On exact rates of growth and decay of solutions of a linear Volterra equation in linear viscoelasticity

David W. Reynolds
School of Mathematical Sciences, Dublin City University, Dublin 9, Ireland
david.reynolds@dcu.ie
John A. D. Appleby
School of Mathematical Sciences, Dublin City University, Dublin 9, Ireland
john.appleby@dcu.ie
\section*{István Győri}
Department of Mathematics and Computing, University of Pannonia, H-8201 Veszprém, Pf 158, Egyetum u. 10, Hungary gyori@almos.vein.hu

Received: 09/10/2006; accepted: 15/10/2006.

Abstract

The asymptotic behaviour of a scalar linear nonconvolution Volterra equation is investigated; the equation is that satisfied by the modes of a viscoelastic rod bending quasistatically. A sufficient condition for the trivial solution to be asymptotic stable is given, as well as results on describing the exact rate of decay: in the case that the trivial solution is unstable, the exact rate of growth of solutions is specified.

Keywords: linear viscoelasticity, resolvent, renewal equation, Laplace transform
MSC 2000 classification: primary 45D05, secondary 74D05

1 Introduction

In this paper we investigate the linear nonconvolution Volterra equation

$$
\begin{equation*}
y(t)=\int_{0}^{t} \frac{k(t-s)}{1-p(t)} y(s) d s+f(t), \quad t \geq 0 \tag{1}
\end{equation*}
$$

This equation is satisfied by the modes of a viscoelastic rod bending quasistatically, as is explained in Section 2.

It is shown here that if, $k(t) \geq 0$ for all $t \geq 0, \int_{0}^{\infty} k(t) d t<1$ and

$$
\limsup _{t \rightarrow \infty} p(t)<1-\int_{0}^{\infty} k(t) d t
$$

then $y(t) \rightarrow 0$ as $t \rightarrow \infty$, provided $f(t) \rightarrow 0$ as $t \rightarrow \infty$. The question then arises of how quickly the solution decays to zero. We answer this in the case that $p(t) \rightarrow \lambda \in[0,1)$ as $t \rightarrow \infty$. If there is a characteristic root θ_{λ} satisfying

$$
\int_{0}^{\infty} k(t) e^{-\theta_{\lambda} t} d t=1-\lambda
$$

conditions are supplied which imply that $\lim _{t \rightarrow \infty} y(t) e^{-\theta_{\lambda} t}$ exists. On the other hand, if there is no characteristic root, it is shown that $\lim _{t \rightarrow \infty} y(t) / k(t)$ exists if k belongs a class of functions introduced in [4]. The characteristic root θ_{λ} always exists and is positive if $\lambda>1-\int_{0}^{\infty} k(t) d t$.

In $[1,2]$ exact rates of decay of convolution Volterra equations were found, and it was seen in [1] that these results could be deduced economically from a general theorem concerning the convergence to a limit of solutions to a linear nonconvolution Volterra equation. Here that same theorem is employed to investigate the asymptotic behaviour of the nonconvolution equation (1).

2 Quasi-static bending of viscoelastic rods

There is a large literature on the stability of viscoelastic structures such as rods and shells. The subject is covered extensively in [9]. The hereditary nature of the constitutive equations gives rise to integral equations and more generally functional differential equations. Attention is confined here to the quasi-static bending of linear viscoelastic rods: inertia, shear and twist are ignored.

Consider a thin inhomogeneous linear viscoelastic rod bending in plane. Suppose that it has length l, that its ends are pinned at the same level, and that it is acted on by a horizontal compressive time-varying load $P(t)$ at the end $x=l$. Body forces and torques are neglected. If its motion prior to time 0 is known, and its motion is subsequently quasi-static, small vertical displacements $y(t, x)$ obey

$$
\begin{gathered}
B(x)\left(\frac{\partial^{2} y}{\partial x^{2}}(t, x)-\int_{0}^{\infty} k(s) \frac{\partial^{2} y}{\partial x^{2}}(t-s, x) d s\right)+P(t) y(t, x)=0, \quad t \geq 0 \\
y(t, 0)=y(t, l)=0, \quad t \geq 0 \\
y(t, x)=\phi(t, x), \quad t \leq 0
\end{gathered}
$$

The relaxation function of the rod is given by $G(t, x)=B(x)\left\{1-\int_{0}^{t} k(s) d s\right\}$. Here $B(x)>0$ is the instantaneous flexural rigidity. The kernel k satisfies $k(t) \geq 0$ and $\int_{0}^{\infty} k(s) d s<1$; so that the viscoelastic material is solid.

