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1 Introduction

1.1 Premise

In the mind of people entropy is probably the most fascinating physical
quantity related to a heat-conducting continuous body.

On the other hand, it is also the most obscure quantity: it does not enter
the formulation of the initial and boundary-value problem.

A. Day, in his paper [1], noticed that for bodies with fading memory, entropy
can be considered as a quantity that is not well (i.e. uniquely) defined.

More in detail, in connection with a rigid heat-conducting body with fading
memory, Day showed that entropy is largely undetermined: there is a family
of entropies, all compatible with the Clausius-Duhem inequality, such that the
difference between any two of them is not identically constant along processes
of the body.

For this reason, Day’s paper must be considered as a datum in the criticism
of foundations of continuum thermodynamics.

In fact, as also scientists involved in practical problems in thermodynamics
would agree, entropy does not enter the formulation of initial-boundary value
problems; rather, it is used in connection with a dissipation inequality to deduce
restrictions for the constitutive functionals.
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The present paper points out that the indetermination of entropy plays a
role also in global equivalence for bodies with fading memory.

Indeed, only the response functions for the ‘elastic parts’ of entropy of two
bodies that are globally equivalent are mutually related, so that just in bodies
with memory the ‘dynamic’ parts of entropy remain unrelated.

In this sense the results of the present paper are directly connected with
Day’s opinion about the role of entropy in continuum thermodynamics.

1.2 On the notion of global equivalence

The notion of global physical equivalence for continuous simple bodies has
been introduced in [2] in the case of heat-conducting elastic bodies. Then, in [3],
a weaker version of this notion has been considered in connection with simple
bodies with fading memory.

The strong version [2] of the notion of global equivalence is understood in
the following sense: two heat-conducting elastic bodies B and B′ are globally
physically equivalent if there exists a suitable bijective correspondence k be-
tween the bodies B and B′ such that any global thermokinetic process for B is
admissible (in the sense of Coleman and Noll) if and only if its corresponding
by k for B′ is also admissible. Here by global thermokinetic process we mean
the solution of any given initial-boundary value problem.

Notice that an initial-boundary value problem for B is related with the
assignment of two parts, s and z, of the boundary ∂B of B, such that

(i) the traction boundary condition is prescribed on s,

(ii) the displacement boundary condition is prescribed on ∂B \ s,

(iii) the heat flux boundary condition is prescribed on z,

(iv) the temperature boundary condition is prescribed on ∂B \ z.

The strong version of global equivalence involves all thermokinetic processes,
whose boundary conditions are prescribed, as in (i) − (iv) , on any arbitrarily
given pair (s, z) on ∂B.

Instead, the weak version of global equivalence involves only thermokinetic
processes whose boundary conditions are prescribed on one given pair of bound-
ary portions (s, z).

It turns out that B and B′ are strongly globally equivalent if and only if they
are weakly globally equivalent with respect to each choice of (s, z).

Moreover, in [3] the notion of entropy-equivalence is introduced for the re-
sponse functionals q̂ and q̂′ of the heat flux in bodies B and B′ that are globally
equivalent: q̂ and q̂′ are said to be entropy κ-equivalent if they give the same
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contribution to the rate of increase of entropy due to heat conduction across
any two k-corresponding surfaces. Hence, given a simple body B, the class of all
simple bodies that are globally equivalent to it is characterized both when the
heat flux response functionals of these bodies are entropy-equivalent and when
they are not.

These characterizations put in evidence the existence of globally equivalent
bodies whose heat fluxes are not entropy-equivalent.

The theorems of global equivalence in [2]- [3] do not involve the entropy
notion and any consequence of the Clausius-Duhem inequality; thus they can
be interpreted within any thermodynamic theory where a dissipation principle
is assumed. This is strictly related with the fact that the formulation of an
initial-boundary value problem for a given body does not involve entropy.

1.3 About the present paper

In the present paper

• we state and prove a version of the above general theorem of global equiv-
alence in a theory where the Clausius-Duhem inequality is assumed;

• we characterize the relation between the response functions of the elastic
part of the entropy in any two simple bodies with fading memory that are
globally equivalent; it turns out that the dynamic parts of entropy, ηd

and η′d are not constrained by the relation of global equivalence; this fact
agrees with the indetermination of entropy emphasized by Day [1];

• furthermore, we show that the elastic parts of the heat fluxes in any two
such bodies are entropy-equivalent.

