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Abstract. Let R be a commutative unitary ring of prime characteristic p and let G be an
Abelian group. We calculate only in terms of R and G (and their sections) Warfield p-invariants
of the quotient group V (RG)/G, that is, the group of all normalized units V (RG) in the group
ring RG modulo G. This supplies recent results of ours in (Extr. Math., 2005), (Collect. Math.,
2008) and (J. Algebra Appl., 2008).
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1 Introduction

Throughout the present article, suppose that R is a commutative unitary
ring of prime characteristic p, fixed for the duration, and G is an Abelian group,
written multiplicatively as is customary when discussing group rings, with p-
primary component Gp and torsion part Gt. As usual, RG denotes the group
ring of G over R with group of normalized invertible elements V (RG) and its
p-component of torsion Vp(RG). Moreover, let we define inductively, Gp0 = G,

Gpα = (Gpα−1
)p when α is isolated and Gpα = ∩β<αG

pβ when α is limit. By

analogy Rp0 = R, Rpα = (Rpα−1
)p when α is isolated and Rpα = ∩β<αR

pβ when
α is limit. We shall say that the ring R is perfect if R = Rp. For any set M ,
we let |M | designate its cardinality, and ζd designate the primitive d-th root of
unity whenever d is a positive integer.

All other unexplained explicitly notations and notions are standard and
follow essentially the classical ones stated in ([5], [6] and [8]).

The goal of this paper, that we pursue, is to calculate only in terms of R
and G Warfield p-invariants of V (RG)/G, defined for an arbitrary multiplicative
Abelian group A in the following way (compare with [9]):

Wα,p(A) = rank(Apα/(Apα+1
Apα

p )),
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where α is an ordinal.

It easily follows thatWα,p(A) = |Apα/(Apα+1
Apα

p )| when |Apα/(Apα+1
Apα

p )| ≥
ℵ0 or Wα,p(A) = logp|Apα/(Apα+1

Apα
p )| otherwise.

Our calculations illustrated in the sequel naturally arise for applicable pur-
poses and are helpful for the isomorphism description of the factor-group
V (RG)/G. In fact, Warfield p-invariants, together with Ulm-Kaplansky invari-
ants, determine, up to isomorphism, p-mixed Warfield groups (e.g., [7]).

It is worthwhile noticing that in [1]-[4] we have computed Warfield p-invari-
ants of V (RG) under various restrictions on R and G. These computations will
be used here because as it will be proved below, we can restrict in some instances
Warfield p-invariants of V (RG)/G to the Warfield p-invariants of V (RG).

2 Preliminaries

Before stating and proving our main result, we need some preparatory ma-
chineries.

1 Lemma. For every ordinal number α, the following two identities hold:

(a) G ∩ V pα(RG) = Gpα;

(b) (V (RG)/G)p
α
= V pα(RG)G/G.

Proof. (a) Since it is straightforward that V pα(RG) = V (RpαGpα), the
equality now follows without any difficulty.

(b) It suffices to show that ∩β<α(V
pβ (RG)G) = [∩β<α(V

pβ (RG))]G =

V pα(RG)G for each limit α. In fact, take x ∈ ∩β<α(V
pβ (RG)G) = ∩β<α(V (Rpβ

Gpβ )G), hence x = (r1a1 + · · · + rsas)g = (f1b1 + · · · + fsbs)h = · · · , where
ri ∈ Rpβ , ai ∈ Gpβ , fi ∈ Rpγ , bi ∈ Gpγ , i ∈ [1, s], β < γ < α; g, h ∈ G. Now,
we obtain that ri = fi and gai = hbi, whence aia

−1
j = bib

−1
j ∈ Gpγ . Writing

x = ga1(r1 + · · ·+ rsasa
−1
1 ), we observe that x ∈ GV (RpγGpγ ) = GV pγ (RG).

Since the support is finite whereas the number of equalities is not because
α is infinite being limit, we may assume that all relations are of the above type.
That is why, x ∈ (∩γ<αV

pγ (RG))G = V pα(RG)G as required. QED

The next assertion appeared in ([1], Lemma 2). Nevertheless, for the reader’s
convenience and for the completeness of the exposition we shall provide a proof.

2 Lemma. For each ordinal number α the following equality holds:

Gpα ∩ (V pα+1
(RG)V pα

p (RG)) = Gpα+1
Gpα

p .