The static elastic problem has an increasing sequence $\left\{P_{n}\right\}_{n \geq 1}$ of positive eigenvalues, with corresponding eigenfunctions $\left\{u_{n}\right\}_{n \geq 1}$, satisfying

$$
\begin{gathered}
B(x) u_{n}^{\prime \prime}(x)+P_{n} u_{n}(x)=0, \quad 0<x<l ; \\
u_{n}(0)=u_{n}(l)=0 ;
\end{gathered}
$$

and the normalization condition

$$
\int_{0}^{l} u_{m}(x) u_{n}(x) \frac{1}{B(x)} d x= \begin{cases}1, & m=n, \\ 0, & m \neq n .\end{cases}
$$

$P_{1}>0$ is Euler's elastic critical load. y is the superposition of a countably infinite number of modes, the nth mode being given by

$$
y_{n}(t)=\int_{0}^{l} y(t, x) u_{n}(x) \frac{1}{B(x)} d x .
$$

It is easily seen that

$$
\begin{gather*}
\left(1-\frac{P(t)}{P_{n}}\right) y_{n}(t)-\int_{0}^{t} k(t-s) y_{n}(s) d s=\int_{-\infty}^{0} k(t-s) \phi_{n}(s) d s, \tag{2}\\
\phi_{n}(s)=\int_{0}^{l}\{\phi(s, x)-(l-x) \phi(s, 0)-x \phi(s, l)\} u_{n}(x) \frac{1}{B(x)} d x, \quad s \leq 0 .
\end{gather*}
$$

The restriction $0 \leq P(t)<P_{1}$ for all $t \geq 0$, is imposed to exclude the phenomena of multiple solutions and solutions blowing up in finite time, as found in $[14,15,19]$ for loads exceeding P_{1}. For such loads the dynamic equations of motion should be considered. No attempt is made to elaborate conditions on the kernel k and the initial history ϕ which would imply that the forcing function on the right-hand side of (2) has the regularity properties we require. However important and relevant papers are [5,17], and [16] is a thorough work on the theory of functional differential equations with infinite delay.

In the case that P is constant, (2) is a linear convolution equation, and the asymptotic behaviour of its solutions can be found using Laplace transforms: see [6-9] for results obtained using this approach. Results on the asymptotic behaviour of solutions in the case that $P(t)$ is time-dependent have been obtained in $[9,19,20]$: similar results for rods composed of ageing viscoelastic materials are in $[9,11,12]$.

Observe that (1) is in the same form as (2), and that $p(t)$ in (1) plays the role of $P(t) / P_{n}$. Our results determine the asymptotic properties of the individual modes, but we do not here combine them and deduce asymptotic properties of $t \mapsto y(t, \cdot)$.

3 Mathematical preliminaries

3.1 Nonconvolution linear Volterra equations

We summarize some properties of solutions of linear nonconvolution Volterra equations. Standard works which treat this topic include [13, 18]. In particular we consider the scalar equation

$$
\begin{equation*}
y(t)=\int_{0}^{t} a(t, s) y(s) d s+f(t), \quad t \geq 0 \tag{3}
\end{equation*}
$$

where the kernel $a: \Delta \rightarrow \mathbb{R}$ is continuous on the triangular region

$$
\Delta=\left\{(t, s) \in \mathbb{R}^{2}: 0 \leq s \leq t\right\}
$$

and $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous. Existence and uniqueness can be established by examining the Neumann series associated with a.

1 Theorem. There is a unique continuous solution $y:[0, \infty) \rightarrow \mathbb{R}$ of (3).
The following standard result provides sufficient conditions for the solution of (3) to decay to zero.

2 Theorem. Suppose that a obeys

$$
\begin{gather*}
\sup _{t \geq S_{1}} \int_{S_{0}}^{t}|a(t, s)| d s<1, \quad \text { for some } 0<S_{0} \leq S_{1} \tag{4}\\
\quad \lim _{t \rightarrow \infty} \int_{0}^{T}|a(t, s)| d s=0 \quad \text { for every } T>0 \tag{5}
\end{gather*}
$$

If $f(t) \rightarrow 0$ as $t \rightarrow \infty$, then $y(t) \rightarrow 0$ as $t \rightarrow \infty$.
Later we shall consider Volterra equations for which condition (5) fails, and instead employ the following scalar version of [1, Theorem A.1]. This result is used by determine exact rates of growth and decay for solutions of (1).

3 Theorem. Suppose that:

$$
\begin{align*}
b= & \limsup _{S \rightarrow \infty}\left(\limsup _{t \rightarrow \infty} \int_{0}^{S}|a(t, t-u)| d u\right)<1, \tag{6}\\
c= & \lim _{S \rightarrow \infty}\left(\lim _{t \rightarrow \infty} \int_{0}^{S} a(t, t-u) d u\right) \quad \text { exists }, \tag{7}\\
& \limsup _{S \rightarrow \infty}\left(\limsup _{t \rightarrow \infty} \int_{S}^{t-S}|a(t, s)| d s\right)=0, \tag{8}
\end{align*}
$$

and that there is some j in $L^{1}(0, \infty)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{0}^{T}|a(t, s)-j(s)| d s=0 \quad \text { for every } T>0 \tag{9}
\end{equation*}
$$

If $\lim _{t \rightarrow \infty} f(t)$ exists, then $\lim _{t \rightarrow \infty} y(t)$ exists and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} y(t)=(1-c)^{-1}\left\{\lim _{t \rightarrow \infty} f(t)+\int_{0}^{\infty} j(s) y(s) d s\right\} \tag{10}
\end{equation*}
$$

4 Remark. This theorem does not yield an explicit expression for the limit $\lim _{t \rightarrow \infty} y(t)$. However (10) may nevertheless be of value.