2 Preliminaries

2.1 Thermodynamic processes for bodies with memory

We choose a reference configuration γ for the heat-conducting simple body
B and assume that the region B = γ(B) of the three-dimensional ambient
space is closed, bounded, simply connected and regular in Kellogg’s sense. Hence
X = γ(X ) ∈ B is the place occupied by the material point X ∈ B in the reference
configuration.

A thermokinetic process for B for γ is here defined to be a pair

p = (x(.), θ(.)) (1)
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of smooth functions, where

x(.) : B × R −→ R3 x = x(X, t) (2)

θ(.) : B × R −→ R+ θ = θ(X, t) , (3)

such that x = x(X, t) and θ = θ(X, t) denote the position and temperature at
(X, t), respectively. Henceforth, we may also assume that the motion x(.) is an
orientation preserving mapping, i.e.

det Grad x(X, t) > 0 ∀ (X, t) ∈ B × R. (4)

Let

ρ0 = ρ̂0(X) , X ∈ B , (5)

denote the mass-density of B in the reference configuration.
We assume that at any X ∈ B the first Piola-Kirchhoff stress tensor P,

heat flux vector q, specific internal energy e and specific internal entropy η are
determined by the total histories of the deformation gradient, temperature and
material temperature gradient, respectively. Hence, there are functionals P̂, q̂,
ê and η̂ such that

P = P̂(F, θ, G, Ft, θt, Gt, X), (6)

q = q̂(F, θ, G, Ft, θt, Gt, X), (7)

e = ê(F, θ, G, Ft, θt, Gt, X), (8)

η = η̂(F, θ, G, Ft, θt, Gt, X), (9)

where

F = Gradx(X, t) , G = Grad θ(X, t) (10)

are the deformation gradient and material temperature gradient, and

Ft = Gradx(X, .) , θt = θt(X, .) , Gt = Grad θt(X, .) , (11)

are the past histories of F, θ and G, respectively, in the thermokinetic process
(1).

A thermodynamic process in B is described by the following eight functions
of X and t (see [4]):

(p.1 − 2) The motion and temperature (2)-(3).

(p.3) The first Piola-Kirchhoff stress tensor P = P(X, t).

(p.4) The specific internal energy e = e(X, t), per unit mass.



Global equivalence 199

(p.5) The specific entropy η = η(X, t), per unit mass.

(p.6) The heat flux vector q = q(X, t).

(p.7) The body force b = b(X, t), per unit volume, exerted on B at X by the
external world.

(p.8) The heat supply r = r(X, t), which is the radiation energy, per unit mass
and time, absorbed by B at X and furnished by the external world.

We say that the set of functions (p.1 − 8) is a thermodynamic process if it
is compatible with the integral balance laws of linear momentum, moment of
momentum and energy.

These integral laws, under suitable smoothness assumptions, are equivalent
to the following local laws:

ρ0ẍ = b + DivP , (12)

PFT = FPT , (13)

ρ0ė = ρ0r + P · Ḟ − Divq . (14)

A thermodynamic process is determined by the six functions (p.1) − (p.6)
above, the remaining two functions (p.7) − (p.8) being determined by the local
balance laws (12) and (14).

A thermodynamic process is said to be admissible in B if it is compatible
with the constitutive relations (6)-(9) at each (X, t).

As it is well known, the assertion below holds.

1 Remark. For every choice of the thermokinetic process (1) there exists a
unique admissible thermodynamic process for B.

2.2 On the fading memory assumption

As it is customary, Lin denotes the vector space of (second-order) tensors on
the vector space R3 and Lin+ denotes the subset of Lin formed by the tensors
with positive determinant.

We adopt the fading memory assumption such as in [5] and [4] although
a more general way to directly link fading memory to the response may be
deduced by generalizing [6].

Hence, we assume the existence of an influence function, describing the rate
at which the memory fades; this is a monotone-decreasing, bounded, square
integrable and positive function h(s) of s, 0 ≤ s <∞.
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For

Λ(.) : (0,∞) → Lin+ × R × R3 , Λ(.) = (Ft(.), θt(.), Gt(.)) , (15)

let

|Λ(s)|2 = Λ(s) · Λ(s) = F t a
B (s)F t a

B (s) + θt 2(s) + Gt
A(s)Gt

A(s) , (16)

where repetition of indexes stands for summation.

