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Abstract. In this paper we examine the classical problem of finite bending of a rectangular
block of elastic material into a sector of a circular cylindrical tube in respect of compressible
transversely isotropic elastic materials. More specifically, we consider the possible existence of
isochoric solutions. In contrast to the corresponding problem for isotropic materials, for which
such solutions do not exist for a compressible material, we determine conditions on the form of
the strain-energy function for which isochoric solutions are possible. The results are illustrated
for particular classes of energy function.
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1 Introduction

The problem of finite bending of a rectangular elastic block into a sector
of a circular cylindrical tube has been examined by many researchers, almost
exclusively for isotropic materials. First, in Rivlin [17], necessary and sufficient
conditions for the solution of this problem in terms of the boundary data were
derived for incompressible Mooney-Rivlin and neo-Hookean materials by as-
suming that the block remains in its deformed state in the absence of applied
tractions on its curved surfaces but with appropriate tractions applied on its
other surfaces. Corresponding results for a general incompressible isotropic ma-
terial were given by Rivlin [18]. A similar analysis was presented by Green and
Zerna [6] and by Green and Adkins [5]. Green and Adkins also examined the
problem for incompressible transversely isotropic, initially curved incompress-
ible isotropic and compressible isotropic rectangular blocks. Formulation of the
governing equilibrium equations in respect of compressible isotropic materials
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and the derivation of closed-form solutions for the general class of the so-called
harmonic materials were given in Ogden [13], wherein the incompressible case is
also discussed. Furthermore, several classes of compressible isotropic materials
were investigated by Jiang [7], in which it was shown that finite isochoric bend-
ing of a block is only sustainable for incompressible materials. The problem of
bending in the compressible theory was also discussed by Aron and Wang [2],
who used constant modified stretches to express the total energy as a function
of the deformed volume V and to deduce that (under plane strain) it attains
a minimum at a certain value V0 of V . In addition, a stability analysis for
semi-linear harmonic materials (under plane strain) was discussed by the same
authors in [1]. In a recent paper, Bruhns et al. [3] examined the same problem
for compressible and incompressible isotropic Hencky materials.

In the present analysis, we consider the problem of bending for transversely
isotropic elastic materials. In Section 2, we introduce the notation and summa-
rize the necessary kinematics for unconstrained transversely isotropic materials.
In Section 3, the bending deformation is formulated and, under the appropri-
ate specialization for particular directions of the axis of transverse isotropy, the
governing differential equations are derived. As expected for the considered de-
formation, the expressions obtained have the same structure as for the case of
compressible isotropic materials given in [13], except that material properties,
expressed in terms of a strain-energy function, are different.

Specialization to isochoric bending is then discussed in Section 4, and atten-
tion is confined mainly to the case of plane strain. The remaining equilibrium
equation identifies necessary and sufficient conditions on the energy function
for the considered deformation to be sustainable, and, in particular, restrictions
on the classical (linear) elastic constants are imposed. In this connection it is
interesting to examine the status of so-called reinforcing models, for which an
isotropic energy function is augmented by an added function that reflects the
transverse isotropy as a basic model representing the influence of reinforcing
fibres. The linear specialization of the strong ellipticity inequalities (see, for
example, Payton [14] and Merodio and Ogden [12]) shows that the considered
bending deformation cannot, in general, be achieved for such materials for re-
alistic forms of the reinforcement model. Along the lines of the work of Jiang
and Ogden [8, 9], some general forms of strain-energy functions that admit iso-
choric bending are derived. Some specific forms of these strain energies are then
chosen to illustrate the results, and some closed-form solutions are obtained.
Numerical calculations are used to demonstrate the stress distributions in the
deformed block for two specific energy functions.

In Section 5 we examine aspects of the stability of the block for the consid-
ered deformation as embodied in the notion of strong ellipticity. For plane strain
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we provide necessary and sufficient conditions for strong ellipticity to hold.
Finally, Section 6 contains a brief discussion of the incompressible counter-

part of the analysis presented here.

2 Background and notation

2.1 Kinematics

Let X = (X1, X2, X3) denote the position vector of a material particle in
some stress-free reference configuration Br relative to a rectangular Cartesian
basis {Ei }, i ∈ { 1, 2, 3 }. Let B denote the deformed configuration of the body
and x the corresponding position vector of the particle. The deformation gradi-
ent tensor, denoted F, is given by

F =
∂x

∂X1
⊗ E1 +

∂x

∂X2
⊗ E2 +

∂x

∂X3
⊗ E3. (1)

The right and left Cauchy-Green deformation tensors, denoted C and B respec-
tively, are then defined as

C = FTF = U2, B = FFT = V2, (2)

wherein U and V are, respectively, the right and left stretch tensors that arise
in the polar decompositions F = RU = VR, R being a rotation tensor.

For an unconstrained material the principal invariants I1, I2, I3 of C (also
of B) are given by

I1 = trC, I2 = I3 tr
(
C−1

)
, I3 = detC ≡ J2, (3)

where J = detF > 0, or, in terms of the principal stretches λi > 0, i ∈ { 1, 2, 3 },

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, I3 = λ2

1λ
2
2λ

2
3. (4)

In the reference configuration Br we identify a preferred material direction,
characterized by the unit vector M. This generates two additional invariants,
denoted I4 and I5 and defined by

I4 = M · (CM) ≡ m · m, I5 = M · (C2M) ≡ m · (Bm). (5)

These may also be written in component form as

I4 = m2
1 +m2

2 +m2
3 = λ2

1M
2
1 + λ2

2M
2
2 + λ2

3M
2
3 , (6)

I5 = λ2
1m

2
1 + λ2

2m
2
2 + λ2

3m
2
3 = λ4

1M
2
1 + λ4

2M
2
2 + λ4

3M
2
3 , (7)
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where Mi, i ∈ { 1, 2, 3 }, are the components of M on the principal axes, {u(i)}
say, of C and mi, i ∈ { 1, 2, 3 }, those of m = FM on the principal axes of B,
which we denote by {v(i)}, i ∈ { 1, 2, 3 }. Note that, in general, M varies with
position X.