3.2 Renewal equations

A particular class of equations having the form (3) are convolution equations, for which $a(t, s)=\alpha(t-s)$: (3) then takes the form

$$
\begin{equation*}
y(t)=\int_{0}^{t} \alpha(t-s) y(s) d s+f(t), \quad t \geq 0 \tag{11}
\end{equation*}
$$

The solution of this equation can be represented as

$$
y(t)=\int_{0}^{t} \rho(t-s) f(s) d s+f(t)
$$

in terms of ρ, the resolvent of α, which we define to be the solution of

$$
\begin{equation*}
\rho(t)=\int_{0}^{t} \alpha(t-s) \rho(s) d s+\alpha(t) . \tag{12}
\end{equation*}
$$

Assume that α is in $L^{1}(0, \infty) \cap C[0, \infty)$, with $\alpha(t) \geq 0$. The abscissa of convergence μ of the Laplace transform of α is given by

$$
\begin{equation*}
\mu:=\inf \left\{\sigma: \int_{0}^{\infty} \alpha(t) e^{-\sigma t} d t<\infty\right\} . \tag{13}
\end{equation*}
$$

There are two important cases to consider. The first is that α has a characteristic root $\theta \geq \mu$ such that

$$
\begin{equation*}
\int_{0}^{\infty} \alpha(t) e^{-\theta t} d t=1 \tag{14}
\end{equation*}
$$

the second is that

$$
\begin{equation*}
\int_{0}^{\infty} \alpha(t) e^{-\mu t} d t<1 \tag{15}
\end{equation*}
$$

In the first case, (12) can be multiplied by $e^{-\theta t}$ to obtain a renewal equation for $t \mapsto e^{-\theta t} \rho(t)$; indeed

$$
e^{-\theta t} \rho(t)=\int_{0}^{t} \alpha(t-s) e^{-\theta(t-s)} e^{-\theta s} \rho(s) d s+e^{-\theta t} \alpha(t)
$$

By imposing a few extra hypotheses, the renewal theorem can be used to infer that $e^{-\theta t} \rho(t)$ approaches a known constant as $t \rightarrow \infty$. For details see [10, Ch. XI] or [3, Ch. IV].

5 Theorem. Suppose that (14) holds, that

$$
\begin{equation*}
\int_{0}^{\infty} s e^{-\theta s} \alpha(s) d s<\infty \tag{16}
\end{equation*}
$$

and that $s \mapsto e^{-\theta s} \alpha(s)$ is directly Riemann integrable. Then

$$
\lim _{t \rightarrow \infty} \rho(t) e^{-\theta t}=\frac{1}{\int_{0}^{\infty} s e^{-\theta s} \alpha(s) d s}>0
$$

If however (15) holds, then

$$
e^{-\mu t} \rho(t)=\int_{0}^{t} \alpha(t-s) e^{-\mu(t-s)} e^{-\mu s} \rho(s) d s+e^{-\mu t} \alpha(t)
$$

is a defective renewal equation for $e^{-\mu t} \rho(t)$. Such equations were one of the motivations for [4], and in [1] a class $\mathcal{U}(\mu)$ of functions which satisfy the hypotheses of Theorem 3 of [4] was introduced. Roughly speaking, if α is in $\mathcal{U}(\mu)$ then $\alpha(t)=e^{\mu t} \delta(t)$ is the product of the exponential $e^{\mu t}$ and a slowly-decaying $\delta(t)$.

A counterpart of Theorem 5 for defective renewal equations is Theorem 5.2 of [2].

