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Abstract. We consider the effect of a linear constraint on the small oscillations about
an equilibrium position of a conservative dynamical system which has just three degrees of
freedom. Explicit expressions are presented for the eigenfrequencies and eigenvectors of the
constrained system in terms of the eigenfrequencies and eigenvectors of the unconstrained
system. The unconstrained system is described in terms of two positive definite 3× 3 matrices
with which two concentric ellipsoids may be associated. A ‘plane’ corresponds to the linear
constraint. It is seen that in general it is possible to choose two constraints such that the
constrained motion has a double eigenfrequency, or equivalently, two central planes may be
chosen which cut the two concentric ellipsoids in a pair of similar and similarly situated ellipses.
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1 Introduction

In this note we consider the small oscillations about an equilibrium position
of a conservative dynamical system. It is assumed that the system has three
degrees of freedom and that its eigenfrequencies and eigenvectors are known. It
is then assumed that this system is subject to a linear constraint, described in
terms of a vector n. The eigenfrequencies and eigenvectors for the constraint
system are written down explicitly in terms of n. It is shown that in general
there are two choices of the linear constraint, i.e. of n, which ensure that the
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constrained system has a double eigenfrequency and consequently the corre-
sponding eigenvectors are such that the motion may be, loosely speaking, either
linearly or circularly or elliptically polarized. We here choose the same approach
as in (Synge [2, p. 183]). This approach, using an undetermined multiplier as
in the case of a non-holonomic constraint, is appropriate for obtaining simply
results in terms of the vector n, and in bringing out the role of the special
directions n leading to a double eigenfrequency.

In the description of the motion of a system with three degrees of freedom
two 3 × 3 positive definite symmetric matrices play a fundamental role. One
may associate ellipsoids with these matrices. For the constrained motion two
ellipses - the two coplanar central sections of the ellipsoids by the plane with
normal n play the fundamental role. What determines whether or not there is
a double eigenfrequency is whether these ellipses have an infinity of pairs of
common conjugate directions or just one such pair, equivalently, whether these
ellipses are similar and similarly situated or not. In general there are two planes
which cut a pair of concentric ellipsoids in a pair of similar (same aspect ratio)
and similarly situated (same direction of the major axis) ellipses [1].

There is a possible hint of these results in Synge [2]. After equation (102.10)
p. 184, Synge says: “Degeneracy may be produced by constraint; in geometrical
language an ellipsoid possesses circular sections”. By ‘degeneracy’ he means here
the coincidence of eigenfrequencies. But, we are not aware of any explicit results
such as we present here.

In §2, the basic equations and orthogonality relations are set out. Then in
§3 we give the ‘Fresnel form’ of the secular equation, using a result of Dar-
boux for bordered determinants. Next (§4) explicit expressions are given for the
eigenvectors and eigenfrequencies. Finally (§5) we present some examples.

2 Secular Equation and Orthogonality Relations

Consider the small oscillations about an equilibrium position of a conser-
vative dynamical system with three degrees of freedom. Let the system be de-
scribed by three generalized coordinates xi, (i = 1, 2, 3), and let xi = 0 be the
equilibrium position. For small oscillations about xi = 0, the kinetic energy T
and the potential energy V are written, at the quadratic approximation, as

T =
1

2
aij ẋ

iẋj , V =
1

2
vijx

ixj , (1)

where A = (aij) and V = (vij) are constant positive definite symmetric 3 × 3
matrices. The Lagrange equations governing the small oscillations are

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0 , (i = 1, 2, 3) , (2)
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where L = T − V . These read

Aẍ + Vx = 0 . (3)

Seeking solutions in the form

x = Re{reiωt} , (4)

where ω is a real constant (the angular frequency), and r is a complex vector
(a bivector), equations (2) give the eigenvalue problem

(V − ω2A)r = 0 , (vij − ω2aij)r
j = 0 , (5)

and hence the frequency equation

det(V − ω2A) = 0 . (6)

This is a cubic in ω2, with roots ω2
i (say) which we order ω2

1 ≥ ω2
2 ≥ ω2

3 > 0,
and the corresponding eigenvectors are ri (say), so that the general solution of
(3) is of the form

x = Re{α1r1e
iω1t + α2r2e

iω2t + α3r3e
iω3t} , (7)

where αi are three arbitrary complex constants.
Also, recall that

ri · Arj = ri · Vrj = 0 , (i 6= j) . (8)