Finally, we emphasize the direct kinematical interpretation of I4, namely
that

√
I4 represents the stretch in the direction M. We also note that if M is

not a principal direction of C then I5 − I2
4 provides a measure of the shearing

deformation. For more details we refer to the work of Merodio and Ogden [10,11].

2.2 The strain-energy function and the stresses

We now consider the material to be transversely isotropic with preferred
direction M (locally). This leads to a strain-energy function that depends on
the invariants (3) and (5), and we adopt the notation

W = W̄ (I1, I2, I3, I4, I5) (8)

to represent this (defined per unit volume in Br).
The general forms of the nominal and Cauchy stress tensors, denoted S and

σ respectively, are given by

S =
∂W

∂F
, Jσ = FS, (9)

expansion of which for the considered transverse isotropy yields

S = 2W̄1F
T + 2W̄2(I1I − C)FT + 2I3W̄3F

−1 + 2W̄4M ⊗ FM

+ 2W̄5(M ⊗ FCM + CM ⊗ FM) (10)

and

Jσ = 2W̄1B + 2W̄2(I1I − B)B + 2I3W̄3I + 2W̄4m ⊗ m

+ 2W̄5(m ⊗ Bm + Bm ⊗ m), (11)

where I is the identity tensor and W̄r = ∂W̄
∂Ir

for r ∈ { 1, 2, 3, 4, 5 }. Note that σ

is symmetric while, in general, S is not, but satisfies the connection FS = STFT

arising from the symmetry of σ.
On specialization to the undeformed configuration Br, we have

I1 = I2 = 3, I3 = I4 = I5 = 1. (12)

On noting that the tensors I and M⊗M are independent, and that the strain-
energy function and stress should vanish in Br, we see that

W̄ = W̄1 + 2W̄2 + W̄3 = W̄4 + 2W̄5 = 0 (13)

when evaluated for (12).
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3 The bending deformation

3.1 Kinematics of the problem

Consider a rectangular block defined, in its reference configuration Br, by

−A ≤ X1 ≤ A, −B ≤ X2 ≤ B, −C ≤ X3 ≤ C, (14)

and suppose that the body is deformed so that the planesX1 = constant become
sectors of the cylindrical surface r = constant, planes X2 = constant become
planes θ = constant and planes X3 = constant become planes z = constant,
where (r, θ, z) are cylindrical polar coordinates.

The equations describing the deformation may be written

r = f(X1), θ = g(X2), z = λX3, (15)

where λ is a constant and the functions f and g are to be determined. We
assume that the deformation is symmetric about the X1 axis, so that g(−X2) =
−g(X2), and, for definiteness, we take f(A) > f(−A). For convenience we set
the notations

f(−A) = a1, f(A) = a2, g(B) = α, (16)

so that a2 > a1.

If we let { ea }, a ∈ { r, θ, z } be the cylindrical polar basis vectors in the de-
formed configuration, then the position vector of a particle in this configuration
is given by x = rer + zez, and the deformation gradient tensor (1) takes the
form

F = f ′(X1)er ⊗ E1 + f(X1)g
′(X2)eθ ⊗ E2 + λez ⊗ E3. (17)

Equivalently, F can be decomposed as F = RU = VR, where

U = f ′E1 ⊗ E1 + fg′E2 ⊗ E2 + λE3 ⊗ E3, (18)

V = f ′er ⊗ er + fg′eθ ⊗ eθ + λez ⊗ ez, (19)

R = er ⊗ E1 + eθ ⊗ E2 + ez ⊗ E3. (20)

From equations (18)–(20) we deduce that the Lagrangian principal axes coincide
with the Cartesian basis vectors {Ei }, while the Eulerian principal axes are
aligned with the cylindrical polar basis vectors { ei }. The associated principal
stretches can therefore be identified as

λ1 = f ′(X1), λ2 = f(X1)g
′(X2), λ3 = λ. (21)
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3.2 Some restrictions on the constitutive law

For an isotropic elastic solid, as is well known, the Cauchy stress tensor σ is
coaxial with V. Therefore, all the non-zero components of σ can be expressed in
terms of the principal stresses, denoted σ1, σ2, σ3, with respect to the Eulerian
principal axes. By contrast, for a transversely isotropic material σ is not in
general coaxial with V. However, from (11), we note that σ is coaxial with V
if and only if m is an eigenvector of B or, equivalently, M is an eigenvector of
C. (This equivalence is easy to see from (2) and the connection m = FM.)

Thus, if M lies in the (X1, X2)-plane and is directed along the X1 axis,
equations (17), (21) and (2)1 yield CM = λ2

1M for all λ1 > 0. The invariants
(5) then specialize to

I4 = λ2
1, I5 = I2

4 . (22)

As a result, the Cauchy stress tensor can be written in the spectral form

σ = σ1er ⊗ er + σ2eθ ⊗ eθ + σ3ez ⊗ ez, (23)

with

σi = J−1λi
∂W

∂λi
, i ∈ { 1, 2, 3 }, (24)

and now we may represent W as a function of λ1, λ2, λ3. We write

W = W̄ (I1, I2, I3, I4, I5) = Ŵ (λ1, λ2, λ3), (25)

wherein the notation Ŵ is introduced. We emphasize that the representation
Ŵ (λ1, λ2, λ3), in contrast to W̄ (I1, I2, I3, I4, I5), applies for the specific defor-
mation considered here and is not in general valid. Note that shear stresses are
not required to achieve the considered deformation.