6 Theorem. Suppose that (15) holds, and that α is in $\mathcal{U}(\mu)$. Then the resolvent ρ is in $\mathcal{U}(\mu), \lim _{t \rightarrow \infty} \rho(t) / \alpha(t)$ exists and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\rho(t)}{\alpha(t)}=\frac{1}{\left(1-\int_{0}^{\infty} \alpha(t) e^{-\mu t} d t\right)^{2}} . \tag{17}
\end{equation*}
$$

The formal definition of $\mathcal{U}(\mu)$ is stated.
7 Definition. Let $\mu \in \mathbb{R}$. A function $\alpha:[0, \infty) \rightarrow \mathbb{R}$ is in $\mathcal{U}(\mu)$ if it is continuous with $\alpha(t)>0$ for all $t \geq 0$, and

$$
\begin{gather*}
\int_{0}^{\infty} \alpha(t) e^{-\mu t} d t<\infty \tag{18}\\
\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{\alpha(t-s) \alpha(s)}{\alpha(t)} d s=2 \int_{0}^{\infty} \alpha(t) e^{-\mu t} d t, \tag{19}\\
\lim _{t \rightarrow \infty} \frac{\alpha(t-s)}{\alpha(t)}=e^{-\mu s} \text { uniformly for } 0 \leq s \leq S, \text { for all } S>0 . \tag{20}
\end{gather*}
$$

If α is in $\mathcal{U}(0)$ it is termed a subexponential function. The nomenclature is suggested by the fact that (20) with $\mu=0$ implies that $\alpha(t) e^{\epsilon t} \rightarrow \infty$ as $t \rightarrow \infty$, for every $\epsilon>0 . \alpha$ is regularly varying at infinity if $\alpha(\nu t) / \alpha(t)$ tends to a limit as $t \rightarrow \infty$ for all $\nu>0$. It is noted in [2] that the class of subexponential functions includes all positive, continuous, integrable functions which are regularly varying at infinity. The properties $\mathcal{U}(0)$ have been extensively studied in $[2,4]$ and elsewhere.

If α is in $\mathcal{U}(\mu)$, then $\alpha(t)=e^{\mu t} \delta(t)$ where δ is a function in $\mathcal{U}(0)$. Simple examples of functions in $\mathcal{U}(\mu)$ are $\alpha(t)=e^{\mu t}(1+t)^{-\beta}$ for $\beta>1, \alpha(t)=e^{\mu t} e^{-(1+t)^{\beta}}$ for $0<\beta<1$ and $\alpha(t)=e^{\mu t} e^{-t / \log (t+2)}$. The class $\mathcal{U}(\mu)$ therefore includes a wide variety of functions exhibiting exponential and slower than exponential decay: nor is the slower than exponential decay limited to a class of polynomially decaying functions.

8 Remark. It appears restrictive to specify the value of the limit in (19). But if $\alpha:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function with $\alpha(t)>0$ for all $t \geq 0$, satisfying (18) and (20), and

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{\alpha(t-s) \alpha(s)}{\alpha(t)} d t \quad \text { exists }
$$

it is shown in [4] that this limit is given by (19).
Proposition 3 of [1] is used later, and helps to make the proof of Theorem 14 succinct.

9 Lemma. Let μ be in \mathbb{R}. Suppose that $\alpha:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function with $\alpha(t)>0$ for all $t \geq 0$, satisfying (18) and (20). Then α is in $\mathcal{U}(\mu)$ if and only if

$$
\begin{equation*}
\lim _{S \rightarrow \infty}\left(\lim _{t \rightarrow \infty} \int_{S}^{t-S} \frac{\alpha(t-s) \alpha(s)}{\alpha(t)} d s\right)=0 \tag{21}
\end{equation*}
$$

4 Stability result

In this section, the asymptotic behaviour of the solutions of (1) is investigated under the following hypotheses, which are assumed to hold hereinafter.
(H1) $p:[0, \infty) \rightarrow \mathbb{R}$ is continuous with $0 \leq p(t)<1$ for all $t \geq 0$ and $\lim \sup _{t \rightarrow \infty} p(t)<1$
(H2) the kernel $k:[0, \infty) \rightarrow(0, \infty)$ is continuous, integrable, and

$$
\begin{equation*}
\int_{0}^{\infty} k(s) d s<1 \tag{22}
\end{equation*}
$$

(H3) $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous, and $f(t) \rightarrow 0$ as $t \rightarrow \infty$.
Notice that (1) has the same form as (3) if

$$
\begin{equation*}
a(t, s)=\frac{k(t-s)}{1-p(t)}, \quad(t, s) \in \Delta . \tag{23}
\end{equation*}
$$

Gurtin and Reynolds (cf. Theorem A2.1 of [20]) established the following result. Here we show that it is a corollary of Theorem 2.

10 Theorem. Suppose that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} p(t)<1-\int_{0}^{\infty} k(s) d s . \tag{24}
\end{equation*}
$$

Then $y(t) \rightarrow 0$ as $t \rightarrow \infty$.
Proof. We verify that (4) and (5) hold. Firstly note that (24) is equivalent to

$$
\int_{0}^{\infty} k(s) d s<1-\limsup _{t \rightarrow \infty} p(t)=\liminf _{t \rightarrow \infty}(1-p(t))
$$

and hence

$$
1>\frac{\int_{0}^{\infty} k(s) d s}{\liminf f_{t \rightarrow \infty}(1-p(t))}=\limsup _{t \rightarrow \infty} \frac{\int_{0}^{t} k(t) d t}{1-p(t)} .
$$

