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Abstract. The asymptotic behaviour of a scalar linear nonconvolution Volterra equation is
investigated; the equation is that satisfied by the modes of a viscoelastic rod bending quasi-
statically. A sufficient condition for the trivial solution to be asymptotic stable is given, as
well as results on describing the exact rate of decay: in the case that the trivial solution is
unstable, the exact rate of growth of solutions is specified.

Keywords: linear viscoelasticity, resolvent, renewal equation, Laplace transform

MSC 2000 classification: primary 45D05, secondary 74D05

1 Introduction

In this paper we investigate the linear nonconvolution Volterra equation

y(t) =

∫ t

0

k(t− s)

1 − p(t)
y(s) ds+ f(t), t ≥ 0. (1)

This equation is satisfied by the modes of a viscoelastic rod bending quasi-
statically, as is explained in Section 2.

It is shown here that if, k(t) ≥ 0 for all t ≥ 0,
∫∞
0 k(t) dt < 1 and

lim sup
t→∞

p(t) < 1 −
∫ ∞

0
k(t) dt,
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then y(t) → 0 as t → ∞, provided f(t) → 0 as t → ∞. The question then
arises of how quickly the solution decays to zero. We answer this in the case
that p(t) → λ ∈ [0, 1) as t→ ∞. If there is a characteristic root θλ satisfying

∫ ∞

0
k(t)e−θλt dt = 1 − λ,

conditions are supplied which imply that limt→∞ y(t)e−θλt exists. On the other
hand, if there is no characteristic root, it is shown that limt→∞ y(t)/k(t) exists
if k belongs a class of functions introduced in [4]. The characteristic root θλ

always exists and is positive if λ > 1 −
∫∞
0 k(t) dt.

In [1, 2] exact rates of decay of convolution Volterra equations were found,
and it was seen in [1] that these results could be deduced economically from
a general theorem concerning the convergence to a limit of solutions to a lin-
ear nonconvolution Volterra equation. Here that same theorem is employed to
investigate the asymptotic behaviour of the nonconvolution equation (1).

2 Quasi-static bending of viscoelastic rods

There is a large literature on the stability of viscoelastic structures such as
rods and shells. The subject is covered extensively in [9]. The hereditary nature
of the constitutive equations gives rise to integral equations and more generally
functional differential equations. Attention is confined here to the quasi-static
bending of linear viscoelastic rods: inertia, shear and twist are ignored.

Consider a thin inhomogeneous linear viscoelastic rod bending in plane.
Suppose that it has length l, that its ends are pinned at the same level, and
that it is acted on by a horizontal compressive time-varying load P (t) at the
end x = l. Body forces and torques are neglected. If its motion prior to time 0 is
known, and its motion is subsequently quasi-static, small vertical displacements
y(t, x) obey

B(x)

(
∂2y

∂x2
(t, x) −

∫ ∞

0
k(s)

∂2y

∂x2
(t− s, x) ds

)
+ P (t)y(t, x) = 0, t ≥ 0;

y(t, 0) = y(t, l) = 0, t ≥ 0;

y(t, x) = φ(t, x), t ≤ 0.

The relaxation function of the rod is given by G(t, x) = B(x){1 −
∫ t
0 k(s) ds}.

Here B(x) > 0 is the instantaneous flexural rigidity. The kernel k satisfies
k(t) ≥ 0 and

∫∞
0 k(s) ds < 1; so that the viscoelastic material is solid.
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The static elastic problem has an increasing sequence {Pn}n≥1 of positive
eigenvalues, with corresponding eigenfunctions {un}n≥1, satisfying

B(x)u′′n(x) + Pnun(x) = 0, 0 < x < l;

un(0) = un(l) = 0;

and the normalization condition

∫ l

0
um(x)un(x)

1

B(x)
dx =

{
1, m = n,

0, m 6= n.

P1 > 0 is Euler’s elastic critical load. y is the superposition of a countably
infinite number of modes, the nth mode being given by

yn(t) =

∫ l

0
y(t, x)un(x)

1

B(x)
dx.