When M is chosen as above then for consistency with the classical linear
theory of transversely isotropic elasticity the conditions

W̄11 + 4W̄12 + 4W̄22 + 4W̄23 + 2W̄13 + W̄33 =
c22
4
, (26)

W̄14 + 2W̄15 + 2W̄24 + 4W̄25 + W̄34 + 2W̄35 =
c12 − c23

4
, (27)

W̄44 + 4W̄55 + 4W̄45 + 2W̄5 =
c11 − c22 + 2c23 − 2c12

4
, (28)

W̄1 + W̄2 + W̄5 =
c55
2
, (29)

W̄2 + W̄3 =
c23 − c22

4
, (30)

should be satisfied. Here, the derivatives of W̄ are evaluated in the reference
configuration and the constants c11, . . . , c55 constitute the standard notation



Deformations of transversely isotropic elastic blocks 137

for the elastic constants used in the classical theory of transverse isotropy for
the case in which E1 is the direction of transverse isotropy. We mention that
the counterparts of (26)–(30) with E3 as the axis of transverse isotropy were
given in [11].

Finally, we note that the inequalities

c11 > 0, c22 > 0, c55 > 0, c22 > c23 (31)

and
| c12 + c55 |< c55 +

√
c11c22, (32)

are necessary and sufficient conditions for strong ellipticity to hold in the clas-
sical theory (see, for example, [12, 14]).

If we consider that the preferred direction is parallel to the X2 axis then
CM = λ2

2M for all λ2 > 0, while equations (22) are replaced by

I4 = λ2
2, I5 = I2

4 , (33)

and appropriate changes are needed in the subscripts in (31) and (32) for this
case.

3.3 Reduction of the equilibrium equations

For the considered deformation, the equilibrium equation div σ = 0 (in the
absence of body forces) yields the two scalar equations

∂σ1

∂r
+

1

r
(σ1 − σ2) = 0,

∂σ2

∂θ
= 0. (34)

Since λ3 is a constant and λ1 depends only on X1 it follows from equations (34)2
and (21) that

∂σ2

∂λ2
g′′(X2) = 0. (35)

Hence, assuming that ∂σ2
∂λ2

6= 0, which, in view of the above inequalities, certainly
holds in the reference configuration, we deduce that

g(X2) = βX2, (36)

where β is a constant, which will be determined through the boundary conditions
(16)3 such that β = α

B > 0. (Note that if, instead of the X1 axis, the X2 axis is
chosen as the axis of transverse isotropy then g has the same form.)

Combination of (36) and (21) leads to

λ2 = βf(X1),
dλ2

dX1
= βλ1. (37)
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Hence, each of λ1 and λ2 depends only on X1. Then, through use of (21)1, (24),
(37) and some manipulation, equation (34)1 simplifies to

dŴ1

dX1
= βŴ2, (38)

where we are using the representation W = Ŵ (λ1, λ2, λ3) and the subscripts 1
and 2 on Ŵ signify differentiation with respect to λ1 and λ2, respectively. It
follows, on use of (37)2, that

d

dX1
(λ1Ŵ1) =

d

dX1
(Ŵ ). (39)

Since Ŵ = Ŵ1 = 0 in the reference configuration and the result of integrating
(39) must hold for all deformations of the considered form, we obtain

Ŵ = λ1Ŵ1, (40)

which is an (implicit) first-order differential equation for f(X1) for any given
form of strain-energy function. This equation is the same as that arising for an
isotropic material except that here Ŵ does not in general possess the symmetry
in (λ1, λ2, λ3) that holds in the isotropic situation (see, for example, [7, 13]).

As we have already mentioned, it was first shown by Rivlin [17,18] and then
by several other authors (see, for example, [5, 6, 13]) that it is possible to hold
the body in its current configuration even if there are no tractions on the curved
surfaces r = a1, a2 of the deformed block. This requires σ1 = 0 on X1 = ±A,
which, because of (24) and (40), can be expressed in terms of the strain-energy
function as

W = 0 on X1 = ±A, (41)

where W is either W̄ or Ŵ , as appropriate.

4 Isochoric specialization

If the deformation is considered to be isochoric then λ1λ2λ3 = 1 and from
(21) we therefore have

f ′(X1)f(X1)g
′(X2)λ3 = 1. (42)

As discussed by Rivlin [17,18], solution of the preceding equation leads to

f(X1)
2 =

2X1

βλ3
+ a, g(X2) = βX2,
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where the constant β > 0 is again given via (16)3 and

a =
a2

1 + a2
2

2
, a2

2 =
4A

βλ3
+ a2

1. (43)

It then follows that the deformation can be described by

r =

√

a+
2X1

βλ3
, θ = βX2, z = λ3X3, (44)

and we deduce that the principal stretches can be written as

λ1 =
1

βλ3r
, λ2 = βr, λ3 = λ. (45)

Application of (42) and (45) to (24) shows that σ1 and σ2 depend only on
X1 while θ depends only on X2. Therefore, for an isochoric deformation, (34)2 is
satisfied identically while (34)1 again leads to the equation Ŵ = λ1Ŵ1. We em-
phasize that we are considering here an isochoric deformation in a compressible
material, not an incompressible material.

Furthermore, we note that the solutions (44) arising from the kinematical
restriction (42) are universal solutions since they apply independently of the
constitutive law. Thus, in this case, the radial equilibrium equation (40) serves to
identify the possible forms of W that admit the isochoric bending deformation.

4.1 Plane strain specialization

Henceforth, we confine our analysis to the plane strain specialization. We
consider that the deformation is in the (X1, X2) coordinate plane, such that
z = X3 with (r, θ) being independent of X3, and the direction M is parallel to
the considered plane. The components of F and C satisfy F33 = C33 = 1, and
the out-of-plane principal stretch is now λ3 = 1. The principal invariants (4)
reduce to

I1 = λ2
1 + λ2

2 + 1, I2 = λ2
1λ

2
2 + λ2

1 + λ2
2, I3 = λ2

1λ
2
2, (46)

and we rewrite (22) and (33) together compactly as

I4 = λ2
κ, I5 = I2

4 , κ ∈ { 1, 2 }, (47)

wherein the subscript κ has been introduced to identify the orientation of the
unit vector field M in the undeformed configuration.

