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1 Introduction

In connection with the stability and instability properties of the zero so-
lution of a pair of nonlinear, reaction-diffusion p.d.e.s, subject to appropriate
boundary conditions, Rionero has, in a sequence of papers (see [1–3]), used a
peculiar Lyapunov functional. The pivotal, or central, theorem expresses the
time-derivative of the functional, along the solutions, in a particularly revealing
manner: the time derivative is linked to the eigenvalues of a pair of o.d.e.s in an
interesting manner.

Both the functional and its time-derivative in the aforesaid pivotal theorem
involve (space) integrals of the dependent variables. The pivotal theorem of the
present paper exhibits an analogous functional with analogous properties; both
the functional and its time-derivative involve integrals of the gradients of the
dependent variables. The pivotal theorem of this paper is deduced from that of
Rionero by means of a lemma which is dealt with in Section 2.

Section 3 gives the two pivotal theorems as aforesaid, and discusses impor-
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tant similarities between the two results, in so far as they bear upon stability
considerations for the reaction-diffusion system in question.

By way of application, an equilibrium solution of the Lotka-Volterra reaction
diffusion system is considered—for simplicity, in one spatial dimension—and an
L2 stability estimate is obtained for the gradient of the perturbation. As a by-
product, one may deduce a pointwise stability estimate.

2 Basic equations and a useful lemma

Consider smooth solutions of the reaction-diffusion system, in the fixed spa-
tial domain Ω (where indicial notation is used, including the summation con-
vention, the indices taking the values 1,2 in the context of the present paper)

∂ui

∂t
= aijuj + γij∇2uj + Fi(u1, u2) (1)

subject to

ui = 0 on ∂Ω , (2)

where ∂Ω is the smooth boundary of Ω. Moreover aij ,γij are constants and Fi

are smooth functions of ui such that

Fi(0, 0) = 0 . (3)

The latter condition ensures that ui = 0 is a solution to the system.

The lemma that follows exhibits a useful connection between functionals
defined along the solutions of (1), (2). The functionals are defined as follows:






V (t) =
1

2

∫

Ω
Rij ui uj dΩ ,

V (t) =
1

2

∫

Ω
Rij ∇ui · ∇uj dΩ ,

V (t) =
1

2

∫

Ω
Rij∇2ui ∇2uj dΩ ,

(4)

where Rij are constants (such that Rij = Rji w.l.o.g.). Differentiating V (t),

V (t), V (t) with respect to t (the time variable), using the divergence theorem
together with (1)–(3), gives the following lemma:

1 Lemma. The time derivatives of the functionals defined in (4) along the
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solutions of the system defined by (1)–(3), are given by:





(a) V ′(t) =

∫

Ω
Rij [aikujuk − γik∇uj · ∇uk + Fiuj ] dΩ ,

(b) V
′
(t) =

∫

Ω
Rij

[
aik∇uj · ∇uk − γik∇2uj∇2uk + ∇Fi · ∇uj

]
dΩ ,

(c) V
′
(t) =

∫

Ω
Rij

[
aik∇2uj∇2uk − γik∇(∇2uj) · ∇(∇2uk) + ∇2Fi∇2uj

]
dΩ

(5)
provided that, in the case (c), the determinant of coefficients γij is non-zero,

e.g. the quantity V
′
(t) is formally the same as V (t), with the following changes:

ui, ∇ui, Fi are replaced by ∇ui, ∇2ui, ∇Fi respectively, and appropriate prod-
ucts replace those arising in V ′(t).

Whereas the derivation of (c) is similar to that of (a), (b), it also entails
establishing that the Laplacian of ui vanishes on ∂Ω.

3 The fundamental theorem and a discussion thereof

In the remainder of the article we confine attention to the case of no cross-
diffusion

γ12 = γ21 = 0 , (6)

and for convenience write

γ11 = γ1, γ22 = γ2 , (7)

both assumed positive. It proves convenient to introduce the positive scaling
constants α, β, which may be chosen subsequently, and new dependent variables
u,v such that

u1 = αu , u2 = βv . (8)

Further write

f(u, v) = α−1F1(u, v), g(u, v) = β−1F2(u, v) (9)

where the foregoing F1(u, v), F2(u, v) mean F1(u1, u2), F2(u1, u2) expressed in
terms of the new variables u and v. Define the constants

b1 = a11 − αγ1, b4 = a22 − αγ2,

b2 = (β/α)a12, b3 = (α/β)a21,
(10)

where α is a positive constant, yet to be chosen.
We shall denote by < ·, · > the L2 scalar product, || · || the L2 norm, for

scalar and vector functions as appropriate.
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Rionero (see [1–3]) proved (though using a slightly different notation) that
the functional, defined along the solutions,