The collection H of all measurable functions (15) such that

‖Λ(.)‖h := [

∫ ∞

0
|Λ(s)|2h2(s) ds ]1/2 < ∞ (17)

is a Hilbert space with norm given by (17).

The principle of fading memory (see [4]) states that at each admissible Λ =
(F, θ, G) all the response functionals (6)-(9) have for their common domain D
a neighborhood in H of the constant history Λ∗(s) = Λ ∀s > 0 , and they are
Fréchet-differentiable throughout D with respect to the h-norm (17).

2.3 Initial-boundary-value problems

We consider thermokinetic processes in a time interval Int = [t0, t1], with
initial conditions at time t0, that are controlled by an external action defined
in (−∞, t1]. Of course, in practice the memory has a finite length d and the
controlling action can be regarded as defined in the time interval (to − d, t1].

2 Definition. An action up to the time t1 of the external world exerted on
the heat-conducting simple body B, referred to γ, is given by the prescriptions
of

(A.i) a body force b = b(X, t), defined in γ(B) × (to − d, t1];

(A.ii) a heat supply r = r(X, t), defined in γ(B) × (to − d, t1];

(A.iii) traction and displacement boundary conditions, that is, a contact
force per unit area, c = cs(X, t), and a displacement, x = xs(X, t), respectively
defined on two complementary (Lebesgue) measurable parts s and s of the
boundary ∂γ(B) × (to − d, t1], possibly with s = ∅ or s = ∅;

(A.iv) heat flux and temperature boundary conditions, that is, a normal
heat flux q = qz(X, t) per unit area and time, and a temperature θ = θz(X, t),
respectively defined on two complementary parts z and z of the boundary
∂γ(B) × (to − d, t1], possibly with z = ∅ or z = ∅.

Briefly, we say that (b, r, cs, xs, qz, θz) is an external action on B, referred
to γ, with boundary conditions prescribed on the parts s and z of ∂γ(B).
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3 Definition. The initial-boundary-value-problem for B, subject to the ex-
ternal action

(b, r, cs, xs, qz, θz) ,

consists in finding two (smooth) functions

x = x(X, t) and θ = θ(X, t)

such that (i) the balance laws (12)-(14) hold, when the equalities (6)-(8), (10)
and (11) are used, (ii) the boundary conditions (A.iii)− (A.iv) hold and (iii)
x(., t), ∂x(., t)/∂t and θ(., t) are given at t = t0.

Note that, by Remark 1, corresponding to any thermokinetic process which
solves an initial-boundary-value problem for B there exists a thermodynamic
process in B. These processes do not involve cuts, i.e. no space-like discontinu-
ities arise.

2.4 Notions of global equivalence

Now, from [2] and [3], we rewrite the definitions of global equivalence.
Definition 4 below gives the notion of weak global equivalence, that is to say,

global equivalence w.r.t. (s, z) for one choice of the couple (s, z) of parts on
∂R; this notion defines globally equivalent configurations, γ and γ′, for the sim-
ple bodies B and B′, with respect to external actions whose boundary conditions
are prescribed on the (Lebesgue) measurable parts s, s, z, z of the boundary of
the region R := γ[B] = γ′[B] for one choice of the couple (s, z) of parts on ∂R.

Definition 6 gives the notion of (strong) global equivalence, that is to say,
global equivalence w.r.t. (s, z) for each choice of the couple (s, z) of parts on
∂R;

One should identify these external actions with a suitable subclass of external
actions connected to some s, z ⊂ ∂R, for a suitable choice of (s, z).

In order to state the aforementioned definitions we need the following asser-
tion.

