +M |ξ|2

)λ)
I3 =

= M−3/2Z−2λ

(
t,

x√
M

)
I3,

cf. [27, (VII, 7; 37), p. 264], and explicitly

T 1
λ =

22λ+1
(
t2 − |x|2M

)−λ−2
Y
(
t− |x|√

M

)

πM3/2Γ(−λ)Γ(−λ− 1)
I3

for Reλ < −1, cf. [27, (VII, 7; 36), p. 263]. On the other hand,

T 2
λ = e−σtF−1

((
µ2(τ + iσ, ξ)λ − µ1(τ + iσ, ξ)λ

)ξξT

|ξ|2
)

= −e−σt∇∇TF−1

((−(τ + iσ)2 + (Λ + 2M)|ξ|2
)λ −

(
−(τ + iσ)2 +M |ξ|2

)λ

|ξ|2
)

= −e−σt∇∇TF−1

(
λ

Λ+2M∫

M

(
−(τ + iσ)2 + ̺|ξ2|

)λ−1
d̺

)
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= −λ∇∇T

Λ+2M∫

M

̺−3/2Z−2λ+2

(
t,
|x|√
̺

)
d̺

=
−λ22λ−1

πΓ(1− λ)Γ(−λ)
∇∇T

Λ+2M∫

M

̺−3/2

(
t2 − |x|

2

̺

)−λ−1

Y

(
t− |x|√

̺

)
d̺.

Still supposing Reλ < −1 the substitution σ =
|x|
t
√
̺

yields

T 2
λ =

22λ

πΓ(−λ)2
∇∇T

(
t−2λ−1

|x|

|x|
t
√

M∫

|x|
t
√

Λ+2M

(1− σ2)−λ−1Y (1− σ) dσ

)

=
22λt−2λ−1

πΓ(−λ)2
∇ · ∇T

{
1

|x|

∞∑

j=0

(−λ− 1

j

)
(−1)j

2j + 1

·
[[

1−
( |x|
t
√

Λ + 2M

)2j+1
]
Y
(
t− |x|√

Λ + 2M

)
−
[
1−

( |x|
t
√

M

)2j+1
]
Y
(
t− |x|√

M

)
]}

.

Finally, let us perform the differentiations, still supposing Reλ < −1. Using

∇T
(
f(|x|)

)
= f ′(|x|) · x

T

|x| we obtain

T 2
λ =

22λt−2λ−1

πΓ(−λ)2
∇
{
xT

|x|3
∞∑

j=0

(−λ− 1

j

)
(−1)j+1

2j + 1

·
[(

1 + 2j
( |x|
t
√

Λ + 2M

)2j+1
)
Y
(
t− |x|√

Λ + 2M

)

−
(

1 + 2j
( |x|
t
√
M

)2j+1
)
Y
(
t− |x|√

M

)]}
. (*)

Since
∑∞

j=0(−1)j+1
(−λ−1

j

)
= −(1 − 1)−λ−1 = 0 for Reλ < −1, the remaining

differentiation does not yield any delta-terms, and hence, using

∞∑

j=0

(−λ− 1

j

)
(−1)j

2j + 1
=

√
π Γ(−λ)

2Γ
(
−λ+ 1

2

) ,
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we infer, still for Reλ < −1,

T 2
λ =

t−2λ−1

4πΓ(−2λ)

(
− I3
|x|3 +

3xxT

|x|5
)[

Y

(
t− |x|√

Λ + 2M

)
− Y

(
t− |x|√

M

)]

+
22λ+1t−2λ−1

πΓ(−λ)Γ(−λ− 1)

∞∑

j=1

(−λ− 2

j − 1

)
(−1)j+1|x|2j−2t−2j−1

2j + 1

(
I3 + 2(j − 1)

xxT

|x|2
)

·
[

(Λ + 2M)−j−1/2Y

(
t− |x|√

Λ + 2M

)
−M−j−1/2Y

(
t− |x|√

M

)]
.

Note that
∞∑

k=0

(µ
k

)
(−x)k converges in L1

(
[0, 1]

)
to (1− x)µ (for Reµ > −1).

5.3 Final result

Let us summarize the above calculation in the following proposition:

11 Proposition. The convolution group Tλ of the isotropic elastodynamic
system

(∂2
t −M∆3)I3 − (Λ +M)∇ · ∇T , Λ,M > 0,

satisfies:

(1) for Reλ < −1, Tλ is locally integrable and has the representation

Tλ(t, x) =
22λ+1

(
t2 − |x|2M

)−λ−2
Y
(
t− |x|√

M

)

πM3/2Γ(−λ)Γ(−λ− 1)
I3

+
t−2λ−1

4πΓ(−2λ)

(
3xxT

|x|5 −
I3
|x|3

)[
Y

(
t− |x|√

Λ + 2M

)
− Y

(
t− |x|√

M

)]

+
22λ+1t−2λ−1

πΓ(−λ)Γ(−λ− 1)

∞∑

j=1

(−λ− 2

j − 1

)
(−1)j+1|x|2j−2t−2j−1

2j + 1

·
(
I3 + 2(j − 1)

xxT

|x|2
)

·
[

(Λ + 2M)−j−1/2Y

(
t− |x|√

Λ + 2M

)
−M−j−1/2Y

(
t− |x|√

M

)]
;

(2) for k = 2, 3, . . ., the fundamental matrices T−k of

[
(∂2

t −M∆3)I3 − (Λ +M)∇∇T
]k
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are given by the locally integrable functions

T−k(t, x) =
21−2k

(
t2 − |x|2M

)k−2
Y
(
t− |x|√

M

)

πM3/2(k − 1)!(k − 2)!
I3

+
t2k−1

4π(2k − 1)!

(
3xxT

|x|5 −
I3
|x|3

)[
Y

(
t− |x|√

Λ + 2M

)
− Y

(
t− |x|√

M

)]

+
t2k−121−2k

π(k − 1)!

k−1∑

j=1

(−1)j+1|x|2j−2t−2j−1

(j − 1)!(2j + 1)(k − j − 1)!

(
I3 + 2(j − 1)

xxT

|x|2
)

·
[

(Λ + 2M)−j−1/2Y

(
t− |x|√

Λ + 2M

)
−M−j−1/2Y

(
t− |x|√

M

)]
.

12 Remark. T−1 coincides with the well-known Stokes’ fundamental
matrix of

(∂2
t −M∆3)I3 − (Λ +M)∇ · ∇T .

T−1 can be inferred by letting λ tend to −1 from below. More precisely, T−1 =
T 1
−1 + T 2

−1 with

T 1
−1(t, x) = M−3/2Z2

(
t,

x√
M

)
I3 =

1

4πM |x|δ
(
t− |x|√

M

)
I3,

and on the other hand, from formula (∗), we have

T 2
−1(t, x) =

t

4π
∇
(
− xT

|x|3

[
Y

(
t− |x|√

Λ + 2M

)
− Y

(
t− |x|√

M

)])

=
t

4π

(
3xxT

|x|5 −
I3
|x|3

)[
Y

(
t− |x|√

Λ + 2M

)
− Y

(
t− |x|√

M

)]

+
t2xxT

4π|x|5

[
δ

(
t− |x|√

Λ + 2M

)
− δ
(
t− |x|√

M

)]

(compare [4, (5.10.30)–(5.10.32), p. 400]; [37, (8.15), p. 282]; [24, Section 4.3]).
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p., 1979/80.

[21] N. Ortner: On some contributions of John Horváth to the theory of distributions, J.
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