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Abstract. We discuss a continuum-mechanical formulation and generalization of the Navier–
Stokes-α equation based on a comprehensive framework for fluid-dynamical theories with gra-
dient dependencies (Fried & Gurtin 2006). Our flow equation entails two additional material
length scales: one energetic, the other dissipative. In contrast to Lagrangian averaging, our for-
mulation delivers boundary conditions — involving yet another length scale — and a complete
structure based on thermodynamics applied to an isothermal system.
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1 Background

The Lagrangian averaged Navier–Stokes-α model for (statistically homoge-
neous and isotropic) turbulent flow yields a governing equation for the fluid
velocity v that can be written in the form

ρv̇ = −Grad p+ µ(1 − α2∆)∆v + 2ρα2div
◦

D; (1)

(1) is commonly referred to as the Navier–Stokes-α equation. In this equation:
v is subject to the incompressibility constraint

divv = 0; (2)

v̇ = v′ + (Gradv)v is the material time derivative of v; p is the pressure; ∆ is
the Laplace operator;

D =
1

2
(Gradv + (Gradv)⊤)
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is the stretch-rate;
◦

D = Ḋ + DW − WD, (3)

with

W =
1

2
(Gradv − (Gradv)⊤)

the spin, is the corotational rate of D. The Lagrangian averaged Euler equation,
which is (1) with µ = 0, was first derived by Holm, Marsden & Ratiu (1998a,
1998b). Subsequently, Chen, Foias, Holm, Olson, Titi & Wynne (1998, 1999a,
1999b) added the viscous term to the Lagrangian averaged Euler equation,
giving (1). See also Shkoller (2000) Marsden & Shkoller (2001).

Aside from the density ρ and the shear viscosity µ, the flow equation (1)
involves an additional material parameter α > 0 carrying dimensions of length.
Within the framework of Lagrangian averaging, α is the statistical correlation
length of the excursions taken by a fluid particle away from its phase-averaged
trajectory. More intuitively, α can be interpreted as the characteristic linear
dimension of the smallest eddy that the model is capable of resolving. Like
equations arising from Reynolds averaging, the Navier–Stokes-α equation pro-
vides an approximate model that resolves motions only above some critical scale,
while relying on filtering to approximate effects at smaller scales. In recognition
of this, v might be best viewed as a filtered velocity. A synopsis of properties
and advantages of the Navier–Stokes-α equation is provided by Holm, Jeffrey,
Kurien, Livescu, Taylor & Wingate (2005).

The structure of (1) is formally suggestive of a conservation law expressing
the balance of linear momentum, and one might ask whether there is a com-
plete continuum mechanical framework in which the Navier–Stokes-α equation
is embedded along with suitable boundary conditions. Based on experience with
theories for plates, shells, and other structured media, the presence of a term in-
volving the fourth-order spatial gradient of the velocity indicates that any such
framework should involve a hyperstress in addition to the classical stress. Within
the context of turbulence theory, a hyperstress might be viewed as providing a
means to account for interactions across disparate length scales.

2 Principle of virtual power

To see the need for an additional hyperstress assume an inertial frame, ne-
glect non-inertial body forces, and note first that the weak form of the classical
momentum balance

divT + b = 0, (4)

with inertial force
b = −̺v̇ (5)
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treated for convenience as a body force, has the form

∫

∂R

t(n) · φda+

∫

R

b · φdv

︸ ︷︷ ︸
Wext(R,φ)

=

∫

R

T : Gradφdv

︸ ︷︷ ︸
Wint(R,φ)

, (6)

with
tn = Tn (7)

the classical surface-traction of Cauchy. Granted smoothness (6) holds for all
virtual velocities (i.e., test fields) φ and all control volumes R if and only if
the balance (4) is satisfied at all points in the fluid and the traction condition
(7) is satisfied — for any choice of the unit vector n — at all points in the
fluid. Moreover, the requirement of frame-indifference applied to (6) yields the
symmetry of the stress T.