For either κ = 1 or 2 we deduce from (46) and (47) the connections

I2 = I1 + I3 − 1, I5 = (I1 − 1)I4 − I3, (48)
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and it follows that, for plane strain, the function W̄ introduced in (8) depends
only on the invariants I1, I3 and I4. Accordingly, we may introduce a reduced
strain-energy function, denoted ¯̄W and defined by

¯̄W (I1, I3, I4) = W̄ (I1, I1 + I3 − 1, I3, I4, (I1 − 1)I4 − I3), (49)

for either value of κ.
Now, if F denotes the corresponding in-plane deformation gradient, the as-

sociated restricted expressions for the nominal and the Cauchy stress tensors
are given by

S = 2 ¯̄W1F
T + 2I3

¯̄W3F
−1 + 2 ¯̄W4M ⊗ FM, (50)

Jσ = 2 ¯̄W1B + 2I3
¯̄W3I + 2 ¯̄W4m ⊗ m. (51)

Note that in order to maintain the plane strain deformation the out-of-plane
stress components S33 and σ33 are in general non-zero. These are not given by
(50), (51), but, if needed, they may be calculated from (10) and (11), respec-
tively, evaluated for the considered plane strain specialization.

The counterparts of (13) for ¯̄W are

¯̄W = ¯̄W1 + ¯̄W3 = ¯̄W4 = 0 (52)

for κ = 1, 2, while (26)–(30) specialize to

¯̄W11 + 2 ¯̄W13 + ¯̄W33 =
c22
4
, ¯̄W44 − 2 ¯̄W3 =

c11 + c22 − 2c12
4

, (53)

2 ¯̄W14 + 2 ¯̄W34 + ¯̄W44 =
c11 − c22

4
, ¯̄W3 = −c55

2
, (54)

with the derivatives of ¯̄W being evaluated for (I1, I3, I4) = (3, 1, 1) (see also [11]).
Finally, the properties (31) that the elastic constants should satisfy are reduced
to

c11 > 0, c22 > 0, c55 > 0, (55)

while (32) is still in place. We recall that the properties (53)–(55) and (32)
correspond to κ = 1.

4.2 Certain classes of materials

As discussed in Jiang [7], a finite isochoric bending deformation of a rect-
angular block is not sustainable for compressible isotropic materials. Here, we
present two specific classes of transversely isotropic compressible materials, de-
pending on the choice of κ, for which the considered isochoric bending defor-
mation can be achieved.
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For this purpose, we substitute (49) into (40) to obtain

¯̄W (I1, I3, I4) = 2λ2
1

¯̄W1 (I1, I3, I4) + 2I3
¯̄W3 (I1, I3, I4) + 2λ2

1
¯̄W4 (I1, I3, I4) δ1κ,

(56)
where δ1κ is the Kronecker delta, with κ ∈ { 1, 2 }.

Since the deformation is considered to be isochoric, equation (56) for κ = 1
applies for

I1 = λ2
1 + λ−2

1 + 1, I3 = 1, I4 = λ2
1 (57)

for all λ1 > 0. Differentiation of (56) with respect to λ1 yields

2
(
λ1 − λ−3

1

) (
2λ2

1
¯̄W11 + 2 ¯̄W13 + 2λ2

1
¯̄W14 − ¯̄W1

)

+ 4λ3
1

(
¯̄W14 + ¯̄W44

)
+ 2λ1

(
2 ¯̄W1 + ¯̄W4 + 2 ¯̄W34

)
= 0, (58)

for all λ1 > 0.

On use of (52)–(54), we see that in the limit λ1 → 1 equation (58) holds if
and only if

c11 = c12. (59)

This is a necessary restriction on the class of compressible transversely isotropic
materials for which an isochoric bending deformation of a rectangular block can
be achieved. We note that for this class of materials the conditions (55) and
(32) can be reduced to

c22 > c11 > 0, c55 > 0. (60)

For κ = 2, equation (56) with I4 = λ−2
1 gives, analogously to (58), the

connection

2λ−3
1

(
¯̄W4 − 2 ¯̄W34

)
+ 4λ1

(
¯̄W1 − λ−2

1
¯̄W14

)

+ 2
(
λ1 − λ−3

1

) (
2λ2

1
¯̄W11 + 2 ¯̄W13 − ¯̄W1

)
= 0,

for all λ1 > 0. This leads again to the restriction (59), and the corresponding
inequalities that the elastic constants satisfy are

c22 > c11 > 0, c44 > 0. (61)

It is also worth noting that the inequalities (60)1 show that for κ = 1 the
materials have “low” anisotropy, since the elastic modulus c11, which is directly
related to the stiffness in the X1 direction, is less than c22, which is defined with
respect to the isotropic planes of the body.
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4.2.1 A note on reinforcing models

Without referring to any details, we remark that several authors (see, for
example, [10,11,15,16,19]) have considered a decomposition of the strain-energy
function of the form

¯̄W = ¯̄Wiso(I1, I3) + ¯̄Wfib(I4), (62)

in which the first term ¯̄Wiso represents the isotropic base material, while the
additional term ¯̄Wfib represents the reinforcement associated with a family of
fibres whose referential direction is the preferred direction M.

The properties (53)2 and (54) show that the class of strain-energy functions
(62) must satisfy the connection

c22 − c12 = 2c55 (63)

when κ = 1, and

c11 − c12 = 2c44 (64)

for κ = 2. The first of these requirements is consistent with (59) and the in-
equalities (60), but the second is not consistent with (59) and (61). However,
the conditions (53)2, (54) and (60)3 show that the class of materials (63) can
admit the isochoric bending deformation only for κ = 1 and then such that

¯̄W ′′
fib(1) < 0, (65)

implying non-convexity of ¯̄Wfib in a neighbourhood of I4 = 1.