Suppose now that the system is subjected to a time independent constraint,
compatible with the equilibrium position xi = 0, so that, at the linear approxi-
mation used for small oscillations, this constraint may be written

n · x = 0 , nix
i = 0 , (9)

where ni are constants. We may assume n · n = 1 without loss in generality.
As stated in (Synge [2, p. 183]), (9) “may be thought of as arising from any
constraint which is independent of time; it may even be non-holonomic, there
being no distinction in a linear approximation between holonomic and non-
holonomic”. The equations describing the motion of the constrained system
may be written

Aẍ + Vx = µn , aij ẍ
j + vijx

j = µni , (10)

where µ is an undetermined multiplier. To find the normal modes of vibration,
we now write

x = Re{reiωt} , µ = Re{λeiωt} , (11)
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where r and λ are constant (possibly complex). Then, from (9) and (10), we
obtain

(V − ω2A)r = λn , n · r = 0 . (12)

Let

Π = 1 − n ⊗ n , Πij = δij − ninj , (13)

be the projection tensor onto the plane n · x = 0 orthogonal to n. Then, Πr =
r , Πn = 0 and equations (12) give

(ΠVΠ − ω2ΠAΠ)r = 0 , n · r = 0 . (14)

Thus, in the plane n · x = 0, the solutions for r are the eigenvectors (or eigen-
bivectors) of ΠVΠ with respect to ΠAΠ corresponding to the eigenvalues ω2.

Because (ΠVΠ−ω2ΠAΠ)n = 0, the condition for (14) to have non trivial
solutions for r is that the matrix (ΠVΠ − ω2ΠAΠ) be of rank 1, i.e. that its
adjugate (the cofactors matrix) be zero:

(ΠVΠ − ω2ΠAΠ)⋆ = Π⋆(V − ω2A)⋆Π⋆ = 0 , (15)

where ⋆ denotes the adjugate (see, for instance Boulanger & Hayes [3, p. 84],
for properties of the adjugate). Because Π⋆ = n ⊗ n, (15) also reads

n · (V − ω2A)⋆n = 0 , (16)

and, because (see Eves [4] for the adjugate of the sum of two 3 × 3 matrices)

(V − ω2A)⋆ = (detV)V−1 − ω2(detA){tr(A−1V)A−1 − A−1VA−1}
+ ω4(detA)A−1

= (detV)V−1 − ω2(detV){tr(V−1A)V−1 − V−1AV−1}
+ ω4(detA)A−1 ,

(17)

equation (15) may be written in the two equivalent forms

ω4(detA)n · A−1n − ω2(detA){tr(A−1V)n · A−1n − n · A−1VA−1n}
+ (detV)n · V−1n = 0,

ω4(detA)n · A−1n − ω2(detV){tr(V−1A)n · V−1n − n · V−1AV−1n}
+ (detV)n · V−1n = 0.

(18)

This is a quadratic in ω2 whose roots ω
′2 and ω

′′2 (say) are the eigenfrequencies
of the constrained system.
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Assuming ω
′2 6= ω

′′2 the corresponding solutions of (14) for n are r′ and r
′′

(say). They satisfy

r′ · ΠVΠr′′ = 0 , r′ · ΠAΠr′′ = 0 , n · r′ = n · r′′ = 0 , (19)

or, equivalently,

r′ · Vr′′ = 0 , r′ · Ar′′ = 0 , n · r′ = n · r′′ = 0 . (20)

But, in the plane n · x = 0, orthogonal to n, the equations x · ΠVΠx = 1 and
x · ΠAΠx = 1 describe two ellipses E and F (say), so that (19) expresses the
fact that r′ and r′′ are conjugate with respect to both ellipses. Or, put another
way, the eigenvectors r′ and r′′ are along the common conjugate directions of
the ellipses E and F in which the plane n · x = 0 cuts the ellipsoids x ·Vx = 1
and x ·Ax = 1. In general there is just one pair of common conjugate directions.
If, however, both ellipses are similar (same aspect ratio) and similarly situated
(major axes parallel) there is an infinity of such pairs. In this case ω