Therefore there is $S_{1}>0$ such that

$$
\frac{1}{1-p(t)} \int_{0}^{t} k(s) d s<1 \quad \text { for all } t \geq S_{1} .
$$

By the definition (23), for $t \geq S_{1}$,

$$
\begin{aligned}
\int_{0}^{t}|a(t, s)| d s & =\frac{1}{1-p(t)} \int_{0}^{t} k(t-s) d s \\
& =\frac{1}{1-p(t)} \int_{0}^{t} k(\sigma) d \sigma<1
\end{aligned}
$$

Thus (4) is true with $S_{0}=0$. Let $T>0$. Then, for $t \geq T$,

$$
\int_{0}^{T}|a(t, s)| d s=\frac{1}{1-p(t)} \int_{0}^{T} k(t-s) d s=\frac{1}{1-p(t)} \int_{t-T}^{t} k(\sigma) d \sigma .
$$

By taking the limit superior as $t \rightarrow \infty$ of each side, we deduce that

$$
\limsup _{t \rightarrow \infty} \int_{0}^{T}|a(t, s)| d s \leq \limsup _{t \rightarrow \infty} \frac{1}{1-p(t)} \lim _{t \rightarrow \infty} \int_{t-T}^{t} k(\sigma) d \sigma=0
$$

since k is in $L^{1}(0, \infty)$. Hence (5) is also true.
QED
11 Remark. This result can also be proved by applying Theorem 3 .

5 Rates of growth and decay

In this section we assume that

$$
\begin{equation*}
p(t) \rightarrow \lambda \quad \text { as } t \rightarrow \infty \tag{25}
\end{equation*}
$$

and find the exact rates of decay as $t \rightarrow \infty$ of solutions if

$$
\begin{equation*}
0 \leq \lambda<1-\int_{0}^{\infty} k(t) d t \tag{26}
\end{equation*}
$$

and the exact rates of growth as $t \rightarrow \infty$ if

$$
\begin{equation*}
1-\int_{0}^{\infty} k(t) \leq \lambda<1 \tag{27}
\end{equation*}
$$

Let μ be the abscissa of convergence of the Laplace transform of k, defined in (13). Due to (22), $\mu \leq 0$. We investigate two cases: firstly there is a $\theta_{\lambda} \geq \mu$ such that

$$
\begin{equation*}
\int_{0}^{\infty} k(t) e^{-\theta_{\lambda} t} d t=1-\lambda \tag{28}
\end{equation*}
$$

secondly

$$
\begin{equation*}
\int_{0}^{\infty} k(t) e^{-\mu t} d t<1-\lambda \tag{29}
\end{equation*}
$$

If (28) holds, we observe that

$$
\theta_{\lambda}=\left\{\begin{array}{l}
<0, \quad \lambda<1-\int_{0}^{\infty} k(s) d s \\
>0,
\end{array} \quad \lambda>1-\int_{0}^{\infty} k(s) d s\right.
$$

Of course θ_{λ} is the characteristic root of $k /(1-\lambda)$.
At this point we derive a nonconvolution equation to which we can apply Theorem 3 if (28) is true. The case when (29) holds is deferred to later in this section. We rearrange (1) as

$$
\begin{equation*}
(1-\lambda) y(t)=\int_{0}^{t} k(t-s) y(s) d s+(p(t)-\lambda) y(t)+(1-p(t)) f(t) \tag{30}
\end{equation*}
$$

The resolvent r_{λ} of $k /(1-\lambda)$ is the solution of

$$
\begin{equation*}
r_{\lambda}(t)=\int_{0}^{t} \frac{k(t-s)}{1-\lambda} r_{\lambda}(s) d s+\frac{k(t)}{1-\lambda} \tag{31}
\end{equation*}
$$

We take the convolution of each term in (30) with r_{λ}, employ Fubini's theorem and simplify the result using (31), to obtain the new nonconvolution Volterra equation

$$
\begin{equation*}
y(t)=\int_{0}^{t} \frac{p(s)-\lambda}{1-p(t)} r_{\lambda}(t-s) y(s) d s+\int_{0}^{t} \frac{1-p(s)}{1-p(t)} r_{\lambda}(t-s) f(s) d s+f(t) \tag{32}
\end{equation*}
$$

It might be expected that, since p satisfies (25), the solution y of (1) decays or grows at the same rate as that of

$$
\begin{equation*}
(1-\lambda) z(t)=\int_{0}^{t} k(t-s) z(s) d s+(1-p(t)) f(t) \tag{33}
\end{equation*}
$$

By taking the convolution of this equation with r_{λ}, and simplifying using (31), we get the representation

$$
\begin{equation*}
z(t)=\int_{0}^{t} r_{\lambda}(t-s) \frac{1-p(s)}{1-\lambda} f(s) d s+\frac{1-p(t)}{1-\lambda} f(t) \tag{34}
\end{equation*}
$$

Hence (32) becomes

$$
\begin{equation*}
y(t)=\int_{0}^{t} \frac{p(s)-\lambda}{1-p(t)} r_{\lambda}(t-s) y(s) d s+\frac{1-\lambda}{1-p(t)} z(t) . \tag{35}
\end{equation*}
$$

Our first result gives conditions for $y(t)$ to grow or decay at the same rate as $e^{\theta_{\lambda} t}$ as $t \rightarrow \infty$.