This is not consistent with the models adopted in the above-cited papers,
where the anisotropic part of the strain-energy has been taken to satisfy

¯̄Wfib(1) = ¯̄W ′
fib(1) = 0, ¯̄W ′′

fib(1) > 0, (66)

for κ ∈ { 1, 2 }. However, in such cases the models used provide reinforcement,
i.e. the stiffness in the preferred direction is larger than in the transverse direc-
tions, in contrast to the situation here. It can therefore be concluded that the
considered deformation is not possible for strictly reinforcing models.

4.3 Some specific strain-energy functions

In this section we present two examples of strain-energy functions that can
admit an isochoric bending deformation. The relevant necessary and sufficient
condition is obtained from (56) in each case, with I1, I3 and I4 given by

I1 = λ2
1 + λ−2

1 + 1, I3 = 1, I4 = λ2
κ. (67)
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Since I3 = 1, we may write I1 = I4 + I−1
4 + 1, for κ ∈ { 1, 2 }, although in the

present analysis we do not make formal use of this connection. The specializa-
tions of (56) for κ = 1 and κ = 2 may be written as

¯̄W = 2I4
¯̄W1 + 2 ¯̄W3 + 2I4

¯̄W4 (68)

and
I4

¯̄W = 2 ¯̄W1 + 2I4
¯̄W3, (69)

respectively, evaluated for I3 = 1.
In the following we adopt an approach towards the construction of forms of

W used by Jiang and Ogden [8, 9], and the particular forms of energy function
considered are motivated by those examined in these references.

Case (1): κ = 1.
First, we consider the class of strain-energy functions for which ¯̄W has the

form

¯̄W (I1, I3, I4) = h1 (I1 − I4 + I3) g0 (I3)

+ h2 (I1 − I4)
√
I3 + C0I4

(√
I3

)−1
, (70)

where h1 is a function to be determined, C0 is a material constant and the
functions h2 and g0 are to be consistent with the requirements (52)–(54).

If, without loss of generality, we set g0(1) = 1 then substitution of (70) into
(68) leads to the differential equation

h′1
(
Ī
)

+ qh1

(
Ī
)

= 0, (71)

where q and Ī are defined by

2q = 2g′0(1) − 1, Ī = I1 − I4 + 1. (72)

The general solution of (71) is

h1(Ī) = C1e
−qĪ , (73)

where C1 is a constant. In respect of (70) the requirements (52)–(54) give C0 =
c55
2 , together with

h2(2) + h1(3) = −c55
2
, h′2(2) − qh1(3) =

c55
2
, (74)

h′′2(2) + q2h1(3) =
c22 − c11 − 4c55

4
, (75)

4h′′2(2) − h2(2) + 4h′2(2) − 8qh1(3) + 4h1(3)g′′0(1) = c22 −
3c55
2
. (76)
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The class of strain-energy functions (70) admitting isochoric bending defor-
mation is now specialized to

¯̄W (I1, I3, I4) = C1e
−q(I1−I4+I3)g0 (I3)

+ h2 (I1 − I4)
√
I3 +

c55
2
I4

(√
I3

)−1
(77)

for any choice of the parameter q and non-zero C1, and for any functions g0 and
h2 that satisfy (74)–(76). In particular, for any given C1 and q, which can in
general be chosen independently, equations (74)–(76) simply serve to identify
the properties that g0 and h2 should satisfy in the reference configuration, but no
restriction otherwise on the forms of these functions is imposed. The expression
(77), together with (74)–(76), represents a large class of functions admitting
isochoric bending deformation. Finally, we note that for C1 = 0 the requirements
(76) and (75) lead to c11 = −4c55, in which case the properties (60) are violated.
For this reason the possibility C1 = 0 is excluded from consideration.

Note, however, that the specialization q = 0 is admissible, in which case the
strain-energy function (77) reduces to

¯̄W (I1, I3, I4) = C1g0 (I3) + h2 (I1 − I4)
√
I3 +

c55
2
I4

(√
I3

)−1
, (78)

which is valid for all non-zero disposable parameters C1 and all functions h2

and g0 that satisfy the appropriate specializations of (74)–(76).

Case (2): κ = 2.

Next, we examine the class of strain-energy functions of the form

¯̄W (I1, I3, I4) = h3(I1I4)g1(I3) + h4(I4)
√
I3. (79)

Similarly to the previous case, by taking g1(1) = 1 and setting 2p = 2g′1(1)− 1,
we follow the same procedure in respect of (69) to particularize h3(I1I4). This
leads to

h3(I1I4) = C2e
−pI1I4 , (80)

where again, C2 is a material parameter and h3, h4, g1 satisfy

h3(3) = −c44
2p
, h3(3) + h4(1) = 0, h′4(1) = −3

2
c44, (81)

h′′4(1) + 9p2h3(3) =
c22 − c11 − 4c44

4
, (82)

4p(p+ 1)h3(3) − 4h3(3)g′′1(1) = −c11 −
c44
2p
. (83)
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Hence, in this case, equation (79) is replaced by

¯̄W (I1, I3, I4) = C2e
−pI1I4g1(I3) + h4(I4)

√
I3 (84)

for all non-zero parameters p and C2 that satisfy (81)–(83) in respect of (80). As
for the case of the functions (77) these serve to determine the conditions that g1
and h4 should satisfy in the reference configuration. In addition, we emphasize
that the class of strain-energy functions (79) fails to admit isochoric bending
deformation for C2 = 0 and/or p = 0 since in either case we deduce that c44 = 0
and the strong ellipticity condition (61)3 is then violated.

4.4 Application of the boundary conditions

As we have already mentioned, the solutions (77), (78), (84) derived in the
previous section correspond to large classes of transversely isotropic materi-
als admitting the considered isochoric bending deformation under plane strain.
However, these solutions are not necessarily compatible with the boundary con-
ditions (41) imposed on our problem. In this respect, the arbitrary functions h2

and h4 involved need to be properly specified to ensure that the deformed body
is traction free on the boundaries X1 = ±A.