(2.A) Let B and B′ be simple bodies. Let γ and γ′ be (smooth) configura-
tions, i.e. C2−diffeomorphisms, for B and B′, respectively, with R := γ(B) =
γ′(B′), where R is the closure of a bounded region that is regular in Kellogg’s
sense. Put k := γ′−1 ◦ γ and let

(ρ̂0, P̂, q̂, ê, η̂) (18)

and
( ρ̂0

′, P̂′, q̂′, ê′, η̂′ ) (19)

be respective response functionals for B and B′ which have the forms (6) to (9)
and have the same functional domain equipped with the same topology.
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4 Definition (Weak global equivalence).
(a) Assume (2.A). We say that the configurations γ and γ′, respectively

for the bodies B and B′, are globally equivalent with respect to external actions
with boundary conditions prescribed on the parts s, s, z, z of ∂R − briefly
globally equivalent w.r.t. (s, z), if

(i) ρ̂ = ρ̂′0 in R;
(ii) under each given (smooth) external action A = (b, r, cs, xs, qz, θz),

with boundary conditions prescribed on the parts s, s, z, z of ∂γ(B), in the
time interval (to − d, t1], the functions x ◦ γ and θ ◦ γ in (2)-(3) represent (in
γ) a thermokinetic process for B with the initial conditions

x(X, t0) = x0(X) ,
∂x(X, t0)

∂t
= v0(X) , θ(X, t0) = θ0(X) ,

(X = γ(X), X ∈ B) (20)

if and only if
under the action A in the time interval (to −d, t1] the functions x◦γ′ and θ ◦γ′
in (1) represent (in γ′) a thermokinetic process for B′ with the initial conditions
(20), where X = γ′(X ′), X ′ ∈ B′.

(b) We say that the bodies B and B′ are globally k-equivalent w.r.t. (s, z),
if they have two globally equivalent configurations w.r.t. (s, z), γ and γ′, such
that k = γ′−1 ◦ γ.

5 Remark. In the sequel, the processes
(
x ◦ γ, θ ◦ γ

)
and

(
x ◦ γ′, θ ◦ γ′

)
,

mentioned in the above definition, will be called k-corresponding processes, with
k = γ′−1 ◦ γ.

6 Definition (Strong global equivalence).
(a) We say that γ and γ′ are globally equivalent configurations for the

bodies B and B′ if γ and γ′ are globally equivalent configurations w.r.t. (s, z)
for each choice (s, z).

(b) We say that the bodies B and B′ are globally k-equivalent if they have
two globally equivalent configurations γ and γ′ such that k = γ′−1 ◦ γ.

7 Remark. Global equivalence w.r.t. (s, z) and global equivalence are
equivalence relations for the class of simple bodies with fading memory; hence,
in particular, they are transitive.

3 Theorems of global equivalence
with no reference to entropy

In the present section we rewrite the maximality theorems of weak and
strong global equivalence written in [3]; these theorems characterize the relations
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between the response functionals (P̂, q̂, ê) and (P̂′, q̂′, ê′) of any two
globally equivalent simple bodies.

As already noted in the introduction, here we shall prove a theorem of global
equivalence involving entropy functionals, within a thermodynamic theory with
the Clausius-Duhem inequality.

It characterizes the class of all simple bodies that are globally equivalent
to a given such a body; hence it can be called maximality theorem of global
equivalence.

3.1 Maximality theorem of weak global equivalence

For F∗ ∈ Lin+, θ∗ ∈ IR+ and G∗ ∈ IR3 let F∗t, θ∗t and G∗t denote the
constant past histories whose respective values are F∗, θ∗ and G∗.

For the sake of brevity we also put

Λ = (F, θ, G ) , Λt = (Ft, θt, Gt ) . (21)

The following statements of frame-indifference are used as hypotheses below.

(GI) The response functionals of B and B′ are Galilean invariant.

(EI) The response functionals of B and B′ are Euclidean invariant.

Note that the term k−corresponding processes appears frequently below; its
meaning is explained in Definition 4 near equality (20).

8 Theorem. Assume (2.A), (GI) and let s and z be parts of ∂R with
positive (Lebesgue) area. Then, the bodies B and B′ are globally k-equivalent
w.r.t. (s, z)

if and only if

the assertions (a) and (b) below are true.