It is easily seen that

(
1 − P (t)

Pn

)
yn(t) −

∫ t

0
k(t− s)yn(s) ds =

∫ 0

−∞
k(t− s)φn(s) ds, (2)

φn(s) =

∫ l

0
{φ(s, x) − (l − x)φ(s, 0) − xφ(s, l)}un(x)

1

B(x)
dx, s ≤ 0.

The restriction 0 ≤ P (t) < P1 for all t ≥ 0, is imposed to exclude the
phenomena of multiple solutions and solutions blowing up in finite time, as
found in [14,15,19] for loads exceeding P1. For such loads the dynamic equations
of motion should be considered. No attempt is made to elaborate conditions on
the kernel k and the initial history φ which would imply that the forcing function
on the right-hand side of (2) has the regularity properties we require. However
important and relevant papers are [5, 17], and [16] is a thorough work on the
theory of functional differential equations with infinite delay.

In the case that P is constant, (2) is a linear convolution equation, and the
asymptotic behaviour of its solutions can be found using Laplace transforms:
see [6–9] for results obtained using this approach. Results on the asymptotic be-
haviour of solutions in the case that P (t) is time-dependent have been obtained
in [9, 19, 20]: similar results for rods composed of ageing viscoelastic materials
are in [9, 11,12].

Observe that (1) is in the same form as (2), and that p(t) in (1) plays the role
of P (t)/Pn. Our results determine the asymptotic properties of the individual
modes, but we do not here combine them and deduce asymptotic properties of
t 7→ y(t, ·).
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3 Mathematical preliminaries

3.1 Nonconvolution linear Volterra equations

We summarize some properties of solutions of linear nonconvolution Volterra
equations. Standard works which treat this topic include [13, 18]. In particular
we consider the scalar equation

y(t) =

∫ t

0
a(t, s)y(s) ds+ f(t), t ≥ 0, (3)

where the kernel a : ∆ → R is continuous on the triangular region

∆ = {(t, s) ∈ R
2 : 0 ≤ s ≤ t},

and f : [0,∞) → R is continuous. Existence and uniqueness can be established
by examining the Neumann series associated with a.

1 Theorem. There is a unique continuous solution y : [0,∞) → R of (3).

The following standard result provides sufficient conditions for the solution
of (3) to decay to zero.

2 Theorem. Suppose that a obeys

sup
t≥S1

∫ t

S0

|a(t, s)| ds < 1, for some 0 < S0 ≤ S1, (4)

lim
t→∞

∫ T

0
|a(t, s)| ds = 0 for every T > 0. (5)

If f(t) → 0 as t→ ∞, then y(t) → 0 as t→ ∞.

Later we shall consider Volterra equations for which condition (5) fails, and
instead employ the following scalar version of [1, Theorem A.1]. This result is
used by determine exact rates of growth and decay for solutions of (1).

3 Theorem. Suppose that:

b = lim sup
S→∞

(
lim sup

t→∞

∫ S

0
|a(t, t− u)| du

)
< 1, (6)

c = lim
S→∞

(
lim
t→∞

∫ S

0
a(t, t− u) du

)
exists, (7)

lim sup
S→∞

(
lim sup

t→∞

∫ t−S

S
|a(t, s)| ds

)
= 0, (8)

and that there is some j in L1(0,∞) such that

lim
t→∞

∫ T

0
|a(t, s) − j(s)| ds = 0 for every T > 0. (9)
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If limt→∞ f(t) exists, then limt→∞ y(t) exists and

lim
t→∞

y(t) = (1 − c)−1

{
lim
t→∞

f(t) +

∫ ∞

0
j(s)y(s) ds

}
. (10)

4 Remark. This theorem does not yield an explicit expression for the limit
limt→∞ y(t). However (10) may nevertheless be of value.