′2 = ω
′′2: the

secular equation (15) has a double root. That this is so follows by noting that
if the ellipses E and F are similar and similarly situated, then ΠVΠ = δΠAΠ
for some scalar δ and so the secular equation (15) gives (δ − ω2)2 = 0, and
thus a double root for ω2. Note that in this case, the general solution for the
constrained motion is

x = Re{(α′r′ + α′′r′′)eiωt} , (21)

where ω is the double eigenfrequency, (r′, r′′) is any pair of directions which are
conjugate with respect to the ellipses E and F , and α′ and α′′ are arbitrary
complex numbers. If xi are interpreted as Cartesian coordinates, it follows from
(21) that x describes an ellipse, the directional ellipse [3] associated with the
bivector R = α′r′ + α′′r′′. Because α′ and α′′ are arbitrary, this ellipse may be
any ellipse or circle, or straight line in the plane n · x = 0.

3 Fresnel Form of the Secular Equation

The secular equation (18) may also be written using the eigenvalues ω2
1,

ω2
2, ω

2
3 and eigenvectors r1, r2, r3 of the unconstrained problem. This leads to a

form of the secular equation which is similar to that presented by Fresnel in the
context of crystal optics [5].

Regarding (12) as a system for the four unknowns ri, λ, we obtain the secular
equation in the form

detΘ = 0 , with Θ =

(
V − ω2A n

nT 0

)
. (22)
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Note that detΘ is a 4×4 bordered determinant. For such a determinant, a result
attributed to Darboux by Bromwich [6] is the identity

(detΘ)/det(V − ω2A) =
L2

1

ω2
1 − ω2

+
L2

2

ω2
2 − ω2

+
L2

3

ω2
3 − ω2

, (23)

where L1, L2, L3 are appropriate linear combinations of the components ni of
n, and thus the secular equation takes the Fresnel form

L2
1

ω2
1 − ω2

+
L2

2

ω2
2 − ω2

+
L2

3

ω2
3 − ω2

= 0 . (24)

An explicit expression of this Fresnel form of the secular equation may be ob-
tained using normal coordinates in writing (22). Indeed, consider the 4 × 4
matrix Σ defined by

Σ =

(
S 0
0 1

)
, S = (r1|r2|r3) , (25)

where S, the non-singular 3 × 3 matrix whose columns are the eigenvectors
r1, r2, r3, is such that STVS and STAS are both diagonal. Then, writing the
secular equation (22) in the equivalent form det(ΣT ΘΣ) = 0 yields

(r1 · n)2(r2 · Ar2)(r3 · Ar3)(ω
2
2 − ω2)(ω2

3 − ω2)

+ (r2 · n)2(r3 · Ar3)(r1 · Ar1)(ω
2
3 − ω2)(ω2

1 − ω2)

+ (r3 · n)2(r1 · Ar1)(r2 · Ar2)(ω
2
1 − ω2)(ω2

2 − ω2) = 0 ,

(26)

or, in Fresnel form

(r1 · n)2

(r1 · Ar1)(ω2
1 − ω2)

+
(r2 · n)2

(r2 · Ar2)(ω2
2 − ω2)

+
(r3 · n)2

(r3 · Ar3)(ω2
3 − ω2)

= 0 , (27)

or, equivalently,

(r1 · n)2

(r1 · Vr1)(ω
−2
1 − ω−2)

+
(r2 · n)2

(r2 · Vr2)(ω
−2
2 − ω−2)

+
(r3 · n)2

(r3 · Vr3)(ω
−2
3 − ω−2)

= 0 .

(28)
In the Appendix, we also show that (26) may be directly derived from (18).