For illustration, we now examine the strain-energy functions (78), by taking

h2(I1 − I4) = −c55
8

(I1 − I4 − 4)2 − C1, (85)

noting that this is compatible with (74) and (75) for q = 0 and the nonlinear
algebraic system (41) can be solved analytically in respect of the data a and β.
The equilibrium equation (70) is then satisfied identically with

σ1 = −c55
8

[(
λ−2

1 − 2
)2 − 2

(
λ−2

1 + 2λ2
1

)
+ 5
]
, (86)

while σ2 and σ3 take the forms

σ2 = −c55
8

(
4λ2

1 − 18λ−2
1 + 5λ−4

1 + 9
)
,

σ3 = −c55
8

(
4λ2

1 − 2λ−2
1 + λ−4

1 − 3
)
.

(87)

It should be noted, however, that the properties (74) and (75) impose the further
restriction 3c55 = c22−c11, which is compatible with (60). From (76) a condition
on g′′0(1) may also be derived but we do not need it here.

By recalling the expressions (44)1 and (45)1 (now with λ3 = 1), the system
(41) is solved to give

a =
40

9
A2, β =

3

4A
(88)



146 F. Kassianidis, R. W. Ogden

-1.0 -0.5 0.0 0.5 1.0

1.0

0.9

0.8

0.7

0.6

0.5
-1.0 -0.5 0.0 0.5 1.0

0.00

0.25

0.50

0.75

-0.25

-0.50

-0.75

S
tr

e
ss

e
s
σ
∗ 1
,σ

∗ 2
,σ

∗ 3

S
tr

e
tc

h
λ

1

Coordinate X̄1 Coordinate X̄1

(a) (b)

σ∗

1

σ∗

2

σ∗

3

Figure 1. Plots of (a) the stretch λ1 and (b) the dimensionless stress components
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∗
2 and σ∗3 vs X̄1.

and from (16)1,2 we obtain

a1 = 2a2 =
8

3
A. (89)

Moreover, the range of λ1 = λ1(X1) for which such a deformation is sustainable
may also be identified via (88), (44)1 and (45)1 as

λ1(A) = 0.5 ≤ λ1(X1) ≤ 1 = λ1(−A), (90)

for all A > 0 and −A ≤ X1 ≤ A. Consequently, from (47)1 (i.e. for κ = 1) and
(90) it follows that the material is compressed in the X1 direction for X1 > −A.
The resulting stretch distribution as a function of the dimensionless coordinate
X̄1 = X1/A is depicted in Figure 1(a). We observe that the inequalities (90)
hold independently of the value of A.

In addition, the stress components σ1, σ2 and σ3 are plotted in Figure 1(b) as
functions of X̄ in dimensionless form σ∗i = σi

c55
, i ∈ { 1, 2, 3 }. The non-monotonic

nature of σ1, σ2, σ3 is now evident. We note that σ1 vanishes for X̄1 = ±1,
as prescribed, and takes its maximum value for λ1 ≈ 0.605 (equivalently, for
X̄1 ≈ 0.155). Also, σ2 and σ3 vanish on the boundary X̄1 = −1 of the block,
where λ1 = 1, while additionally σ2 = 0 for λ1 ≈ 0.589 (X̄1 ≈ 0.252) and σ3 = 0
at λ1 ≈ 0.625 (X̄1 ≈ 0.041).
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Figure 2. Plots of (a) the stretch λ2 and (b) the dimensionless stress components
σ∗1, σ

∗
2 and σ∗3 vs X̄1.

Finally, the moment of the stress σ2 (about the origin r = θ = 0) that
maintains the material in its deformed state is now calculated from the formula

M = 2C

∫ A

−A
rλ1σ2dX1, (91)

which can be evaluated explicitly: M ≈ −(0.318/β2)Cc55 ≈ −0.566A2Cc55.
Next we consider the class of materials (84) for the case in which the function

h4 is chosen as

h4(I4) =
c44
2p

ep(2−I4−I2
4 ) − c1

(
I−1
4 − 2

)2
+ c1I

2
4 . (92)

The form of (92) satisfies the required restrictions, and the counterparts of (86)
and (87) are

σ1 = −c1
[
(λ2

1 − 2)2 − λ−4
1

]
, (93)

and

σ2 = c1
(
3λ4

1 − 4λ2
1 + 5λ−4

1 − 4
)
, (94)

σ3 = c44e
p(2−λ−2

1 −λ−4
1 ) (λ−2

1 − 1
)
− c1

(
λ4

1 − 4λ2
1 − λ−4

1 + 4
)
, (95)



148 F. Kassianidis, R. W. Ogden

wherein the notation c1 = c22−c11+3c44
16 has been introduced.

On use of (93), solution of the system (41) yields

a = 4
(
4 + 3

√
2
)
A2, β =

(
2 −

√
2
)

4A
, (96)

with

a1 =

√
2 + 2

√
2a2 − 2

√
2A = 2

(
2 +

√
2
)
A. (97)

We observe that for the particular choice of h3 the deformation is sustainable
only within the range

λ1(A) = 1 ≤ λ1(X1) ≤ 1.554 ≈ λ1(−A), (98)

for all A > 0 and −A ≤ X1 ≤ A. We recall, however, that since in this case the
direction of transverse isotropy is in the X2 direction, we have I4 = λ2

2 = λ−2
1 .

The obvious inference is that there is contraction in the X2 direction for all
values of X1 except X1 = A. The distribution of the stretch λ2 = λ−1

1 as a
function of X̄1 is plotted in Figure 2(a).