V (t) =
1

2

[
A
(
‖u‖2 + ‖v‖2

)
+ ‖b1v − b3u‖2 + ‖b2v − b4u‖2

]
, (11)

wherein
A = b1b4 − b2b3 = b1b4 − a12a21, I = b1 + b4, (12)

satisfies
dV

dt
= AI

(
‖u‖2 + ‖v‖2

)
+ Ψ∗ + Ψ, (13)

where

Ψ∗ = γ1α1

[
−‖∇u‖2 + α ‖u‖2

]
+ γ2α2

[
−‖∇v‖2 + α ‖v‖2

]

+ (γ1 + γ2)α3 [〈∇u,∇v〉 − α 〈u, v〉] , (14)

Ψ = 〈α1u− α3v, f〉 + 〈α2v − α3u, g〉 , (15)

wherein

α1 = A+ b23 + b24, α2 = A+ b21 + b22, α3 = b1b3 + b2b4. (16)

2 Remark. As pointed out by Rionero (op. cit.), the eigenvalues λ1,λ2 of
the binary system of o.d.e.s

dξ

dt
= b1ξ + a2η ,

dη

dt
= a3ξ + b4η

(17)

are given by

λ1,2 =
I ±

√
I2 − 4A

2
, (18)

where I,A, defined by (12), are such that

I = λ1 + λ2 ,

A = λ1λ2 .
(19)

Moreover, Rionero discussed interesting connections between the stability and
instability of the zero solution of the system of o.d.e.s (17) and the stability and
instability of the reaction-diffusion system considered in this section. To this
end, he uses the result (13) etc.

We now cite the fundamental theorem of the present paper: it follows from
Lemma 1 and the result (11)–(16), or it can, of course, be proved directly (al-
though the proof is lengthy).
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3 Theorem. Defining

V (t) =
1

2

[
A
(
‖∇u‖2 + ‖∇v‖2

)
+ ‖b1∇v − b3∇u‖2

+ ‖b2∇v − b4∇u‖2
]
, (20)

along the solutions, one has

dV

dt
= AI

(
‖∇u‖2 + ‖∇v‖2

)
+ Ψ

∗
+ Ψ, (21)

where

Ψ
∗

= γ1α1

[
−
∥∥∇2u

∥∥2
+ α ‖∇u‖2

]
+ γ2α2

[
−
∥∥∇2v

∥∥2
+ α ‖∇v‖2

]

+ (γ1 + γ2)α3

[〈
∇2u,∇2v

〉
− α 〈∇u,∇v〉

]
, (22)

Ψ = 〈α1∇u− α3∇v,∇f〉 + 〈α2∇v − α3∇u,∇g〉
= 〈α1∇u− α3∇v, fu∇u+ fv∇v〉

+ 〈α2∇v − α3∇u, gu∇u+ gv∇v〉 (23)

where A, I, α are defined by (12), (16) and where the subscripts u and v denote
the partial differentiation with respect to these variables.

The main application of Theorem 3, dealt with in this paper, is to the
derivation of stability estimates for V (t) in the context of a reaction-diffusion
system.Rionero (op.cit.) uses the results (11)–(16) to obtain, inter alia, stability
criteria for the reaction-diffusion system defined by (1)–(3), (6): stability is
established (for the zero solution) in the measure V (t). We now make some
remarks concerning the means by which stability may be established in the
measure V (t) analogous to those obtained by Rionero.

4 Remark. In the context of (11)–(16), Rionero chooses the constant α to
be the best (least, positive) number for which the inequality

‖∇Φ‖2 ≥ α ‖Φ‖2 (24)

is valid (essentially) for arbitrary smooth functions Φ such that

Φ = 0 on ∂V ; (25)

i.e. the lowest eigenvalue of the eigenvalue problem defined by

∇2Φ + λΦ = 0, in V, Φ = 0 on ∂V (26)
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etc. Similarly the most appropriate value for α in the context of Theorem 3 is
adjudged to be the best (least, positive) number α for which the inequality

∥∥∇2Φ
∥∥2 ≥ α ‖∇Φ‖2 (27)

for arbitrary smooth functions such that (25) holds. The best number α in this
case is the same eigenvalue as before (i.e. the lowest eigenvalue of (26) e.g. [4]).
This value of α is assumed henceforward.