3.2 Renewal equations

A particular class of equations having the form (3) are convolution equations,
for which a(t, s) = α(t− s): (3) then takes the form

y(t) =

∫ t

0
α(t− s)y(s) ds+ f(t), t ≥ 0. (11)

The solution of this equation can be represented as

y(t) =

∫ t

0
ρ(t− s)f(s) ds+ f(t),

in terms of ρ, the resolvent of α, which we define to be the solution of

ρ(t) =

∫ t

0
α(t− s)ρ(s) ds+ α(t). (12)

Assume that α is in L1(0,∞) ∩ C[0,∞), with α(t) ≥ 0. The abscissa of
convergence µ of the Laplace transform of α is given by

µ := inf

{
σ :

∫ ∞

0
α(t)e−σt dt <∞

}
. (13)

There are two important cases to consider. The first is that α has a characteristic
root θ ≥ µ such that

∫ ∞

0
α(t)e−θt dt = 1; (14)

the second is that
∫ ∞

0
α(t)e−µt dt < 1. (15)

In the first case, (12) can be multiplied by e−θt to obtain a renewal equation for
t 7→ e−θtρ(t); indeed

e−θtρ(t) =

∫ t

0
α(t− s)e−θ(t−s)e−θsρ(s) ds+ e−θtα(t).
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By imposing a few extra hypotheses, the renewal theorem can be used to infer
that e−θtρ(t) approaches a known constant as t → ∞. For details see [10, Ch.
XI] or [3, Ch. IV].

5 Theorem. Suppose that (14) holds, that

∫ ∞

0
se−θsα(s) ds <∞, (16)

and that s 7→ e−θsα(s) is directly Riemann integrable. Then

lim
t→∞

ρ(t)e−θt =
1∫∞

0 se−θsα(s) ds
> 0.

If however (15) holds, then

e−µtρ(t) =

∫ t

0
α(t− s)e−µ(t−s)e−µsρ(s) ds+ e−µtα(t).

is a defective renewal equation for e−µtρ(t). Such equations were one of the moti-
vations for [4], and in [1] a class U(µ) of functions which satisfy the hypotheses
of Theorem 3 of [4] was introduced. Roughly speaking, if α is in U(µ) then
α(t) = eµtδ(t) is the product of the exponential eµt and a slowly-decaying δ(t).

A counterpart of Theorem 5 for defective renewal equations is Theorem 5.2
of [2].

6 Theorem. Suppose that (15) holds, and that α is in U(µ). Then the
resolvent ρ is in U(µ), limt→∞ ρ(t)/α(t) exists and

lim
t→∞

ρ(t)

α(t)
=

1

(1 −
∫∞
0 α(t)e−µt dt)2

. (17)

The formal definition of U(µ) is stated.

7 Definition. Let µ ∈ R. A function α : [0,∞) → R is in U(µ) if it is
continuous with α(t) > 0 for all t ≥ 0, and

∫ ∞

0
α(t)e−µt dt <∞, (18)

lim
t→∞

∫ t

0

α(t− s)α(s)

α(t)
ds = 2

∫ ∞

0
α(t)e−µt dt, (19)

lim
t→∞

α(t− s)

α(t)
= e−µs uniformly for 0 ≤ s ≤ S, for all S > 0. (20)
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If α is in U(0) it is termed a subexponential function. The nomenclature is
suggested by the fact that (20) with µ = 0 implies that α(t)eǫt → ∞ as t→ ∞,
for every ǫ > 0. α is regularly varying at infinity if α(νt)/α(t) tends to a limit
as t → ∞ for all ν > 0. It is noted in [2] that the class of subexponential func-
tions includes all positive, continuous, integrable functions which are regularly
varying at infinity. The properties U(0) have been extensively studied in [2, 4]
and elsewhere.

If α is in U(µ), then α(t) = eµtδ(t) where δ is a function in U(0). Simple ex-

amples of functions in U(µ) are α(t) = eµt(1+ t)−β for β > 1, α(t) = eµte−(1+t)β

for 0 < β < 1 and α(t) = eµte−t/ log(t+2). The class U(µ) therefore includes a
wide variety of functions exhibiting exponential and slower than exponential de-
cay: nor is the slower than exponential decay limited to a class of polynomially
decaying functions.

8 Remark. It appears restrictive to specify the value of the limit in (19).
But if α : [0,∞) → R is a continuous function with α(t) > 0 for all t ≥ 0,
satisfying (18) and (20), and

lim
t→∞

∫ t

0

α(t− s)α(s)

α(t)
dt exists,

it is shown in [4] that this limit is given by (19).