Warfield Invariants of V (RG)/G 215

Proof. Since it is routinely checked that V pα(RG) = V (RpαGpα), we may
write g = uv, where g ∈ Gpα , u ∈ V pα+1

(RG) = V (Rpα+1
Gpα+1

) and v ∈
V pα
p (RG) = Vp(R

pαGpα). Therefore, g(r1a1 + · · · + rsas) = f1b1 + · · · + fsbs
and ri = fi with gai = bi, for each i ∈ [1, s], where ri ∈ Rpα+1

, ai ∈ Gpα+1
and

fi ∈ Rpα , bi ∈ Gpα . Since f1b1+· · ·+fsbs ∈ Vp(R
pαGpα), there is an index, say j,

such that bj ∈ Gpα
p . Thus gaj = bj secures that g = bja

−1
j ∈ Gpα

p Gpα+1
. QED

The next statement may be found in ([5], p. 157, Exercise 14) as well.

3 Lemma. [Dlab] Let A be an Abelian multiplicative group with finite rank
and B ≤ A. Then B is neat in A (i.e., B ∩ pA = pB) if and only if r(A) =
r(B) + r(A/B).

The following corresponding claim is also useful.

4 Corollary. [[5], p. 105, Exercise 4] If A is a multiplicative Abelian group
and B ≤ A is a direct factor of A, then r(A) = r(B) + r(A/B).

3 Main Results

We are now in a position to prove the following

5 Theorem. Suppose G is an Abelian group and R is a commutative unitary
ring of prime characteristic p without zero divisors. Then, for each ordinal α,
the following holds:

(1) Wα,p(V (RG)/G) = Wα,p(V (RG))−Wα,p(G)

when Wα,p(V (RG)/G) < ℵ0. Thus

(1’) Wα,p(V (RG)/G) =
∑

d/|Gt/Gp|
a(d).Wα,p(G/

∐
l �=pGl)−Wα,p(G)

where a(d) = |{g ∈ Gt/Gp : order(g) = d}|/(R(ζd) : R) provided that R is a
perfect field.

(2) Wα,p(V (RG)/G) = Wα,p(V (RG))

when Wα,p(V (RG)/G) ≥ ℵ0. Thus

(2’) Wα,p(V (RG)/G) = |Gt/Gp|Wα,p(G)

provided that R is perfect.

Proof. By definition we write

Wα,p = rank((V (RG)/G)p
α

/((V (RG)/G)p
α+1

(V (RG)/G)p
α

p )).
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But according to Lemma 1 we may write

(V (RG)/G)p
α

= (V pα(RG)G)/G,

(V (RG)/G)p
α+1

= (V pα+1
(RG)G)/G

and (V (RG)/G)p
α

p = (V pα
p (RG)G)/G. Therefore, using the modular law from

[5], we obtain

(V (RG)/G)p
α

/((V (RG)/G)p
α+1

(V (RG)/G)p
α

p )

= (V pα(RG)G)/G/(V pα+1
(RG)V pα

p (RG)G)/G

∼= (V pα(RG)G)/(V pα+1
(RG)V pα

p (RG)G)

∼= V pα(RG)/(V pα(RG) ∩ [GV pα+1
(RG)V pα

p (RG)])

= V pα(RG)/[V pα+1
(RG)V pα

p (RG)(G ∩ V pα(RG))]

= V pα(RG)/(V pα+1
(RG)V pα

p (RG)Gpα)

∼= V pα(RG)/(V pα+1
(RG)V pα

p (RG))

/(V pα+1
(RG)V pα

p (RG)Gpα)/(V pα+1
(RG)V pα

p (RG)).

But

(V pα+1
(RG)V pα

p (RG)Gpα)/(V pα+1
(RG)V pα

p (RG))

∼= Gpα/[Gpα ∩ (V pα+1
(RG)V pα

p (RG))] = Gpα/(Gpα+1
Gpα

p )

by using Lemma 2.
Furthermore, since V pα(RG)/(V pα+1

(RG)V pα
p (RG)Gpα) is an epimorphic

image of the quotient group V pα(RG)/(V pα+1
(RG)V pα

p (RG)), we observe that
Wα,p(V (RG)/G) ≤Wα,p(V (RG)).