(a) The response functionals for the stress and internal energy in B and
B′ are related by the equalities

P̂′(Λ, Λt,X) = P̂(Λ, Λt,X) + JpF−T , (22)

ê′(Λ, Λt,X) = ê(Λ, Λt, X) + ρ−1
o Jp + f̂(Λ∗t, X) , (23)

where J = detF and

(i) p is any constant for s = ∅ ,

(ii) p = 0 for s 6= ∅ ,

(iii) f̂ is any smooth function of Λ∗t, X.
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(b) The difference Q̂ := q̂′ − q̂ between the response functionals for the
heat flux in B and B′,

Q = Q̂(Λ, Λt, X) = (q̂′ − q̂)(Λ, Λt, X) , (24)

satisfies the equality
DivQ = 0 (25)

along any pair of k−corresponding processes of B and B′; moreover its
components are given by

QA =
[1]

ΓA + εABC
[2]

ΓC GB + εABC <
[3]

ΓC |Gt
B > (26)

+ εABC <
[4]

Γab |F t b
C > F a

B + εABC <
[5]

Γ |Gt
B > GC

for any choice of
[4]

Γab ∈ R (27)

and for any choice of the smooth functions

[1]

ΓA ,
[2]

ΓC ,
[3]

ΓC ,
[5]

Γ (28)

of θ, θt, X, such that

∂
[1]

ΓA

∂XA
= 0, i.e.

[1]

Γ = Curl
[1]
w with

[1]
w =

[1]
w (θ, θt, X) , (29)

∂
[1]

ΓD

∂θ
+ εADC ∂

[2]

ΓC

∂XA
= 0 , i.e.

∂
[1]

Γ

∂θ
= Curl

[2]

Γ , (30)

∂
[1]

ΓD

∂θt
+ εADC ∂

[3]

ΓC

∂XA
= 0 , i.e.

∂
[1]

Γ

∂θt
= Curl

[3]

Γ , (31)

and

∂
[3]

ΓC

∂θ
− ∂

[2]

ΓC

∂θt
− ∂

[5]

Γ

∂XC
= 0 . (32)

In case z 6= ∅, we also have
[4]

Γab = 0 , (33)

and, at any point of z,

[5]

Γ = 0 ,
[1]

Γ ·N = 0 ,
[i]

Γ ×N = 0 for i = 2, 3, (34)

where N is the outward unit normal to z.

If, in addition, Q is Euclidean invariant, then
[4]

Γab = 0.
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3.2 Maximality theorem of strong global equivalence

9 Theorem. Assume (2.A) and (GI). Then the bodies B and B′ are globally
k-equivalent

if and only if

(a) P̂′ = P̂ ,
(b) there exists a function f = f̂(F∗t, θ∗t,G∗t, X) such that

ê′(F, θ,G,Ft, θt,Gt,X) = ê(F, θ,G,Ft, θt,Gt,X) + f̂(F∗t, θ∗t,G∗t,X), (35)

and
(c) q̂′ and q̂ are such that the assertion (b) of Theorem 8 above is true

from (26) to (32), the equality (33) holds and the equalities (34) hold at each
point of the boundary ∂R.

4 On global equivalence in a theory
with the Clausius-Duhem inequality

In the first two subsections of the present section we remind:
(i) the restrictions imposed by the Clausius-Duhem inequality on the re-

sponse functionals of a simple body with memory, B;
(ii) the definition of elastic response function associated with any response

functional of B.
Hence, in the third subsection we prove Theorem 11, which yields the rela-

tion between the elastic entropies of any two bodies which are weakly globally
equivalent. This relation can be considered as the indetermination in the re-
sponse function of elastic entropy in a given B.

The last theorem, jointly with Theorem 8, allow for proving here the max-
imality theorem of weak global equivalence, i.e.Theorem 12. The latter admits
the strong global equivalence version, i.e. Theorem 13.

4.1 Restrictions on the response functionals
imposed by the Clausius-Duhem inequality

As is well known, the Clausius-Duhem inequality is postulated to hold along
any admissible thermodynamic process of the body (see [4], p.15). Its local form
is

ρ η̇ ≥ ρθ−1r − Div(θ−1q) . (36)

This inequality is equivalent to the reduced dissipation inequality

ρ(ψ̇ + θ̇η) − P · Ḟ + θ−1q · G ≤ 0 , (37)
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where
ψ = e − θη (38)

is the specific free-energy.
The validity of the Clausius-Duhem inequality along any process, exploited

through the Coleman and Noll’s procedure, implies the well known restrictions
on the response functionals of the body

P =
∂ψ

∂F
, η = −∂ψ

∂θ
,

∂ψ

∂G
= O , δψ + (ρθ)−1q · G ≤ 0 . (39)