Proposition 3 of [1] is used later, and helps to make the proof of Theorem 14
succinct.

9 Lemma. Let µ be in R. Suppose that α : [0,∞) → R is a continuous
function with α(t) > 0 for all t ≥ 0, satisfying (18) and (20). Then α is in U(µ)
if and only if

lim
S→∞

(
lim
t→∞

∫ t−S

S

α(t− s)α(s)

α(t)
ds

)
= 0. (21)

4 Stability result

In this section, the asymptotic behaviour of the solutions of (1) is investi-
gated under the following hypotheses, which are assumed to hold hereinafter.

(H1) p : [0,∞) → R is continuous with 0 ≤ p(t) < 1 for all t ≥ 0 and
lim supt→∞ p(t) < 1;

(H2) the kernel k : [0,∞) → (0,∞) is continuous, integrable, and

∫ ∞

0
k(s) ds < 1; (22)
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(H3) f : [0,∞) → R is continuous, and f(t) → 0 as t→ ∞.

Notice that (1) has the same form as (3) if

a(t, s) =
k(t− s)

1 − p(t)
, (t, s) ∈ ∆. (23)

Gurtin and Reynolds (cf. Theorem A2.1 of [20]) established the following
result. Here we show that it is a corollary of Theorem 2.

10 Theorem. Suppose that

lim sup
t→∞

p(t) < 1 −
∫ ∞

0
k(s) ds. (24)

Then y(t) → 0 as t→ ∞.

Proof. We verify that (4) and (5) hold. Firstly note that (24) is equivalent
to ∫ ∞

0
k(s) ds < 1 − lim sup

t→∞
p(t) = lim inf

t→∞
(1 − p(t)),

and hence

1 >

∫∞
0 k(s) ds

lim inft→∞(1 − p(t))
= lim sup

t→∞

∫ t
0 k(t) dt

1 − p(t)
.

Therefore there is S1 > 0 such that

1

1 − p(t)

∫ t

0
k(s) ds < 1 for all t ≥ S1.

By the definition (23), for t ≥ S1,
∫ t

0
|a(t, s)| ds =

1

1 − p(t)

∫ t

0
k(t− s) ds

=
1

1 − p(t)

∫ t

0
k(σ) dσ < 1.

Thus (4) is true with S0 = 0. Let T > 0. Then, for t ≥ T ,

∫ T

0
|a(t, s)| ds =

1

1 − p(t)

∫ T

0
k(t− s) ds =

1

1 − p(t)

∫ t

t−T
k(σ) dσ.

By taking the limit superior as t→ ∞ of each side, we deduce that

lim sup
t→∞

∫ T

0
|a(t, s)| ds ≤ lim sup

t→∞

1

1 − p(t)
lim
t→∞

∫ t

t−T
k(σ) dσ = 0,

since k is in L1(0,∞). Hence (5) is also true. QED

11 Remark. This result can also be proved by applying Theorem 3.
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5 Rates of growth and decay

In this section we assume that

p(t) → λ as t→ ∞, (25)

and find the exact rates of decay as t→ ∞ of solutions if

0 ≤ λ < 1 −
∫ ∞

0
k(t) dt, (26)

and the exact rates of growth as t→ ∞ if

1 −
∫ ∞

0
k(t) ≤ λ < 1. (27)

Let µ be the abscissa of convergence of the Laplace transform of k, defined
in (13). Due to (22), µ ≤ 0. We investigate two cases: firstly there is a θλ ≥ µ
such that ∫ ∞

0
k(t)e−θλt dt = 1 − λ; (28)

secondly ∫ ∞

0
k(t)e−µt dt < 1 − λ. (29)

If (28) holds, we observe that

θλ =

{
< 0, λ < 1 −

∫∞
0 k(s) ds,

> 0, λ > 1 −
∫∞
0 k(s) ds.

Of course θλ is the characteristic root of k/(1 − λ).