When φ represents the velocity v of the fluid, the weak balance (6) is a
physical balance

∫

∂R

tn · v da+

∫

R

b · v dv

︸ ︷︷ ︸
Wext(R)

=

∫

R

T : Gradv dv

︸ ︷︷ ︸
Wint(R)

(8)

between:

(i) the external power Wext(R), which represents power expended on R by
tractions acting on ∂R and power expended by the inertial force b;

(ii) the internal power Wint(R), the integrand of which represents the classical
stress power T : Gradv expended within R by the stress field T.

Here and in what follows, we write Wext(R) for the external power associated
with an actual flow and Wext(R,φ) for the (virtual) external power associated
with a virtual velocity field φ.

The balance (6) represents a nonstandard form of the classical principle of
virtual power (Gurtin 2002). This nonstandard form was generalized by Fried &
Gurtin (2006) to develop a gradient theory for liquid flows at small length scales
and, when combined with suitable constitutive relations, results in a partial
differential equation slightly more general than (1) but with the term involving
the corotational rate of D removed. Conventional versions of this principle are
formulated for the fluid region as a whole rather than for control volumes and
as such generally involve particular boundary conditions. Here the principle of
virtual power is used instead as a basic tool in determining the structure of
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the tractions and of the local force balances. Accordingly, conditions on the
external boundary play a role no different from those on the boundary of any
control volume. Basic to this view is the premise, central to all of continuum
mechanics, that any basic law for the body should hold also for all subregions
of the body. On a more pragmatic note, the nonstandard formulation allows for
the derivation of the associated angular momentum balance.

To capture the internal power associated with the formation of eddies during
turbulent flow we generalize the classical theory by including in the internal
power a term linear in the vorticity gradient Gradω = Grad curlv. Specifically,
we introduce a second-order tensor-valued hyperstress G via an internal power
expenditure of the form G : Gradω and rewrite the power expended within R
in the form

Wint(R) =

∫

R

(
T : Gradv + G : Gradω

)
dv. (9)

In conjunction with the internal power expenditure (9), we introduce a cor-
responding external power expenditure

Wext(R) =

∫

S

(
tS · v + mS · ∂v

∂n

)
da+

∫

R

b · v dv, (10)

in which tS and mS represent tractions on the bounding surface S = ∂R of R,
while b represents the inertial body force (5). Here the term

mS · ∂v
∂n

, (11)

which is not present in classical theories, is needed to balance the effects of the
internal-power term G : Gradω, which involves the second gradient of v.

The principle of virtual power replaces v by φ and (hence) ω by curlφ and
is based on the requirement that the internal and external power expenditures
be equal:
∫

S

(
tS · v + mS · ∂v

∂n

)
da+

∫

R

b · v dv

︸ ︷︷ ︸
Wext(R)

=

∫

R

(
T : Gradv + G : Gradω

)
dv

︸ ︷︷ ︸
Wint(R)

(12)

for all control volumes R and any choice of the virtual velocity field φ.

3 Local balance law for linear momentum.
Traction conditions

Consequences of the virtual power principle and the requirement that the
internal power expenditure be frame-indifferent are that:
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(i) The classical macroscopic balance ρv̇ = divT must be replaced by the
balance

ρv̇ = divT + curldivG, (13)

with T symmetric as in the classical theory.

(ii) Cauchy’s classical condition tn = Tn for the traction across a surface S
with unit normal n must be replaced by the conditions

tS = Tn + divS(Gn×) + n × (divG − 2KGn),

mS = n × Gn,

}
(14)

in which divS is the divergence operator on S and K is the mean curvature
of S.1 Thus, interestingly, the traction tS depends on the mean curvature;
in fact, the term divS(Gn×) results in a dependence on the curvature
tensor −GradS n.

The balance (13) and the traction conditions (14) are special cases of equa-
tions (5.11) and (5.12) of Fried & Gurtin (2006), whose theory replaces curlω in
the internal power with the full second gradient Grad2 v and G by an analogous
third-order hyperstress.2

4 Energetics

We restrict attention to a purely mechanical theory based on the requirement
that the temporal increase in free energy of an arbitrary region that convects
with the body R(t) be less than or equal to the power expended on that region.
Precisely, letting ψ denote the specific free energy, this requirement takes the
form of a free energy imbalance

d

dt

∫

R(t)

ρψ dv ≤ Wext(R(t)). (15)

The imbalance (15) is consistent with standard continuum thermodynamics
based on balance of energy and an entropy imbalance (the Clausius–Duhem

1Within the framework of finite deformations of an elastic solid with couple-stress, the
balance (13) was first derived by the Cosserats (1909); see, also, Toupin (1962, 1964), Mindlin
& Tiersten (1962), and Green & Naghdi (1968). The traction conditions (14) are special cases
of traction conditions derived variationally by Toupin (1962, 1964) for the boundary of the
elastic solid.