4.2 Elastic response functions and Gibbs relation

Consider a global thermokinetic process (1)-(3); we say that the triple

Λ = Λ(t) = (F(t), θ(t), G(t)) ,

induced by (1)-(3) at a given X ∈ γ(B), is a local process at X.
Now, in analogy with [7] on p.98, let q(.) ∈ C2(IR, IR) be a monotone

increasing function such that

q(ζ) = 0 for ζ ≤ 0 and q(ζ) = 1 for ζ ≥ 1 ;

hence for Λ, Λ∗ ∈ Lin+ × IR+ × IR3 and ε > 0 put

Λε(τ) = Λ∗ 1(τ) + q(
τ − t+ ε

ε
) (Λ − Λ∗) , (40)

with 1(τ) denoting the constant history whose value is 1 for each τ ∈ IR.
Then, in the limit as ε→ 0 the history Λt

ε(s), of Λε(τ) in (40) up to time
τ = t , tends to the jump-history Λt(.) corresponding to a strain-temperature
impulse Λ−Λ∗ superimposed at time t to the rest history Λ∗(s), Λ∗(s) = O
for each s ≥ 0. Such jump-histories correspond to Coleman’s fast processes [8].
Of course, in the case Λ = Λ∗ it reduces to a history with constant continuation
at time t.

Now, let Λt(.) be the history up to time t of a given local process Λ(τ)
at a fixed X ∈ γ(B) , put

Λ = Λ(t) , Λ∗ = limε→0+Λ(t− ε) , (41)

and let Λ∗t be the constant past history whose value is Λ∗. Then the elastic
response functions associated with the response functionals of the body, ξ̂ ∈
{ P̂, q̂, ê, η̂ }, are defined by

ξ∗ = ξ̂∗(Λ, Λ∗t, X) . (42)
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These correspond to the pure-jump response functions determined by the re-
sponse functionals of the body, considered in [9]; of course, for Λ = Λ∗ they
reduce to the usual equilibrium response functions determined by the response
functionals of the body.

The Clausius-Duhem inequality implies the following restrictions

P∗ =
∂ψ∗

∂F
, η∗ = −∂ψ

∗

∂θ
,

∂ψ∗

∂G
= O , δψ + (ρθ)−1q∗ · G ≤ 0 . (43)

for the elastic response functions (see, e.g., the proofs in [7], Section 5.4, for the
equilibrium functions and in [9] for the pure-jump functions). These restrictions
also imply

∂P∗

∂G
= O ,

∂e∗

∂G
= O ,

∂η∗

∂G
= O . (44)

One also proves that (see [9] for the pure-jump functions, and e.g. [7] for the
equilibrium functions) the Gibbs relation

δ∗ = θ η̇∗ − ė∗ + ρ−1
0 P∗ · Ḟ = 0 (45)

holds along any local process, where δ∗ is regarded as the internal dissipation
evaluated by using the elastic response functions.

The inequality (43)4 implies the piezo-caloric equality

q∗(F, θ, 0, Λ∗t, X) = 0 . (46)

Lastly, the equality (25) implies that

DivQ∗ = 0 (47)

along any pair of k-corresponding processes of B and B′ (for the proof see [9]).

4.3 Theorem of global equivalence in a theory
with the Clausius-Duhem inequality

The lemma below is used to prove the theorems of global equivalence in the
thermodynamic theory with the Clausius-Duhem inequality, which are written
below.

10 Lemma. Let

(i) V be a Banach space with inner product;

(ii) h(s) be an influence function;
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(iii) H be the Hilbert space formed by the (smooth) histories

x(s) : (0, ∞) → V , x = x(s) ,

with inner product

< x(s), y(s) >=

∫ ∞

0
x(s) · y(s)h2(s) ds , x(.), y(.) ∈ H , (48)

where in x(.), y(.) the inner product of V is used.

(iv) f = f
(
x(.)

)
∈ C1

(
S
)

with S subset of H which contains

C = { c(.) ∈ H : c(.) is constant in (0, ∞) } .

Then

ḟ = 0 for each x(.) ∈ S if and only if f = f
(
c(.)
)

(i.e., S = C).

Proof. For x(.) ∈ H let cx(.) ∈ C be such that

cx(s) := x(0+) ∀s ∈ (0, ∞), x(0+) := limε→0+x(ε) ,

and put

xo(.) := x(.) − cx(.), g = g
(
xo(.), cx(.)