At this point we derive a nonconvolution equation to which we can apply
Theorem 3 if (28) is true. The case when (29) holds is deferred to later in this
section. We rearrange (1) as

(1 − λ)y(t) =

∫ t

0
k(t− s)y(s) ds+ (p(t) − λ)y(t) + (1 − p(t))f(t). (30)

The resolvent rλ of k/(1 − λ) is the solution of

rλ(t) =

∫ t

0

k(t− s)

1 − λ
rλ(s) ds+

k(t)

1 − λ
. (31)
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We take the convolution of each term in (30) with rλ, employ Fubini’s theorem
and simplify the result using (31), to obtain the new nonconvolution Volterra
equation

y(t) =

∫ t

0

p(s) − λ

1 − p(t)
rλ(t− s)y(s) ds+

∫ t

0

1 − p(s)

1 − p(t)
rλ(t− s)f(s) ds+ f(t). (32)

It might be expected that, since p satisfies (25), the solution y of (1) decays or
grows at the same rate as that of

(1 − λ)z(t) =

∫ t

0
k(t− s)z(s) ds+ (1 − p(t))f(t). (33)

By taking the convolution of this equation with rλ, and simplifying using (31),
we get the representation

z(t) =

∫ t

0
rλ(t− s)

1 − p(s)

1 − λ
f(s) ds+

1 − p(t)

1 − λ
f(t). (34)

Hence (32) becomes

y(t) =

∫ t

0

p(s) − λ

1 − p(t)
rλ(t− s)y(s) ds+

1 − λ

1 − p(t)
z(t). (35)

Our first result gives conditions for y(t) to grow or decay at the same rate
as eθλt as t→ ∞.

12 Theorem. Let 0 ≤ λ < 1. Suppose that (25) holds, with

∫ ∞

0
|p(s) − λ| ds <∞. (36)

Assume that there is a θλ ∈ R satisfying (28), that

∫ ∞

0
se−θλsk(s) ds <∞, (37)

and s 7→ e−θλsk(s) is directly Riemann integrable. If

∫ ∞

0
e−θλt|f(t)| dt <∞, (38)

and e−θλtf(t) → 0 as t→ ∞, then limt→∞ e−θλty(t) exists.
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Proof. We begin by noting that a consequence of Theorem 5 is

lim
t→∞

rλ(t)e−θλt = Lλ :=
1 − λ∫∞

0 se−θsk(s) ds
> 0. (39)

By multiplying (35) by e−θλt, we get the equation

ỹ(t) =

∫ t

0
ã(t, s)ỹ(s) ds+ f̃(t),

where ỹ(t) = y(t)e−θλt, and

ã(t, s) :=
p(s) − λ

1 − p(t)
rλ(t− s)e−θλ(t−s), f̃(t) :=

1 − λ

1 − p(t)
z(t)e−θλt. (40)

We proceed by demonstrating each of the hypotheses of Theorem 3. A con-
sequence of (39) is that there is M > 0 such that |rλ(u)e−θλu| ≤ M for all
u ≥ 0. Firstly for every S > 0,

lim sup
t→∞

∫ S

0
|ã(t, t− u)| du = lim sup

t→∞

1

1 − p(t)

∫ S

0
rλ(u)e−θλu|p(t− u) − λ| du

≤ lim sup
t→∞

M

1 − λ

∫ S

0
|p(t− u) − λ| du

≤ lim sup
t→∞

M

1 − λ

∫ t

t−S
|p(σ) − λ| dσ = 0,

because of (36). Hence (6) and (7) hold with b = c = 0. Let S > 0. Then

lim sup
t→∞

∫ t−S

S
|ã(t, s)| ds = lim sup

t→∞

∫ t−S

S

|p(s) − λ|
1 − p(t)

rλ(t− s)e−θλ(t−s) ds

= lim sup
t→∞

∫ t−S

S

|p(t− u) − λ|
1 − p(t)

rλ(u)e−θλu du

≤ M

1 − λ
lim sup

t→∞

∫ t−S

S
|p(t− u) − λ| du

=
M

1 − λ
lim sup

t→∞

∫ t−S

S
|p(s) − λ| ds

≤ M

1 − λ

∫ ∞

S
|p(s) − λ| ds.