Corresponding plots of the stress components σ1, σ2, σ3 are given in Fig-
ure 2(b) where, analogously to the previous case, we use the dimensionless forms
σ∗i = σi

c1
, i ∈ { 1, 2, 3 }. It can now easily be derived from (93) and (94) that σ1

and σ2 are non-monotonic as functions of λ2 or, equivalently, of X1. Indeed,
σ1 reaches a maximum value at λ2 ≈ 0.737, corresponding to X̄1 ≈ −0.558
while, σ2 has a minimum at λ2 ≈ 0.861, corresponding to X̄1 ≈ 0.119. Further-
more, we notice that σ2 vanishes for the values λ2 ≈ 0.748 and 1 and hence for
X̄1 ≈ −0.504 and X̄1 = 1.

We now observe that σ3 is the only principal stress component that depends
on the three parameters c44, p and c1. Essentially, both the nature and the
magnitude of this component are adjusting due to different classes of strain
energies and with respect to various extension and shear moduli so that the body
can undergo an isochoric deformation while, at the same time, the boundary
conditions (41) are satisfied. For illustration, the curves (σ∗3, X̄1) are presented
here for p = 0.5 and c2 = 0.5, 1, 1.5, where c2 is defined as c2 = c44

c1
.

Finally, the moment M is in this case calculated as

M = 2C

∫ A

−A
rλ1σ2dX1 ≈ −0.078

β2
Cc1 ≈ −3.627A2Cc1. (99)

5 Strongly elliptic modes of deformation

The issue of stability of modes of deformation such as that considered in the
foregoing sections is an important one, and, in particular, the notion of loss of
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strong ellipticity has a role to play in this regard. In this section we examine
the strong ellipticity condition for the considered deformation. For transversely
isotropic compressible elastic solids this has been discussed by Merodio and
Ogden [11] and, in particular, they gave a general expression for the strong
ellipticity condition for plane strain. In general, the strong ellipticity condition
may be analyzed in terms of the acoustic tensor Q(n), whose components are
quadratic in the components of the unit vector n (for a general discussion see,
for example, Truesdell and Noll [20]). In two dimensions, in the (1, 2) plane with
n lying in that plane, necessary and sufficient conditions for strong ellipticity
are

Q11(n) > 0, Q11(n)Q22(n) − [Q12(n)]2 > 0 (100)

for all unit vectors n = (n1, n2, 0).

For a compressible material the components of Q(n) for plane strain (λ3 = 1)
are, from Merodio and Ogden [11] but in the present notation, given by

Qij = 4 ¯̄W 11λ
2
iλ

2
jninj + 4I3

¯̄W 13

(
λ2

i + λ2
j

)
ninj + 4I2

3
¯̄W 33ninj

+ 4I3
¯̄W 34 (n · m) (nimj + njmi) + 4 ¯̄W 14 (n · m)

(
λ2

inimj + λ2
jnjmi

)

+ 4 ¯̄W 44 (n · m)2mimj + 2 ¯̄W 1δij
(
λ2

1n
2
1 + λ2

2n
2
2

)

+ 2I3
¯̄W 3ninj + 2 ¯̄W 4δij (n · m)2 , (101)

for i, j ∈ { 1, 2 }. When specialized to the considered deformation and on use

of the (plane strain) energy function defined by
ˆ̂
W (λ1, λ2) = Ŵ (λ1, λ2, 1), we

obtain simply

Q11 = λ2
1

ˆ̂
W11n

2
1 + 2 ¯̄W1λ

2
2n

2
2, (102)

Q22 = λ2
2

ˆ̂
W22n

2
2 + 2

(
¯̄W1 + ¯̄W4

)
λ2

1n
2
1, (103)

Q12 = λ1λ2
ˆ̂
W12n1n2 − 2I3

¯̄W3n1n2, (104)

where
ˆ̂
Wij = ∂2 ˆ̂

W/∂λi∂λj .

After a little manipulation using (104) it can be shown that the inequalities
(100) lead to

ˆ̂
W11 > 0,

ˆ̂
W22 > 0, ¯̄W1 > 0, ¯̄W1 + ¯̄W4 > 0, (105)√

ˆ̂
W11

ˆ̂
W22 − ˆ̂

W12 + 2

√
¯̄W1

(
¯̄W1 + ¯̄W4

)
+ 2
√
I3

¯̄W3 > 0, (106)
√

ˆ̂
W11

ˆ̂
W22 +

ˆ̂
W12 + 2

√
¯̄W1

(
¯̄W1 + ¯̄W4

)
− 2
√
I3

¯̄W3 > 0, (107)
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which, jointly, are necessary and sufficient conditions on the material properties

for strong ellipticity to hold for the considered deformation. Note that both
ˆ̂
W

and ¯̄W are used here since the expressions are simpler in this form.
It is worth noting in passing that for an isotropic material the above in-

equalities, when expressed entirely in terms of
ˆ̂
W , reduce to

ˆ̂
W11 > 0,

ˆ̂
W22 > 0,

λ1
ˆ̂
W1 − λ2

ˆ̂
W2

λ2
1 − λ2

2

> 0, (108)

√
ˆ̂
W11

ˆ̂
W22 − ˆ̂

W12 +
ˆ̂
W1 +

ˆ̂
W2

λ1 + λ2
> 0, (109)