)
:= f

(
xo(.) + cx(.)

)
= f

(
x(.)

)
.

Note that ∂g
∂c · ċx(.) = 0 because ‖ċx(.)‖h = 0 ; hence we have

ġ = ḟ and ġ =
∂g

∂xo
ẋ0 .

Thus ḟ = 0 ∀x(.) ∈ S if and only if ∂g
∂xo

ẋ0 = 0 ; by the arbitrariness of

x0(.) the last equality is equivalent to ∂g
∂xo

= 0 ; hence ḟ = 0 if and only if
g = g(c(.)), i.e., f = f(c(.)), c(.) ∈ C. QED

11 Theorem. Assume (2.A), (G.I) and let s, z be (Lebesgue) measurable
portions of ∂R.

If the bodies B and B′ are globally k-equivalent w.r.t. (s, z), then

there is a function N∗ = N̂∗(Λ∗t, X) such that the response functions for
the specific elastic entropy in B and B′ are related by the equality

η̂′∗(F, θ, Λ∗t, X) = η̂∗(F, θ, Λ∗t, X) + N̂∗(Λ∗t, X) . (49)
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Proof. The Gibbs relation (45) holds along any pair of k−corresponding
processes of B and B′. Now, by subtracting (45) written for B′’s functionals
with the same written for B’s functionals we find that the equality

θ Ṅ∗ − Ė∗ + ρ−1
0

(
Ṗ′∗ − Ṗ∗

)
· Ḟ = 0 (50)

holds along any pair of k−corresponding processes of B and B′, where

N̂∗ = η̂′∗ − η̂∗ , Ê∗ = ê′∗ − ê∗ . (51)

Now the equalities (22) and (23) respectively yield

(
P̂′(Λ, Λt,X) − P̂(Λ, Λt,X)

)
· Ḟ = JpF−T · Ḟ , (52)

where J = detF, and

Ê := ê′(Λ, Λt, X) − ê(Λ, Λt, X) = ρ−1
o Jp + f̂(Λ∗t,X) , (53)

with J = detF, and where

(i) f̂ is any smooth function,

(ii) p is any constant when s = ∅ ,

(iii) p = 0 when s 6= ∅.

Thus by (53)2 we have E = Ê(Λ∗t, X).

Now the Piola identity ∂J/∂F = JF−T and (53) yield

Ė∗ = ρ−1
0

(
Ṗ′∗ − Ṗ∗

)
· Ḟ . (54)

This equality together with (50) yield

Ṅ∗ = 0 (55)

along any process. Hence by Lemma 10 we have

N∗ = N̂∗(Λ∗t, X) . (56)

QED

12 Theorem. Assume (2.A), (G.I) and let s, z be (Lebesgue) measurable
portions of ∂R. Then

(α) the bodies B and B′ are globally k-equivalent w.r.t. (s, z),
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if and only if

(β) the assertions (a) and (b) in Theorem 8 are verified and there is a
function N∗ = N̂∗(Λ∗t, X) such that the response functions for the specific
elastic entropy in B and B′ are related by the equality (49).

Proof. Assume (α); then Theorems 8 and 11 yield (β). Conversely, assume
(β); then Theorem 8 implies the global k-equivalence of B and B′ w.r.t. (s, z).

QED

In connection with (strong) global equivalence rather than global k-equiv-
alence w.r.t. (s, z) it is easy to prove the version below of the last theorem. Its
proof is based on Theorem 9 instead of Theorem 8.

13 Theorem. Assume (2.A) and (G.I). Then

(α) the bodies B and B′ are globally k-equivalent

if and only if

(β) the assertions (a) through (c) in Theorem 9 are verified and there is
a function N∗ = N̂∗(Λ∗t, X) such that the response functions for the specific
elastic entropy in B and B′ are related by the equality (49).

5 Entropy-equivalence of heat fluxes

In the present section (i) we recall from [3] the notion of entropy-equivalence
for the heat-flux functionals of globally equivalent bodies; (i) we remind that
there are simple bodies which are globally equivalent but such that their heat
fluxes are not entropy-equivalent; in fact Theorem 6.1 of [3], reminded here in
the third subsection, characterizes the class of simple bodies which are weakly
globally equivalent but not entropy-equivalent to a given such a body.