Of course, each root of the secular equation (26) must be such that the three
terms in equation (26) are not all of the same sign, and hence the eigenvalues
ω

′2, ω
′′2 of the constrained system separate the eigenvalues ω2

1, ω
2
2, ω

2
3 of the

unconstrained system [2] : with ω
′2, ω

′′2 ordered ω
′2 ≥ ω

′′2, we have

ω2
3 ≤ ω

′′2 ≤ ω2
2 ≤ ω

′2 ≤ ω2
1 . (29)

We note that it follows from this that if the constrained system has a double
eigenfrequency, ω

′2 = ω
′′2, it must necessarily be equal to the intermediate

eigenfrequency of the unconstrained system: ω
′2 = ω

′′2 = ω2
2.
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4 Explicit Expressions for the Eigenvectors
and Eigenvalues in terms of n

Because the eigenvectors r′ and r′′ of the constrained system are along the
common conjugate directions of the ellipse E and F in which the plane n · x =
0 cuts the ellipsoids x · Vx = 1 and x · Ax = 1, we may now write down
explicit expressions for r′ and r′′, using results from a previous paper [1]. Explicit
expressions for the eigenvalues ω

′2 and ω
′′2 follow from these.

Assume now that the eigenvectors r1, r2, r3 of the unconstrained system are
normalized by r1 · Ar1 = 1, . . ., and let r1

⋆, r
2
⋆, r

3
⋆ be defined by

r1
⋆ = Ar1 , r2

⋆ = Ar2 , r3
⋆ = Ar3 . (30)

Then, (r1, r2, r3) and (r1
⋆, r

2
⋆, r

3
⋆) are reciprocal triads:

ri
⋆ · rj = δi

j , (31)

and we have

ri · Arj = δij , ri
⋆ · A−1rj

⋆ = δij . (32)

Moreover, r1
⋆, r

2
⋆, r

3
⋆ are the eigenvectors of the eigenvalue problem

(V−1 − ω−2A−1)r⋆ = 0 , (33)

corresponding to the eigenvalues ω−2
1 , ω−2

2 , ω−2
3 .

We now consider in turn the cases: (A) when the eigenvalues ω2
1, ω

2
2, ω

2
3

are all different, (B) when two of the eigenvalues are equal. The case when all
three eigenvalues are equal need not be considered, because then the ellipsoids
x ·Vx = 1 and x ·Ax = 1 are similar and similarly situated, and so the ellipses
E and F are similar and similarly situated for all n and the constrained system
has always a double eigenfrequency equal to the triple eigenfrequency of the
unconstrained system.

A. Three different eigenfrequencies: ω2
1 > ω2

2 > ω2
3.

Then, we have [3, chap. 5, p. 106]

V = ω2
2A +

ω2
1 − ω2

3

2
(h+ ⊗ h− + h− ⊗ h+) , (34)

where

h± =

(
ω2

1 − ω2
2

ω2
1 − ω2

3

) 1
2

r1
⋆ ±

(
ω2

2 − ω2
3

ω2
1 − ω2

3

) 1
2

r3
⋆ . (35)
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The vectors h± are normal to the planes that cut the two ellipsoids in similar
and similarly situated ellipses.

There are three subcases: (i) n is not coplanar with h+ and h−; (ii) n is
coplanar with h+ and h− but not along either; (iii) n is along n+ or n−.

Case (i): n · h+ × h− 6= 0.

We assume here that n is not coplanar with h+ and h−, or, equivalently,
not orthogonal to r2. Then, up to a scalar factor, the eigenvectors r′ and r′′ of
the constrained system are given in terms of n by [1]

r′ = (n × h+)/s+ − (n × h−)/s− ,

r′′ = (n × h+)/s+ + (n × h−)/s− ,
(36)

where

s2± = (n × h±) · A(n × h±) = ω−2
2 (n × h±) · V(n × h±) . (37)

The eigenfrequencies of the constrained system may now be obtained from

ω
′2 = (r′ · Vr′)/(r′ · Ar′) , ω

′′2 = (r′′ · Vr′′)/(r′′ · Ar′′) . (38)

They are given in terms of n by [1]

ω
′2 =

1

2
(ω2

1 + ω2
3) −

1

2
(ω2

1 − ω2
3) detA−1(n · A−1n)−1(c+c− − s+s−) ,

ω
′′2 =

1

2
(ω2

1 + ω2
3) −

1

2
(ω2

1 − ω2
3) detA−1(n · A−1n)−1(c+c− + s+s−) ,

(39)

where

c± = (detA)
1
2 n · A−1h± . (40)

Case (ii): n · h+ × h− = 0, n × h± 6= 0.