12 Theorem. Let $0 \leq \lambda<1$. Suppose that (25) holds, with

$$
\begin{equation*}
\int_{0}^{\infty}|p(s)-\lambda| d s<\infty . \tag{36}
\end{equation*}
$$

Assume that there is a $\theta_{\lambda} \in \mathbb{R}$ satisfying (28), that

$$
\begin{equation*}
\int_{0}^{\infty} s e^{-\theta_{\lambda} s} k(s) d s<\infty \tag{37}
\end{equation*}
$$

and $s \mapsto e^{-\theta_{\lambda} s} k(s)$ is directly Riemann integrable. If

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\theta_{\lambda} t}|f(t)| d t<\infty \tag{38}
\end{equation*}
$$

and $e^{-\theta_{\lambda} t} f(t) \rightarrow 0$ as $t \rightarrow \infty$, then $\lim _{t \rightarrow \infty} e^{-\theta_{\lambda} t} y(t)$ exists.

Proof. We begin by noting that a consequence of Theorem 5 is

$$
\begin{equation*}
\lim _{t \rightarrow \infty} r_{\lambda}(t) e^{-\theta_{\lambda} t}=L_{\lambda}:=\frac{1-\lambda}{\int_{0}^{\infty} s e^{-\theta s} k(s) d s}>0 \tag{39}
\end{equation*}
$$

By multiplying (35) by $e^{-\theta_{\lambda} t}$, we get the equation

$$
\tilde{y}(t)=\int_{0}^{t} \tilde{a}(t, s) \tilde{y}(s) d s+\tilde{f}(t)
$$

where $\tilde{y}(t)=y(t) e^{-\theta_{\lambda} t}$, and

$$
\begin{equation*}
\tilde{a}(t, s):=\frac{p(s)-\lambda}{1-p(t)} r_{\lambda}(t-s) e^{-\theta_{\lambda}(t-s)}, \quad \tilde{f}(t):=\frac{1-\lambda}{1-p(t)} z(t) e^{-\theta_{\lambda} t} \tag{40}
\end{equation*}
$$

We proceed by demonstrating each of the hypotheses of Theorem 3. A consequence of (39) is that there is $M>0$ such that $\left|r_{\lambda}(u) e^{-\theta_{\lambda} u}\right| \leq M$ for all $u \geq 0$. Firstly for every $S>0$,

$$
\begin{aligned}
\limsup _{t \rightarrow \infty} \int_{0}^{S}|\tilde{a}(t, t-u)| d u & =\limsup _{t \rightarrow \infty} \frac{1}{1-p(t)} \int_{0}^{S} r_{\lambda}(u) e^{-\theta_{\lambda} u}|p(t-u)-\lambda| d u \\
& \leq \limsup _{t \rightarrow \infty} \frac{M}{1-\lambda} \int_{0}^{S}|p(t-u)-\lambda| d u \\
& \leq \limsup _{t \rightarrow \infty} \frac{M}{1-\lambda} \int_{t-S}^{t}|p(\sigma)-\lambda| d \sigma=0
\end{aligned}
$$

because of (36). Hence (6) and (7) hold with $b=c=0$. Let $S>0$. Then

$$
\begin{aligned}
\limsup _{t \rightarrow \infty} \int_{S}^{t-S}|\tilde{a}(t, s)| d s & =\limsup _{t \rightarrow \infty} \int_{S}^{t-S} \frac{|p(s)-\lambda|}{1-p(t)} r_{\lambda}(t-s) e^{-\theta_{\lambda}(t-s)} d s \\
& =\limsup _{t \rightarrow \infty} \int_{S}^{t-S} \frac{|p(t-u)-\lambda|}{1-p(t)} r_{\lambda}(u) e^{-\theta_{\lambda} u} d u \\
& \leq \frac{M}{1-\lambda} \limsup _{t \rightarrow \infty} \int_{S}^{t-S}|p(t-u)-\lambda| d u \\
& =\frac{M}{1-\lambda} \limsup _{t \rightarrow \infty} \int_{S}^{t-S}|p(s)-\lambda| d s \\
& \leq \frac{M}{1-\lambda} \int_{S}^{\infty}|p(s)-\lambda| d s
\end{aligned}
$$