2Cf. Bluestein & Green (1967), who discuss second-gradient fluids based on the multipolar
theory of second-gradient materials due to Green & Rivlin (1964). This theory results in redun-
dant boundary conditions, which Bluestein & Green (1967) reduce using ad hoc arguments.
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inequality), when that imbalance is restricted appropriately to isothermal pro-
cesses.

Balance of mass implies that

d

dt

∫

R(t)
ρψ dv =

∫

R(t)
ρψ̇ dv;

since Wext(R(t)) = Wint(R(t)), we may therefore use the expression (9) for the
internal power Wint(R(t)) in conjunction with the symmetry of T to localize
(15); the result is the local free energy imbalance

ρψ̇ − T :D − G : Gradω ≤ 0, (16)

where D = 1
2(Gradv + (Gradv)⊤) is the stretching.

5 Simple constitutive equations

We assume that the fluid is incompressible, so that

ρ = constant and divv = trD = 0. (17)

Without loss in generality, we may then suppose that

T = S − p1, trS = 0, (18)

where the pressure p is a constitutively indeterminate field that does not affect
the internal power (9); the field S represents the extra stress. Then, by (17)2,

T :D = S :D, (19)

and the local free-energy imbalance (16) reduces to

S :D + G : Gradω − ρψ̇ ≥ 0. (20)

Guided by the presence of the term involving the corotational rate
◦

D =
Ḋ + DW − WD of the stretching tensor D in the Navier–Stokes-α equation
(1), we suppose that the specific free energy ψ and the extra stress S are given
by constitutive equations of the form

ψ = α2|D|2 and S = 2µD + 2ρα2
◦

D, (21)



On a continuum-mechanical theory for turbulence 113

with α and µ constant. Further, based on a result of Mindlin & Tiersten (1962)
for an elastic solid, we assume that the hyperstress is given by a constitutive
equation of the form3

G = µβ2(Gradω + γ(Gradω)⊤), (22)

with β > 0 and γ constant. With the choices (21) and (22), the dissipation
inequality (20) holds if and only if

µ ≥ 0 and |γ| ≤ 1. (23)

Whereas µ is the conventional shear viscosity, the constitutive parameters
α and β carries dimensions of length. Whereas α is related to the specific free
energy and, therefore, nondissipative contribution to the extra stress, β is asso-
ciated with the wholly dissipative hyperstress. To ensure that the specific free
energy has a strict minimum when D = 0 we assume that

α > 0; (24)

to ensure that the hyperstress is nontrivial when Gradω 6= 0, we assume that

β > 0. (25)

When discussing turbulence, it is common to divide the range of eddy scales
into mutually disjoint integral, inertial, and dissipative subranges (Richardson
1922; Kolmogorov 1941a-c, 1962; Pope 2000). The integral scales are the largest
and are associated with external driving forces. The dissipative scales are the
smallest and are associated with the conversion of kinetic energy into heat. The
intermediate, inertial, scales are thought to be dissipationless. We expect that
the energetic length α should in some way characterize eddy scales within the
inertial subrange. Further, we expect that β should characterize eddy scales
within the dissipative subrange.

Using (21) and (22) in (13) and bearing in mind that the moduli µ, α, β,
and γ are assumed to be constant, we arrive at the flow equation

ρv̇ = −Grad p+ µ(1 − β2∆)∆v + 2ρα2div
◦

D, (26)

which, for the particular choice

β = α (27)

3These choices are familiar from the theory of Rivlin–Ericksen fluids; cf. Rivlin & Ericksen,
1955; Truesdell & Noll, 1965, §119; Dunn & Fosdick, 1974.
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specializes to the Navier–Stokes-α equation (1). In view of the foregoing dis-
cussion, the choice (27) embodies a questionable assumption concerning the
relationship between the scales of inertial and dissipative eddies.