Now we consider the case when n is in the plane of h+ and h−, thus orthogo-
nal to r2, but not along h+ and h−. Then, up to a scalar factor, the eigenvectors
r′ and r′′ are given in terms of n by [1]

r′ = n × A(n × h+) , r′′ = n × h+ . (41)

Note that in (41) h+ may be replaced by h−, because in this case n × h+ and
n×h− are along the same direction in the plane n ·x = 0. Also, the expressions
(39) for the eigenvalues ω

′2 and ω
′′2 remain valid.

Case (iii): n along h+ or h−.
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When n is along h+ or h− given by (35), the ellipses E and F are similar
and similarly situated, and the constrained system has a double frequency. In
this case, r′ and r′′ may be chosen arbitrarily in the plane n·x = 0. For instance,
for n = h+, a simple choice is

r′ = r2 , r′′ = (ω2
2 − ω2

3)
1
2 r1 − (ω2

1 − ω2
2)

1
2 r3 . (42)

Moreover, (39) now yields ω
′2 = ω

′′2 = ω2
2 as expected, because s+ = 0 and

c+ =(detA)
1
2 h+ · A−1h+ = (detA)

1
2 ,

c− =(detA)
1
2 h+ · A−1h− =

(detA)
1
2 (ω2

1 + ω2
3 − 2ω2

2)

ω2
1 − ω2

3

.
(43)

B. Two eigenfrequencies equal.
Here, the eigenfrequencies are no longer assumed to be ordered: ω2

1 6= ω2
2 =

ω2
3.

In this case [3] (chap. 5, p. 107), we have

V = ω2
2A + (ω2

1 − ω2
3)r

1
⋆ ⊗ r1

⋆ . (44)

The vector r1
⋆ is normal to the plane that cuts the two ellipsoids in similar and

similarly situated ellipses.
Here there are two subcases: (i) n is not along r1

⋆; (ii) n is along r1
⋆.

Case (i): n × r1
⋆ 6= 0.

Now we consider the general case when n is not along r1
⋆. Then, up to a

scalar factor, we have [1]

r′ = n × A(n × r1
⋆) , r′′ = n × r1

⋆ . (45)

Also, the eigenfrequencies of the constrained system are given by [1]

ω
′2 = ω2

2 + (ω2
1 − ω2

3)(detA)−1(n · A−1n)−1(n × r1
⋆) · A(n × r1

⋆) ,

ω
′′2 = ω2

2 .
(46)

Thus, whatever the constraint may be, one eigenfrequency is equal to the double
eigenfrequency of the unconstrained system. The other eigenfrequency depends
on n.

Case (ii): n along r1
⋆.
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When n is along r1
⋆, the ellipses E and F are similar and similarly situ-

ated, and the constrained system has a double eigenfrequency as has the uncon-
strained system. In this case, r′ and r′′ may be chosen arbitrarily in the plane
r1
⋆ · x = 0. For instance, we may take

r′ = r2 , r′′ = r3 . (47)

Moreover, (46) now yields ω
′2 = ω

′′2 = ω2
2 as expected.

5 Examples

Here we present examples.

1 Example. Let

V =




2k2ν2 0 0

0 ν2 0
0 0 ν2



 , A =




2k2 1 1
1 1 0
1 0 1



 , (48)

where k and ν are two constants, with k > 1. In Pars [7], a mechanical system
whose small oscillations are governed by the matrices (48), is described. It con-
sists of two pendula connected by a horizontal hanging rod, and it is used to
illustrate the transference of vibrations.

The eigenvalues and eigenvectors of this system are given by

ω2
1 = ν2k/(k − 1) ; ω2

2 = ν2 ; ω2
3 = ν2k/(k + 1) , (49)

2[(k−1)/k]
1
2 r1 = (−1/k, 1, 1) ;

√
2r2 = (0, 1,−1) ; 2[(k+1)/k]

1
2 r3 = (1/k, 1, 1),

(50)
and hence,

2[k/(k−1)]
1
2 r1

⋆ = (−2k, 1, 1) ;
√

2r2
⋆ = (0, 1,−1) ; 2[k/(k+1)]

1
2 r3

⋆ = (2k, 1, 1) .
(51)

Then, (35) yields

[2k2/(k2 − 1)]
1
2 h+ = (0, 1, 1) ; [2(k2 − 1)]−

1
2 h− = (−1, 0, 0) . (52)