√
ˆ̂
W11

ˆ̂
W22 +

ˆ̂
W12 −

ˆ̂
W1 +

ˆ̂
W2

λ1 + λ2
> 0, (110)

as obtained by [4].
For illustration, the ellipticity status of the strain-energy function (78) un-

dergoing isochoric bending, with h2 being given by (85), is now discussed. For
the considered materials, we deduce via (60)1 that the first and the fourth
requirements (105) are automatically satisfied within the range of admissible
values of λ1 as defined in (90). On the other hand, the second of these inequal-
ities fails if and only if the dimensionless quantity c3 = c11

c55
> 0 does not exceed

the approximate value 21.75. In this connection, the inequality (105)2 fails ear-
lier (for values of λ1 closer to 1) when c3 is close to zero, corresponding to
λ1 ≈ 0.724 (X̄1 ≈ −0.394). Note that an increase in the ratio c3 amounts to a
decrease in the value of λ1 for which (105)2 first fails. In the same spirit, it can

easily be shown that breakdown of (105)3 occurs when λ1 reaches the value
√

3
3 ,

independently of the magnitude of the associated elastic material parameters.
It is now interesting that the status of (106) depends on c3 in a similar way

as for (105)2. Once more, small values of c3 correspond to larger values of λ1

for which (106) is violated. We emphasize, however, that if c3 is taken close to
zero, (106) fails instantly for λ1 close to 1 (X̄ ≈ −1) while also the restriction
c3 ≥ 21.75 is not in this case influential. We further observe that for any fixed
value of c3, violation of (106) occurs for values of λ1 closer to 1 than for those
associated with the failure of (105)2 or (105)3. Finally, bearing in mind (90) we
readily deduce that (107) always holds.

Therefore, for a deformation with the considered properties, the inequality
(106) alone is sufficient to asses the failure of ellipticity. In that respect, the
influence of c3 on the onset of loss of strong ellipticity is exemplified in Fig-
ure 3(a) in terms of the coordinate X̄1. It is worth noting that when c3 exceeds
the approximate value 1.785 loss of strong ellipticity is always expected close to
λ1 ≈ 0.75, or, equivalently at X̄1 ≈ −0.481.
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Figure 3. Plots of (a) the dimensionless coordinate X̄1 at which ellipticity is
lost as a function of the dimensionless material parameter c3 and (b) the corre-
sponding value of n2

1 as a function of X̄1.

It is now evident that, in terms of the components of the acoustic tensor,
the onset of failure of ellipticity is strictly associated with breakdown of (100)2.
For the considered strain-energy function this gives explicitly

4c3λ
10
1 n

4
1 +

(
3λ2

1 − 1
) (

2λ6
1 + 2c3λ

4
1 + 9λ2

1 − 5
)
n4

2

+
[
4c3λ

10
1 + 6λ8

1 + (6c3 − 2)λ6
1 − 3 (2c3 + 3)λ4

1 + 6λ2
1 − 1

]
n2

1n
2
2 = 0. (111)

The implications of (111) are illustrated in Figure 3(b) in which n2
1 is plotted

against X̄1 for two distinct values of c3. This then identifies the direction of the
unit vector n for which ellipticity fails. Clearly, decrease in the value of the ratio
c3 induces ellipticity to fail first for X̄1 closer to −1 also corresponding to values
of n1 closer to 1. If c3 exceeds the value 1.785 this fact is only consequential
regarding those solutions of (111) lying close to n1 = 0, in which case the smaller
c3 is the closer to X̄1 = −1 ellipticity fails initially. However, it appears that
this assertion is valid only for a relatively small range of c3 ≥ 1.785 since, as c3
increases, the solutions of (111) in terms of n2

1 tend to stabilize. Specifically, in
the limit n1 → 0, (111) reduces to

¯̄W1
ˆ̂
W22 ≡ 1

8
c255λ

4
2

(
3λ2

1 − 1
) (

2λ6
1 + 2c3λ

4
1 + 9λ2

1 − 5
)

= 0 (112)
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Figure 4. Plots of the dimensionless coordinate X̄1 at which ellipticity is lost as
a function of the dimensionless material parameter c3 for three fixed values of
n1 close to 1.

and hence, for 0 < c3 < 21.75 loss of ellipticity is initiated from λ1 ≈ 0.724

(X̄1 ≈ −0.394) when c3 → 0, and, for c3 ≥ 21.75, from λ1 =
√

3
3 (X̄1 ≈ 0.333)

independently of the value of c3.

At this point, it should be emphasized that the necessary and sufficient
conditions for strong ellipticity to hold given in (105)–(107), and hence their
consequences for the specific class of the strain-energy functions (78), are purely
local. However, for the considered geometry and deformation, if the symmetry is
to be maintained this would suggest that ellipticity should be lost simultaneously
at each point on a surface r = constant. This would imply that n = er. If this is
the case then strongly elliptic modes of bending deformation with the required
symmetry are sustainable if and only if the simple requirements

ˆ̂
W11 > 0, ¯̄W1 + ¯̄W4 > 0 (113)

hold jointly. These conditions actually hold for the particular special model
considered since then we have n2 = 0 in the left-hand side of (111) and c3 > 0.
Accordingly, for the material model examined above we conclude that ellipticity
failure is possible only if the deformation becomes non-symmetric. It is worth
noting, however, that if n is taken to be not strictly radial but very close to
the direction of er, failure of ellipticity can occur. This point is illustrated in
Figure 4 where we plot the solutions X̄1 of (111) against the parameter c3 for
three fixed values of n1 close to 1.
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6 Incompressible materials

For the incompressible theory and with reference to the work of Jiang
and Ogden [8, 9], general forms of strain-energy functions in respect of bend-
ing deformation (under plane strain) for transversely isotropic elastic materi-
als may be identified. For this purpose, we define the strain-energy functions

w̄(I1, I4) = ¯̄W (I1, 1, I4) and ŵ(λ1) =
ˆ̂
W (λ1, λ2), where ¯̄W can, for example, be

one of the functions discussed in Section 4.2 or any other function satisfying the
required conditions.

Here, the equilibrium equation imposes no restriction on the strain-energy
but simply serves to determine the Lagrange multiplier, p say, involved in the
expression

σ = 2w̄1B + 2w̄4m ⊗ m − pI

for the (plane strain) Cauchy stress, where I is the (two-dimensional) identity
tensor.

As a result the specialization (62) discussed in the Section 4.2.1 is now
admissible and may be written as

w̄ = w̄iso(I1) + w̄fib(I4).

This is one possibility within a very wide class of incompressible transversely
materials that may be examined under the considered bending deformation.
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