Because of (36), the right-hand side of this equality tends to zero as $S \rightarrow \infty$, establishing (8). Next, let $T>0$. Then

$$
\tilde{a}(t, s)=\frac{p(s)-\lambda}{1-p(t)} r_{\lambda}(t-s) e^{-\theta_{\lambda}(t-s)} \rightarrow \frac{p(s)-\lambda}{1-\lambda} L_{\lambda}
$$

as $t \rightarrow \infty$, uniformly for $0 \leq s \leq T$. Hence (9) is satisfied for $j:[0, \infty) \rightarrow \mathbb{R}$ given by

$$
j(s)=\frac{L_{\lambda}}{1-\lambda}(p(s)-\lambda), \quad s \geq 0
$$

The hypothesis (36) ensures that j is integrable. Lastly (34) and (38) imply that

$$
z(t) e^{-\theta_{\lambda} t} \rightarrow \frac{L_{\lambda}}{1-\lambda} \int_{0}^{\infty}[1-p(s)] f(s) e^{-\theta_{\lambda} s} d s \quad \text { as } t \rightarrow \infty
$$

All the hypotheses of Theorem 3 have been shown to hold, and we conclude that $\lim _{t \rightarrow \infty} \tilde{y}(t)$ exists and satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \tilde{y}(t)=\frac{L_{\lambda}}{1-\lambda} \int_{0}^{\infty}\left\{(1-p(s)) f(s) e^{-\theta_{\lambda} s}+(p(s)-\lambda) \tilde{y}(s)\right\} d s \tag{41}
\end{equation*}
$$

QED

13 Remark. If $f(t)>0$ for all $t \geq 0$, then $y(t)>0$ for all $t \geq 0$, and therefore $\lim _{t \rightarrow \infty} y(t) e^{-\theta_{\lambda} t} \geq 0$. It follows from (41) that $\lim _{t \rightarrow \infty} y(t) e^{-\theta_{\lambda} t}>0$ if $p(t) \geq \lambda$ for all $t \geq 0$: hence in this case $y(t)$ grows or decays at exactly the same rate as $e^{\theta_{\lambda} t}$.

Next we describe the rate of decay of solutions in the case that (29) is true. Additional assumptions on k are required.

14 Theorem. Suppose that (25) and (27) hold. Assume that (29) holds, and that k is in $\mathcal{U}(\mu)$. If $\lim _{t \rightarrow \infty} f(t) / k(t)$ exists, then $\lim _{t \rightarrow \infty} y(t) / k(t)$ also exists and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{y(t)}{k(t)}=\frac{1}{1-c_{\lambda}}\left[\lim _{t \rightarrow \infty} \frac{f(t)}{k(t)}+\frac{1}{1-\lambda} \int_{0}^{\infty} y(s) k(s) e^{-\mu s} d s\right] \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\lambda}=\frac{1}{1-\lambda} \int_{0}^{\infty} k(t) e^{-\mu t} d t<1 \tag{43}
\end{equation*}
$$

Proof. We start by dividing (1) by $k(t)$ to get the nonconvolution equation

$$
\hat{y}(t)=\int_{0}^{t} \hat{a}(t, s) \hat{y}(s) d s+\hat{f}(t)
$$

where $\hat{y}(t)=y(t) / k(t), \hat{f}(t)=f(t) / k(t)$ and

$$
\begin{equation*}
\hat{a}(t, s):=\frac{1}{1-p(t)} \frac{k(t-s) k(s)}{k(t)} \tag{44}
\end{equation*}
$$

We demonstrate each of the hypothesis of Theorem 3, as in the proof of Theorem 12. Firstly, using (18), (20) and (25), we deduce that

$$
\begin{aligned}
\limsup _{t \rightarrow \infty} \int_{0}^{S}|\hat{a}(t, t-u)| d u & =\lim _{t \rightarrow \infty} \frac{1}{1-p(t)} \limsup _{t \rightarrow \infty} \int_{0}^{S} \frac{k(t-u) k(u)}{k(t)} d u \\
& =\frac{1}{1-\lambda} \int_{0}^{S} k(u) \lim _{t \rightarrow \infty} \frac{k(t-u)}{k(t)} d u \\
& =\frac{1}{1-\lambda} \int_{0}^{S} k(u) e^{-\mu u} d u \\
& \rightarrow \frac{1}{1-\lambda} \int_{0}^{\infty} k(u) e^{-\mu u} d s \quad \text { as } S \rightarrow \infty .
\end{aligned}
$$