Using (48), (49) and (52) it is easily checked that (34) holds.
If the mechanical system is subjected to the constraint x2 + x3 = 0, or to

the constraint x1 = 0, then it has the double eigenfrequency ω′ = ω′′ = ν.
For a general constraint n1x

1 + n2x
2 + n3x

3 = 0, the Fresnel form (27) of
the secular equation is

(−n1 + kn2 + kn3)
2

ν2k − ω2(k − 1)
+ 2k

(n2 − n3)
2

ν2 − ω2
+

(n1 + kn2 + kn3)
2

ν2k − ω2(k + 1)
= 0 . (53)
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Writing this as a quadratic for ω2, it is easily seen that the secular equation
has indeed the double root ω2 = ν2 when n is along (0, 1, 1), or along (−1, 0, 0).
Also, from (36) and (37), we obtain the eigenvectors r′ and r′′ for a general
constraint n · x = 0. Up to a scalar factor we have

r′

r′′

}
=

(n2 − n3,−n1, n1)

[2n2
1 + 2k2(n2 − n3)2]

1
2

± (0,−n3, n2)

[n2
2 + n2

3]
1
2

. (54)

2 Example. For the transverse vibrations of a system consisting of three
equal masses on a light stretched string, we have [8]

V = ω2
0




2 −1 0
−1 2 −1
0 −1 2



 , A =




1 0 0
0 1 0
0 0 1



 , (55)

where ω2
0 is a positive constant.

The eigenvalues and eigenvectors of this system are

ω2
1 = (2 +

√
2)ω2

0 , ω2
2 = 2ω2

0 , ω2
3 = (2 −

√
2)ω2

0 , (56)

r1 = (1/2,−
√

2/2, 1/2) , r2 = (
√

2/2, 0,−
√

2/2) , r3 = (1/2,
√

2/2, 1/2) ,
(57)

and here ri = ri
⋆ because A = 1. Then, (35) yields

√
2h+ = (1, 0, 1) ,

√
2h− = (0,−1, 0) . (58)

Because A = 1, h+ and h− are the normals to the planes of central circular
sections of the ellipsoid x · Vx = 1.

If the mechanical system is subjected to the constraint x1 + x3 = 0, or to
the constraint x2 = 0, then it has the double eigenfrequency ω′ = ω′′ =

√
2ω0.

For a general constraint n1x
1 + n2x

2 + n3x
3 = 0, the Fresnel form (27) of

the secular equation is

(n1 −
√

2n2 + n3)
2

(2 +
√

2)ω2
0 − ω2

+
2(n1 − n3)

2

2ω2
0 − ω2

+
(n1 +

√
2n2 + n3)

2

(2 −
√

2)ω2
0 − ω2

= 0 . (59)

Again, writing this in the form of a quadratic for ω2, it is easily seen that it
has the double root ω2 = 2ω2

0 when n is along (1, 0, 1), or along (0,−1, 0). Also,
from (36) and (37), we obtain the eigenvectors r′ and r′′ for a general constraint
n · x = 0. Up to a scalar factor we have

r′

r′′

}
=

(n2, n3 − n1,−n2)

[2n2
2 + (n3 − n1)2]

1
2

+
(n3, 0,−n1)

[n2
3 + n2

1]
1
2

. (60)
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3 Example. Finally, we give an example when the unconstrained system
has a double eigenfrequency. For an appropriate system consisting of a swinging
rod to which a mass is attached by a light elastic string (see details in [9]), we
have

A =




1 0 0
0 20/3 8/3
0 8/3 16/9



 , V = ω2
0




3 0 0
0 4 0
0 0 4/3



 , (61)

where ω2
0 is a positive constant. The eigenvalues and eigenvectors of the uncon-

strained problem are then given by

ω2
1 = (3/8)ω2

0 , ω2
2 = ω2

3 = 3ω2
0 , (62)

r1 =

√
3

14
(0,

1

2
,
3

4
) , r2 = (1, 0, 0) , r3 =

1√
7
(0,

3

2
,−3) , (63)

and

r1
⋆ =

√
3

14
(0,

16

3
,
8

3
), r2

⋆ = (1, 0, 0) , r3
⋆ =

1√
7
(0, 2,−4

3
) . (64)

Then using (26) the secular equation is

(ω2 − 3ω2
0){(

3

32
)(2n2 +3n3)

2(ω2 − 3ω2
0)+ [7n2

1 +
9

4
(n2 − 2n3)

2](ω2 − 3ω2
0

8
)} = 0 .