Interestingly, the material parameter γ, which is dimensionless, does not
enter the flow equation (26). However, as is clear from (14)2 and (22), γ would
generally be present in any boundary condition in which the hypertraction is
prescribed.4

6 Boundary conditions

We develop counterparts of the classical notions of a free surface and a
fixed surface without slip. Our results hinge on rewriting the external power
expenditure (10) for the entire fluid body B and focusing on that portion of
this expenditure associated with tractions. In this regard, we derive boundary
force and moment balances

tS = tenv
∂B + 2σKn and mS = menv

∂B (28)

giving the tractions tS and mS in terms of their environmental counterparts tenv
∂B

and menv
∂B , and use these balances to express the power expended by tractions

in the form ∫

∂B

(
(tenv

∂B + 2σKn) · v + menv
∂B · P ∂v

∂n

)
da, (29)

where P = 1 − n ⊗ n. We assume that the mean curvature K of — and the
surface tension σ at — the boundary ∂B are known; (29) then suggests that
reasonable boundary conditions might, at each point of ∂B, consist of

(i) a prescription of tenv
∂B or v, or a relation between tenv

∂B and v; and

(ii) a prescription of menv
∂B or P∂v/∂n, or a relation between menv

∂B and P∂v/∂n.

Consistent with this, we consider specific boundary conditions in which a portion
Sfree of ∂B is a free surface and the remainder Snslp is a fixed surface without
slip. On Sfree, the environmental tractions tenv

∂B and menv
∂B vanish and the classical

condition Tn = σKn is replaced by the conditions

Tn + divS(Gn×) = σKn and n × Gn = 0. (30)

To describe the conditions on Snslp, we first note that, if v = 0 on Snslp, then

P
∂v

∂n
= ω × n (31)

4See, in particular, the condition (33).
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with ω = curlv the vorticity. Based on this identity, we take, as boundary
condition on Snslp, the classical condition

v = 0 (32)

supplemented by a condition of the form

n × Gn = menv
∂B (33)

with menv
∂B = µℓP∂v/∂n = µℓω× n, where ℓ carries dimensions of length. Thus

we are led to the boundary condition

n × (Gn + µℓω) = 0. (34)

We refer to (34) as the wall-eddy condition and to ℓ as the wall-eddy modulus.

7 Free energy imbalance, dissipation,
and the sign of the wall-eddy modulus

Recently (Fried & Gurtin 2006), we provided a general discussion of the use
of an energy imbalance for a boundary pillbox to develop constitutive relations
describing the interaction of the fluid and its environment. We here sketch the
corresponding analysis, but only as it applies to the boundary conditions (32)
and (34). Let S denote a fixed (i.e. time-independent) subsurface of Snslp with S
viewed as a fixed boundary pillbox of infinitesimal thickness involving (Figure 1):

• a surface S with unit normal n; S is viewed as lying in the environment
at the interface of the fluid and the environment;

• a surface −S with unit normal −n; −S is viewed as lying in the fluid
adjacent to the boundary;

Let ψx denote the excess free energy of the fluid at the surface Snslp, mea-
sured per unit area, so that ∫

S

ψx da

represents the net free energy of the pillbox. In the definition (10) of the external
power the quantity Wsurf(S) defined by

Wsurf(S) =

∫

S

(
tS · v + mS · ∂v

∂n

)
da (35)
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Figure 1. Pillbox corresponding to a subsurface S of the boundary ∂B of the
region B of space occupied by the body. Only a portion of ∂B is depicted.
Whereas n is oriented into the environment, −n is oriented into the fluid. The
outward unit normal on the lateral face ∂S of the pillbox is denoted by ν.

represents the power expended on the boundary of a control volume. However,
because the tractions are local, this definition is also meaningful for an arbitrary
surface S with orientation n. In this instance Wsurf(S) represents the power
expended by the material on the plus side of S on the material on the minus
side of S. Then, since −S has curvature tensor −K, we see that, by (14),5

tS = −t−S, mS = m−S. (36)

Moreover, by (36) (and since ∂v/∂n = n · Gradv), we have the power balance

Wsurf(S) = −Wsurf(−S). (37)

Since v = 0, it is then clear from (31) that

Wsurf(−S) = −
∫

S

mS · ∂v
∂n

da = −
∫

S

mS · (ω × n) da (38)

represents the power expended by the fluid on the pillbox surface −S. We assume
that the power expended by the environment on the pillbox surface S vanishes
and hence that the environment is passive.6 The power expended by the fluid on
the lateral face of the pillbox by surface tension vanishes, because the boundary
curve ∂S is stationary. Thus since

menv
∂B = µℓω × n (39)

5Importantly, (36) represents an action-reaction principle for oppositely oriented surfaces
that touch and are tangent at a point.