Hence we show that the elastic parts of the heat flux in globally equivalent
bodies are necessarily entropy-equivalent. As reminded in (ii) above this is not
true for the entire heat fluxes.

5.1 Definition of entropy-equivalence for the response
functionals of heat flux in globally equivalent bodies

The contribution to the rate of increase of entropy, in any given part P of
the simple body B, due to heat conduction across the boundary ∂P is

−
∮

∂P

1

θ
q · N dA ,
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see [10] on pages 118 − 119; see also the textbook [4] on pages 78 − 80. By the
divergence theorem the volume density of this contribution is

−Div(
1

θ
q) .

Hence (from [2]) we say that the response functionals for the heat flux of
two globally equivalent bodies are entropy-equivalent, if they have the same
volume density of entropy production along every corresponding thermokinetic
processes.

14 Definition. Assume (2.A) and let γ and γ′ be globally equivalent respec-
tive configurations for B and B′.

(a) We say that the heat flux response functionals q̂ and q̂′ for B and B′

are entropy κ-equivalent, if

Div(
1

θ
q) = Div(

1

θ
q′) (57)

along any two k−corresponding processes of B and B′.
(b) We say that the configurations γ of B and γ′ of B′ are entropy κ-

equivalent, with k = γ′−1 ◦ γ, if q̂ and q̂′ are entropy κ-equivalent.

(c) We say that B and B′ are entropy equivalent, or entropy k-equivalent,
if they have two respective configurations γ and γ′ that are entropy k−equivalent,
with k = γ′−1 ◦ γ.

5.2 On global equivalence without entropy-equivalence

Let B be a simple body. The theorem below characterizes the form of the
heat flux response functional for any simple body B′ that is globally equivalent
but not entropy-equivalent to B. Incidentally, it shows the existence of globally
equivalent bodies whose heat fluxes are not entropy-equivalent.

15 Theorem. Assume (2.A), (G.I) and let s, z be (Lebesgue) measurable
portions of ∂R. Let B and B′ be globally k-equivalent w.r.t. (s, z). Then,

the heat flux response functionals q̂ and q̂′ are not entropy-equivalent

if and only if

the difference Q̂ := q̂′ − q̂ satisfies the conditions (a) and (b) below, where at

least one of the quantities
[1]

ΓA ,
[3]

ΓC ,
[4]

Γab does not vanish.

The proof follows from Theorems 4.1 and 4.2 in [3].
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5.3 Entropy-equivalence of the elastic heat fluxes
in globally equivalent bodies

In the present section we show that the elastic parts of the heat flux in
globally equivalent bodies always are entropy-equivalent.

16 Theorem. Assume (2.A), (GI) and let z be any (Lebesgue) measurable
part of ∂R.

Let the bodies B and B′ be globally k−equivalent for external actions whose
heat boundary conditions is prescribed on z.

Then the elastic response functions q̂ and q̂′ for the heat flux, respectively
in B and B′, are entropy-equivalent, i.e.,

Div(
1

θ
q∗) = Div(

1

θ
q′∗) (58)

along any two k−corresponding processes of B and B′.

Proof. Under the hypotheses of the theorem, thesis (b) of Theorem 8
holds. Hence by the equalities (26) and (42) we have

that the difference Q∗ = q̂′∗ − q̂∗ has components

Q∗A =
[1]

ΓA + εABC
[2]

ΓC GB + εABC <
[3]

ΓC |G∗t
B > (59)

+ εABC <
[4]

Γab |F ∗t b
C > F a

B + εABC <
[5]

Γ |G∗t
B > GC

By the piezo-caloric equality (46) the equality (59) yields

[1]

ΓA + εABC <
[3]

ΓC |G∗t
B > + εABC <

[4]

Γab |F ∗t b
C > F a

B = 0

along any two k−corresponding processes of B and B′; hence (59) becomes

Q∗A = εABC
[2]

ΓC GB + εABC <
[5]

Γ |G∗t
B > GC (60)

and thus

Q∗ · G = 0 . (61)

Now the identity

Div
(
θ−1 Q∗

)
= θ−1DivQ∗ − θ−2Q∗ · G , (62)

together with DivQ∗ = 0 , yield

Div
(
θ−1 Q∗

)
= 0 .

QED
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