(65)
Irrespective of the choice of n, one of the eigenvalues of the constrained system
is thus equal to the double eigenvalue 3ω2

0 of the unconstrained system.
When n is chosen along r1

⋆, so that the constraint is 2x2 + x3 = 0, then the
constrained system has the double eigenfrequency 3ω2

0.
For an arbitrary constraint, the eigenvectors are along r′ and r′′ given by

(45), thus along

r′ = (8n1n2 + 12n1n3, −8n2
1 − 18n2

3 + 9n2n3, −12n2
1 − 9n2

2 + 18n2n3) , (66)

r′′ = (n2 − 2n3, −n1, 2n1) . (67)

The eigenvector along r′′ corresponds to the eigenvalue 3ω2
0. The eigenvalue

corresponding to r′ depends on n.

6 Closure

Small oscillations about an equilibrium position of a conservative dynamical
system with three degrees of freedom have been considered. When the system is
subjected to an arbitrary linear constraint, explicit expressions for the eigenvec-
tors and eigenfrequencies have been presented in terms of the eigenvectors and
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eigenfrequencies of the unconstrained system. It has been shown that, in gen-
eral, there are two choices of the linear constraint such that when it is subject
to the constraint the system has a double eigenfrequency. Illustrative examples
have been presented.

Appendix

The secular equation (18)1 divided by detA reads

ω4n·A−1n−ω2{tr(A−1V)n·A−1n−n·A−1VA−1n}+ det(A−1V)n·V−1n = 0 .
(68)

As in §4, assume that the eigenvectors r1, r2, r3 are normalized by r1·Ar1 = 1, . . .
and write

n = n1r
1
⋆ + n2r

2
⋆ + n3r

3
⋆ , ni = n · ri , (69)

where (r1
⋆, r

2
⋆, r

3
⋆) is the reciprocal triad of (r1, r2, r3), defined by (30) or (31).

Then, recalling (5) (32) (33), we note that the quadratic forms n·A−1n, n·
A−1VA−1n, n·V−1n entering (68) may be written as sums of squares as follows:

n · A−1n = n2
1 + n2

2 + n2
3 ,

n · A−1VA−1n = ω2
1n

2
1 + ω2

2n
2
2 + ω2

3n
2
3 ,

n · V−1n = ω−2
1 n2

1 + ω−2
2 n2

2 + ω−2
3 n2

3 .

(70)

Moreover,

tr(A−1V) = ω2
1 + ω2

2 + ω2
3 , det(A−1V) = ω2

1ω
2
2ω

2
3 . (71)

Inserting (70) and (71) into the secular equation (68) yields

ω4(n2
1 + n2

2 + n2
3) − ω2{n2

1(ω
2
2 + ω2

3) + n2
2(ω

2
3 + ω2

1) + n2
3(ω

2
1 + ω2

2)}
+ (n2

1ω
2
2ω

2
3 + n2

2ω
2
3ω

2
1 + n2

3ω
2
1ω

2
2) = 0 , (72)

or, collecting the terms in n2
1, n

2
2, n

2
3,

n2
1(ω

2
2 −ω2)(ω2

3 −ω2)+n2
2(ω

2
3 −ω2)(ω2

1 −ω2)+n2
3(ω

2
1 −ω2)(ω2

2 −ω2) = 0 . (73)

But n1 = n · r1, n2 = n · r2, n3 = n · r3 when r1, r2, r3 are normalized by
r1 · Ar1 = r2 · Ar2 = r3 · Ar3 = 1. Hence, if ri are not normalized by these
conditions, then ri/(ri · Ari)

1
2 , (no sum), are normalized, and we have then

n1 =
n · r1

(r1 · Ar1)
1
2

, n2 =
n · r2

(r2 · Ar2)
1
2

, n3 =
n · r3

(r3 · Ar3)
1
2

. (74)

Substituting this into (73) and multiplying by the product (r1 ·Ar1)(r2 ·Ar2)(r3 ·
Ar3) immediately gives (26).
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