It follows from this and (29) that the condition (6) holds. Similarly (7) is true with the constant c_{λ} given in (43). Due to (29), $0 \leq c_{\lambda}<1$. By Proposition 9,

$$
\begin{aligned}
\limsup _{t \rightarrow \infty} \int_{S}^{t-S}|\hat{a}(t, s)| d s & =\limsup _{t \rightarrow \infty} \int_{S}^{t-S} \frac{1}{1-p(t)} \frac{k(t-s) k(s)}{k(t)} d s \\
& =\lim _{t \rightarrow \infty} \frac{1}{1-p(t)} \limsup _{t \rightarrow \infty} \int_{S}^{t-S} \frac{k(t-s) k(s)}{k(t)} d s \\
& \rightarrow 0 \text { as } S \rightarrow \infty,
\end{aligned}
$$

and therefore (8) is established. Let $T>0$. We observe from (20) that

$$
\begin{equation*}
\hat{a}(t, s)=\frac{k(s)}{1-p(t)} \frac{k(t-s)}{k(t)} \rightarrow \frac{k(s)}{1-\lambda} e^{-\mu s} \quad \text { as } t \rightarrow \infty \tag{45}
\end{equation*}
$$

uniformly for $0 \leq s \leq T$. Then (9) is satisfied with

$$
j(s)=\frac{k(s) e^{-\mu s}}{1-\lambda}
$$

which by (18) is integrable on $[0, \infty)$.
We conclude from Theorem 3 that $\lim _{t \rightarrow \infty} \hat{y}(t)$ exists and is given by (42).

15 Remark. If $f(t)>0$ for all $t \geq 0$, (42) implies that $\lim _{t \rightarrow \infty} y(t) / k(t)>0$ and hence $y(t)$ that decays to zero at the same rate as $k(t)$.

Acknowledgements. David Reynolds wishes to thank Alan Day for the clarity of his tutorials, lectures, papers and books, and the interest in analysis, mechanics and thermodynamics which they fostered.

References

[1] J. A. D. Appleby, I. Győri, D. W. Reynolds: On exact rates of decay of solutions of linear systems of Volterra equations with delay, J. Math. Anal. Appl., 320, n. 1 (2006), 56-77.
[2] J. A. D. Appleby, D. W. Reynolds: Subexponential solutions of linear integrodifferential equations and transient renewal equations, Proc. Roy. Soc. Edinburgh Sect. A, 132, n. 3 (2002), 521-543.
[3] K. B. Athreya, P. E. Ney: Branching processes, Dover Publications Inc., 2004 (Reprint of the 1972 Springer book).
[4] J. Chover, P. Ney, S. Wainger: Functions of probability measures, J. Analyse Math., 26 (1973), 255-302.
[5] B. D. Coleman, V. J. Mizel: Norms and semi-groups in the theory of fading memory, Arch. Rational Mech. Anal., 23 (1966), 87-123.
[6] J. N. Distéfano: Sulla stabilità in regime visco-elastico a comportamento linear I, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 72 (1959), 205-211.
[7] J. N. Distéfano: Sulla stabilità in regime visco-elastico a comportamento linear II, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 72 (1959), 356-361.
[8] J. N. Distéfano: Creep buckling of slender columns., J. Struct. Div. Proc. A.S.C.E., 91 (1965), 127-150.
[9] A. D. Drozdov, V. B. Kolmanovskit: Stability in viscoelasticity, North-Holland Series in Applied Mathematics and Mechanics, vol. 38, North-Holland Publishing Co., Amsterdam 1994.
[10] W. Feller: An introduction to probability theory and its applications, Vol. II., Second edition, John Wiley \& Sons Inc., 1971
[11] E. L. Gol'dengershel': On the Euler's stability of a viscoelastic rod, J. Appl. Math. Mech., 38, n. 1 (1974), 172-178.
[12] E. L. Gol'dengershel': New Euler's criterion for a viscoelastic rod, J. Appl. Math. Mech., 40, n. 4 (1976), 714-716.
[13] G. Gripenberg, S.-O. Londen, O. Staffans: Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, vol. 34, Cambridge University Press, Cambridge 1990.
[14] M. E. Gurtin: Some questions and open problems in continuum mechanics and population dynamics, J. Differential Equations, 48, n. 2 (1983), 293-312.
[15] M. E. Gurtin, V. J. Mizel, D. W. Reynolds: On nontrivial solutions for a compressed linear viscoelastic rod, Trans. ASME Ser. E J. Appl. Mech., 49, n. 1 (1982), 245-246.
[16] Y. Hino, S. Murakami, T. Naito: Functional-differential equations with infinite delay, Lecture Notes in Mathematics, vol. 1473, Springer-Verlag, Berlin 1991.
[17] M. J. Leitman, V. J. Mizel: On fading memory spaces and hereditary integral equations, Arch. Rational Mech. Anal., 55 (1974), 18-51.
[18] R. K. Miller: Nonlinear Volterra integral equations, W. A. Benjamin, Inc., Menlo Park, Calif. 1971.
[19] D. W. Reynolds: On the linearised theory of buckling for a compressed viscoelastic rod, Proc. Roy. Soc. Edinburgh Sect. A, 99, n. 3-4 (1985), 371-386.
[20] D. W. Reynolds: Linear viscoelastic buckling of rods, Ph. D. thesis, Carnegie-Mellon University 1980.