Because of (36), the right-hand side of this equality tends to zero as S → ∞,
establishing (8). Next, let T > 0. Then

ã(t, s) =
p(s) − λ

1 − p(t)
rλ(t− s)e−θλ(t−s) → p(s) − λ

1 − λ
Lλ
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as t → ∞, uniformly for 0 ≤ s ≤ T . Hence (9) is satisfied for j : [0,∞) → R

given by

j(s) =
Lλ

1 − λ
(p(s) − λ), s ≥ 0.

The hypothesis (36) ensures that j is integrable. Lastly (34) and (38) imply that

z(t)e−θλt → Lλ

1 − λ

∫ ∞

0
[1 − p(s)]f(s)e−θλs ds as t→ ∞.

All the hypotheses of Theorem 3 have been shown to hold, and we conclude
that limt→∞ ỹ(t) exists and satisfies

lim
t→∞

ỹ(t) =
Lλ

1 − λ

∫ ∞

0

{
(1 − p(s))f(s)e−θλs + (p(s) − λ)ỹ(s)

}
ds. (41)

QED

13 Remark. If f(t) > 0 for all t ≥ 0, then y(t) > 0 for all t ≥ 0, and
therefore limt→∞ y(t)e−θλt ≥ 0. It follows from (41) that limt→∞ y(t)e−θλt > 0
if p(t) ≥ λ for all t ≥ 0: hence in this case y(t) grows or decays at exactly the
same rate as eθλt.

Next we describe the rate of decay of solutions in the case that (29) is true.
Additional assumptions on k are required.

14 Theorem. Suppose that (25) and (27) hold. Assume that (29) holds,
and that k is in U(µ). If limt→∞ f(t)/k(t) exists, then limt→∞ y(t)/k(t) also
exists and

lim
t→∞

y(t)

k(t)
=

1

1 − cλ

[
lim
t→∞

f(t)

k(t)
+

1

1 − λ

∫ ∞

0
y(s)k(s)e−µs ds

]
, (42)

where

cλ =
1

1 − λ

∫ ∞

0
k(t)e−µt dt < 1. (43)

Proof. We start by dividing (1) by k(t) to get the nonconvolution equation

ŷ(t) =

∫ t

0
â(t, s)ŷ(s) ds+ f̂(t),

where ŷ(t) = y(t)/k(t), f̂(t) = f(t)/k(t) and

â(t, s) :=
1

1 − p(t)

k(t− s)k(s)

k(t)
. (44)



Exact rates of growth and decay 227

We demonstrate each of the hypothesis of Theorem 3, as in the proof of
Theorem 12. Firstly, using (18), (20) and (25), we deduce that

lim sup
t→∞

∫ S

0
|â(t, t− u)| du = lim

t→∞
1

1 − p(t)
lim sup

t→∞

∫ S

0

k(t− u)k(u)

k(t)
du

=
1

1 − λ

∫ S

0
k(u) lim

t→∞
k(t− u)

k(t)
du

=
1

1 − λ

∫ S

0
k(u)e−µu du

→ 1

1 − λ

∫ ∞

0
k(u)e−µu ds as S → ∞.

It follows from this and (29) that the condition (6) holds. Similarly (7) is true
with the constant cλ given in (43). Due to (29), 0 ≤ cλ < 1. By Proposition 9,

lim sup
t→∞

∫ t−S

S
|â(t, s)| ds = lim sup

t→∞

∫ t−S

S

1

1 − p(t)

k(t− s)k(s)

k(t)
ds

= lim
t→∞

1

1 − p(t)
lim sup

t→∞

∫ t−S

S

k(t− s)k(s)

k(t)
ds

→ 0 as S → ∞,

and therefore (8) is established. Let T > 0. We observe from (20) that

â(t, s) =
k(s)

1 − p(t)

k(t− s)

k(t)
→ k(s)

1 − λ
e−µs as t→ ∞, (45)

uniformly for 0 ≤ s ≤ T . Then (9) is satisfied with

j(s) =
k(s)e−µs

1 − λ
,

which by (18) is integrable on [0,∞).

We conclude from Theorem 3 that limt→∞ ŷ(t) exists and is given by (42).
QED

15 Remark. If f(t) > 0 for all t ≥ 0, (42) implies that limt→∞ y(t)/k(t) > 0
and hence y(t) that decays to zero at the same rate as k(t).
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