5 Remark. When considering stability, Rionero (e.g. [3]) essentially re-
quires that V be positive-definite in u, v. Similarly when Theorem 1 is used
for stability V , defined by (20), is required to be positive-definite in u, v. A
sufficient condition for positive-definiteness in both cases is

A > 0; i.e. b1b4 − a12a21 > 0 (28)

The condition (28) is assumed henceforward.

Again for stability (in the measures V , V respectively) one requires

dV

dt
≤ 0 or

dV

dt
≤ 0 , (29)

as appropriate. In the absence of nonlinear source/forcing terms F1, F2 (or f ,
g), sufficient conditions, in addition to (28), are given by

I < 0; i.e. b1 + b4 < 0 (30)

together with

Ψ∗ ≤ 0 or Ψ
∗ ≤ 0 (31)

as appropriate.

6 Remark. Rionero [3] obtains conditions on data in order that (31)1 be
valid, and it is the purpose of this remark to point out that the aforementioned
conditions are also sufficient for the validity of (31)2.

Rionero [3] requires Ψ∗ ≤ 0 for all kinematically admissible values of u,v
[(essentially) all smooth functions vanishing on the boundary]: such conditions
on data (b., a., γ.) are derived using the variational characterization (24)–(25)
together with algebraic considerations. In view of the variational characteriza-
tion (27),(25) it follows that Rionero’s conditions on data, as aforementioned,
sufficient for the validity of (31)1, are also sufficient for the validity of (31)2.

An example of such conditions (e.g. [3]) is:

b1b4b2b3 < 0 (32)
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in which case the scaling constants α, β (defined by (8)) are chosen such that

α

β
=

∣∣∣∣
b2b4
b1b3

∣∣∣∣

1
2

(33)

ensuring that
α3 = 0 (34)

i.e. the conditions (32),(33) imply (31)2.
This may, of course, easily be proved directly.

7 Remark. Rionero [3] obtains conditions on the forcing terms f , g such
that

|Ψ| ≤ δV 1+k (35)

δ, k being positive constants, leading to a differential inequality for V (on using
(11)–(16), (31)1 etc.) that implies conditional, exponential asymptotic stability,
in the measure V , of the reaction-diffusion system considered here. A similar
approach is used hereunder, in the context of a Lotka-Volterra reaction-diffusion
system, with Dirichlet boundary conditions, in one spatial dimension: a stability
estimate is established in the measure V from which a pointwise estimate may
be deduced.

4 A Lotka-Volterra system: stability estimates
for the solution gradient

Here we consider a Lotka-Volterra system of reaction-diffusion equations in
one spatial dimension, with Dirichlet boundary conditions: Theorem 3 is used to
obtain a stability estimate in the measure V , for an equilibrium configuration,
from which a pointwise stability estimate may be deduced.

We discuss the Lotka-Volterra system (discussed in [5], for example).

∂S1

∂t
= γ1S1,xx + a1S1 − c1S1S2 ,

∂S2

∂t
= γ2S2,xx − a2S2 + c2S1S2,

(36)

where γ., a., c. are all positive constants, in the interval 0 < x < 1 (the symbol x
is used, instead of x1, as the spatial variable, and subscripts in x denote partial
differentiation with respect to x). We consider the equilibrium configuration of
(36), in the presence of constant boundary conditions:

S1 =
a2

c2
, S2 =

a1

c1
. (37)
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We write

S1 =

(
a2

c2

)
+ u1, S2 =

(
a1

c1

)
+ u2 , (38)

where the perturbations u1(x, t), u2(x, t) satisfy (in the interval 0 < x < 1)

∂u1

∂t
= γ1u1,xx − c1

(
a2

c2

)
u2 − c1u1u2 ,

∂u2

∂t
= γ2u2,xx + c2

(
a1

c1

)
u1 + c2u1u2,

(39)

subject to
u = 0 on x = 0, 1. (40)

The equations (39) are of the type (1) with

F1 = −c1u1u2 , F2 = c2u1u2 . (41)

We use scaled variables (see (8)) and in the context of these we have

f = −c1βuv , g = c2αuv , (42)

and

b1 = −π2γ1, b2 =

(
β

α

)(
−c1a2

c2

)
, b3 =

(
α

β

)(
a1c2
c1

)
, b4 = −π2γ2 , (43)

on noting that the relevant eigenvalue in this case is π2.
Prior to using Theorem 3 we note that the condition (32) is automatically

satisfied here. Thus we choose α
β in accordance with (33) in which case α3 = 0.