6One might wonder how an environment with menv
∂B 6= 0 can be passive. Because Snslp abuts

a motionless, nondeformable environment, the environmental tractions tenv
∂B and menv

∂B must be
indeterminate and hence incapable of expending power.
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the net power expended on the pillbox is given by

−
∫

S

mS · (ω × n) da = −
∫

S

menv
∂B · (ω × n) da. (40)

Consider the quantity D(S) defined by

d

dt

∫

S

ψx da

︸ ︷︷ ︸
free energy rate

−
∫

S

(
− menv

∂B · (ω × n)
)
da

︸ ︷︷ ︸
power expenditure

= −D(S). (41)

Were we to parallel the development in bulk with the requirement that the
temporal increase in free energy of S be less than or equal to the power expended
on S, then D(S) ≥ 0 would represent the energy dissipated within the pillbox.
Assuming that ψx is constant and recalling that S is fixed, so that

d

dt

∫

S

ψx da = 0,

we would find, as a consequence of (41), that

D(S) = −
∫

S

menv
∂B · (ω × n) da ≥ 0.

Thus
−menv

∂B · (ω × n) (42)

would represent the dissipation per unit area, so that, by (39),

−
∫

S

µℓ|ω × n|2 da ≥ 0. (43)

Thus, since S was arbitrarily chosen, we would conclude that

ℓ ≤ 0. (44)

However, as we show elsewhere (Fried & Gurtin 2007), for flow in a channel
with the boundary conditions (32) and (34), our theory with ℓ ≤ 0 delivers
solutions that agree neither quantitatively nor qualitatively when compared to
the direct numerical simulations of Kim, Moin & Moser (1987) and Moser, Kim
& Mansour (1999) and the experimental results of Wei & Wilmarth (1989); on
the other hand there is excellent agreement when

ℓ > 0. (45)

Interestingly, such values of ℓ imply that µℓ |n × ω|2 — a term which would
usually be termed dissipative — is negative!7

7Cf. the sentence containing (43).
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This observation renders the theory with ℓ > 0 incompatible with thermody-
namics as embodied in a free energy imbalance. While we know of no successful
continuum mechanical theory for which experiments yield moduli of signs oppo-
site to those imposed by thermodynamics, one might argue that continuum ther-
modynamics is inapplicable to a discussion of turbulence when applied at a fixed
boundary without slip. Moreover, turbulent eddies generated at such boundaries
might render the state of the fluid there sufficiently far removed from equilib-
rium that standard continuum thermodynamical laws might no longer be valid.
In this regard it is interesting to note that the free energy imbalance applied
in bulk delivers moduli of signs consistent with those of the Navier–Stokes–α
equation.
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[6] J. E. Dunn & R. L. Fosdick: Thermodynamics, stability, and boundedness of fluids of
complexity 2 and fluids of second grade, Arch. Rat. Mech. Anal., 56, (1974), 191–252.

[7] E. Fried & M. E. Gurtin: Tractions, balances, and boundary conditions for nonsimple
materials with application to liquid flow at small length scales, Arch. Rat. Mech. Anal.,
182 (2006), 513–554.

[8] E. Fried & M. E. Gurtin: Cosserat fluids and the continuum mechanics of turbulence: a
generalized Navier–Stokes-α equation with complete boundary conditions, Theoret. Com-
put. Fluid Dyn., (2007), submitted.

[9] A. E. Green & R. S. Rivlin: Simple force and stress multipoles, Arch. Rat. Mech. Anal.,
16, (1964), 325–353.

[10] A. E. Green & P. M. Naghdi: A note on simple dipolar stresses, J. Mécanique, 7,
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