Next, we shall show that Wα,p(V (RG)/G) ≥ Wα,p(G) whenever Gt �= Gp.

In fact, we consider the element e = (1/|C|)∑c∈C rcc ∈ RC ≤ RGq ⊆ RGpα+t
,

for any t ∈ IN, where |C| < ℵ0; clearly |C| inverts in R since char(R) = p. It
is not hard to verify that e is an idempotent, i.e., e2 = e. Let g, h ∈ Gpα with
gGpα+1

Gpα
p �= hGpα+1

Gpα
p . Construct the elements xg = eg + (1 − e) and xh =

eh+ (1− e). Apparently, xg, xh ∈ V (RG). We claim that xgG
pαV pα+1

(RG)V pα
p

(RG) �= xhG
pαV pα+1

(RG)V pα
p (RG). If not, xgx

−1
h = xgxh−1 = (eg + (1 −

e))(eh−1 +(1− e)) = egh−1 +(1− e) = ea+(1− e) ∈ GpαV pα+1
(RG)V pα

p (RG),

where we denote a = gh−1 �∈ Gpα+1
Gpα

p . By our assumption there exists a

natural k such that (ea + (1 − e))p
k
= eap

k
+ (1 − e) ∈ Gpα+k

V pα+k+1
(RG) =

Gpα+k
V (Rpα+k+1

Gpα+k+1
). Writing e =

∑
c∈C fcc, we obtain that

∑
c∈C fcca

pk +
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1−∑
c∈C fcc ∈ Gpα+k

V (Rpα+k+1
Gpα+k+1

); fc ∈ R. Furthermore,
∑

c∈C fcca
pk +

1 −∑
c∈C fcc = dp

k ∑
v∈Gpα fvv

pk+1
=

∑
v∈Gpα fvd

pkvp
k+1

, where fv ∈ R and

d ∈ Gpα . Thus, dp
k
vp

k+1 ∈ C ⊆ Gpα+k+1
for some v ∈ Gpα , and hence dp

k ∈
Gpα+k+1

. Therefore, cap
k ∈ Gpα+k+1

and so ap
k ∈ Gpα+k+1

because c ∈ Gpα+k+1
.

Now, ap
k
= bp

k+1
with b ∈ Gpα , i.e., (ab−p)p

k
= 1 and ab−p ∈ Gpα

p . Consequently,

a ∈ Gpα+1
Gpα

p which is the desired contradiction.

Since V pα(RG)/(V pα+1
(RG)V pα

p (RG)) is a group bounded by p, all its sub-
groups are pure and so they are direct factors (see, for example, [5], Theo-
rem 27.5). That is why, by what we have just shown above, we may write
V pα(RG)/(V pα+1

(RG)V pα
p (RG)) ∼= (Gpα/(Gpα+1

Gpα
p )) × ((V (RG)/G)p

α
/

/((V (RG)/G)p
α+1

(V (RG)/G)p
α

p )). Consequently, employing Lemma 3 and
Corollary 4 (see also [5], p. 157, Exercise 14 and p. 105, Exercise 4), we de-
duce that

rank(V pα(RG)/(V pα+1
(RG)V pα

p (RG))) = rank(Gpα/Gpα+1
Gpα

p )+

rank((V (RG)/G)p
α

/((V (RG)/G)p
α+1

(V (RG)/G)p
α

p )),

i.e., Wα,p(V (RG)) = Wα,p(G) + Wα,p(V (RG)/G). By what we have already
shown above when Gt �= Gp, if Wα,p(V (RG)/G) is finite, then Wα,p(G) is finite,
whence Wα,p(V (RG)) is finite and thus Wα,p(V (RG)/G) = Wα,p(V (RG)) −
Wα,p(G) whenever Gt �= Gp. Note that when Gt = Gp we know via [1] that
Wα,p(V (RG)) = Wα,p(G) and that Wα,p(V (RG)/G) = 0. So, the same formula
is true even in this case. Further, we apply [3] and [4] to complete point (1’).

Let us now Wα,p(V (RG)/G) be infinite; thus Gt �= Gp. By virtue of the
inequality Wα,p(V (RG)/G) ≥ Wα,p(G) established above we obtain that
Wα,p(V (RG)/G) = Wα,p(V (RG)). Finally, we can apply [2] and [3] to conclude
that point (2’) is valid. QED
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