Using Theorem 3 in the context described above, we obtain the following: the
measure of the perturbation u,v

V (t) =
1

2

[
A
(
‖ux‖2 + ‖vx‖2

)
+ ‖b1vx − b3ux‖2 + ‖b2vx − b4ux‖2

]
, (44)

satisfies, in view of Remark 6,

dV

dt
≤ AI

(
‖ux‖2 + ‖vx‖2

)
+ Ψ, (45)

where Ψ is given by

Ψ =

∫ 1

0

[
−α1c1βvu

2
x + α2c2αuv

2
x + (−α1c1βu+ α2c2αv)uxvx

]
dx

≤M

∫ 1

0
(|u| + |v|)

(
u2

x + v2
x + |uxvx|

)
dx

≤ 3

2
M

∫ 1

0
(|u| + |v|)

(
u2

x + v2
x

)
dx (46)
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where

M = max [c1α1β, c2α2α] . (47)

The following fundamental inequality (e.g. [6]) is used hereunder:

|Φ(x)|2 ≤ x(1 − x) ‖Φx‖2 , (48)

or the weaker version thereof,

|Φ(x)| ≤ 1

2
‖Φx‖ , (49)

where Φ is any smooth function vanishing at x = 0, 1. Using (49) we obtain

∫ 1

0
(|u| + |v|)

(
u2

x + v2
x

)
dx

≤ 1

2
(‖ux‖ + ‖vx‖)

(
‖ux‖2 + ‖vx‖2

)

≤ 2−
1
2

(
‖ux‖2 + ‖vx‖2

) 3
2
. (50)

This together with (46) gives

Ψ ≤ δ1

(
‖ux‖2 + ‖vx‖2

) 3
2

(51)

where

δ1 = 3 · 2− 3
2M . (52)

It follows from (44) etc. (e.g. [3]) that

k1

(
‖ux‖2 + ‖vx‖2

)
≤ V ≤ k2

(
‖ux‖2 + ‖vx‖2

)
(53)

where

k1 =
A

2
; k2 =

A

2
+

4∑

i=1

b2i . (54)

Thus, using (44)–(45),(51),(53)–(54), we obtain the differential inequality

dV

dt
≤ −dV + d1V

3
2 (55)

where

d =
A|I|
k2

; d1 =
δ1

k
(3/2)
1

. (56)



104 J. N. Flavin, S. Rionero

It may be noted, en passant, that

A|I| = (π4γ1γ2 + a1a2)π
4γ1γ2 (57)

using (12) etc.

From (55) we obtain the following (e.g. [7]). Supposing that the initial per-
turbation (assumed known) is such that

{
V (0)

} 1
2 ≤ d

d1
, (58)

then
dV

dt
≤ −ηV (59)

where

η = α
[
1 − d1d

−1
{
V (0)

} 1
2

]
, (60)

whence

V (t) ≤ V (0)e−ηt (61)

A pointwise estimate follows from this on using (48), (61):

{u(x, t)}2 + {v(x, t)}2 ≤ x(1 − x)k−1
1 V (0)e−ηt . (62)

8 Theorem. The equilibrium configuration (37) of the Lotka-Volterra sys-
tem (36) etc. is conditionally exponentially stable

(a) in the measure V , as conveyed by (58), (60), (61);

(b) pointwise, as conveyed by (62) etc.

9 Remark. It should be emphasized that pointwise stability estimates (in
one dimension) are also obtainable by these methods for a large class of reaction-
diffusion systems of the type (1)–(2), (6)–(7).

10 Remark. It will be noted that the system (36) also admits an equilib-
rium configuration S1 = S2 = 0 (in the presence of constant boundary condi-
tions). Stability estimates, analogous to those of Theorem 8, can be obtained in
a similar manner, subject to the restriction, essentially following from (30),

π2γ1 − a1 > 0 . (63)

This condition is consistent with the fact that the equilibrium in question is
known to be unstable in the absence of diffusion.
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11 Remark. A similar approach may be used to obtain similar stability

estimates for V (t) in any number of spatial dimensions. Pointwise stability es-
timates may be deduced using a Sobolev inequality of the type

|Φ(x)| ≤ K
∥∥∇2Φ

∥∥ , (64)

where K is a constant, e.g. [6].

12 Remark. Many issues cognate to those discussed in this paper may be
found in [8] and in the many references therein.
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