k-sets of type $(1, h)$ in finite planar spaces

Vito Napolitano ${ }^{\text {i }}$
Dipartimento di Ingegneria Civile, Seconda Università degli Studi di Napoli Real Casa dell'Annunziata - Via Roma, 29-I - 81031 Aversa (CE)-Italy
vito.napolitano@unina2.it

Received: 04/06/2008; accepted: 04/03/2009.

Abstract

A set of type (m, n) is a set \mathcal{K} of points of a planar space with the property that each plane of the space meets \mathcal{K} either in m or n points, and there are both planes intersecting \mathcal{K} in m points and in n points. In this paper, sets of type $(1, h)$ in a planar space whose planes pairwise intersect either in the empty-set or in a line, are studied.

Keywords: Linear spaces, projective planes, semiaffine planes, maximal arcs
MSC 2000 classification: 51E26

1 Introduction

A (finite) linear space is a pair $\mathbb{S}=(\mathcal{P}, \mathcal{L})$ consisting of a (finite) set \mathcal{P} of elements called points and a set \mathcal{L} of distinguished subsets of points, called lines, such that any two distinct points are contained in exactly one line, any line has at least two points, and there are at least two lines.

A subspace of a linear space is a subset of points X such that for every pair of distinct points of X the line joining them is entirely contained in X.

A (finite) planar space is a (finite) linear space endowed with a family of subspaces, called planes, such that any three non-collinear points are contained in a unique plane, every plane contains at least three non-collinear points, and there are at least two planes.

Clearly, projective and affine spaces of dimension at least three are planar spaces.

A planar space is non-degenerate if every line contains at least 3 three points.
Let \mathbb{S} be a finite planar space. We use v, b and c to denote respectively the number of points, of lines and of planes of \mathbb{S}. For any point p, the degree of p is the number r_{p} of lines on p, and for any line L, the length of L is the number k_{L} of its points.

A k-subset \mathcal{K} of points of \mathbb{S} is of class $\left[m_{1}, \ldots, m_{s}\right]$ if a plane of \mathbb{S} meets \mathcal{K} in m_{1}, m_{2}, \ldots, or m_{s} points. Let $t_{m_{j}}$ be the number of planes meeting \mathcal{K} into

[^0]exactly m_{j} points. A k-set \mathcal{K} is of type $\left(m_{1}, \ldots, m_{s}\right)$ if it is of class $\left[m_{1}, \ldots, m_{s}\right.$] and $t_{m_{j}} \neq 0$ for every $j=1, \ldots, s$. The m_{j} 's are the characters of \mathbb{S}.

A tangent plane is a plane meeting \mathcal{K} in exactly one point. A secant plane is a plane meeting \mathcal{K} in h points $(h>1)$.

A line which meets \mathcal{K} in i points is called an i-secant. A 0 -secant line is an external line, and a 1 -secant line is a tangent line.

In the literature, one can find a number of papers devoted to the study of sets of a finite projective (or affine) space with respect to their intersection with all the subspaces of a given dimension d, see e.g [8-10]. Moreover, some authors have extended such a study to other incidence structures $[3,4,7]$.

Finite planar spaces whose planes pairwise intersect either in the empty-set or in a line have their local parameters (that is the point-degree, the pointdegree in every plane, the number of planes through a point, and the number of planes through a line) equal to those of the desarguesian projective space of dimension three. It is a longstanding conjecture [6] to prove that, if there are no disjoint planes, these planar spaces are obtained from $\operatorname{PG}(3, n)$ by deleting a subset of points.

In particular, given such a finite (non-degenerate) planar space there is an integer $n \geq 2$ (the order of the planar space) such that

- every point has degree $n^{2}+n+1$
- through every point there are $n^{2}+n+1$ planes
- in every plane each point has degree $n+1$
- through every line there are $n+1$ planes
- every plane contains at most $n^{2}+n+1$ lines
- every plane contains at most $n^{2}+n+1$ points
- the number of points is at most $n^{3}+n^{2}+n+1$.

Moreover, if there are no disjoint planes, the number of planes is $n^{3}+n^{2}+n+1$ and every plane has $n^{2}+n+1$ lines.

Recall that every plane of such a planar space is embeddable in a finite projective plane, actually if π is a plane and p is a point not in π, the plane π can be embedded, by projection through p, in the projective plane whose points are the lines through p and whose lines are the planes through p.

A cap of a planar space is a set \mathcal{K} of points which meets every line in at most two points.

An ovoid of a planar spaces $\mathbb{S}=(\mathcal{P}, \mathcal{L}, \mathcal{H})$ is a cap \mathcal{K} such that for every point $p \in \mathcal{K}$ the union of the tangent lines through p is a plane π_{p}, called the tangent plane at p.

Let \mathbb{S} be a planar space whose planes pairwise intersect either in the empty set or in a line, and let \mathcal{K} be a cap, and p, q be two points of \mathcal{K}. A plane π through p and q is different from π_{p} and intersects π_{p} in a tangent line t_{p} at p. The n lines of π trough p and different from t_{p} are all secant lines, and so π meets K exactly in $n+1$ points.

Thus, $k=2+(n+1)(n-1)=n^{2}+1$.
In this paper, we study finite planar spaces whose planes pairwise intersect each other either in the empty-set or in a line, and with a set of type $(1, h)$. In particular, the following result will be proved.

Theorem I Let $\mathbb{S}=(\mathcal{P}, \mathcal{L}, \mathcal{H})$ be a finite (non-degenerate) planar space of order n whose planes pairwise intersect each other either in the empty-set or in a line. If \mathbb{S} contains a set \mathcal{K} of type $(1, h)$, then $c \geq n^{3}+n^{2}+n+1$, and equality holds if and only if \mathcal{K} is either a line of length $n+1$ or an ovoid.

1.1 Some preliminary results

In this section we collect some results on both finite linear spaces and on two-character sets of a finite linear spaces, which will be useful in the next sections.

1.1.1 Linear spaces

1 Definition. Let \mathbb{S} be a finite linear space, and let H be a finite set of non-negative integers. \mathbb{S} is H-semiaffine if for every point-line pair (p, ℓ), with $p \notin \ell$, the number $\pi(p, \ell):=r_{p}-k_{\ell} \in H$.

We recall part of a result of Doyen and Hubaut ([2], 1971), whose statement we have rewritten in terms of planar spaces with planes pairwise intersecting either in a line or in the empty-set.

2 Theorem. [Doyen-Hubaut, [2]1971] A finite planar space whose planes pairwise intersect either in the empty-set or in a line and with constant line length s, is either a projective space, or an affine space or a space in which each plane is I-semiaffine, where $I=\left\{s^{2}-s+1\right\}$ or $I=\left\{s^{3}+1\right\}$.

1.1.2 Caps, ovoids and planar spaces

3 Theorem. [Tallini, [9] 1986] Let \mathbb{S} be a non-degenerate finite planar space with constant line size $n+1$, and constant plane size. If \mathbb{S} contains an ovoid Ω then \mathbb{S} is $\operatorname{PG}(3, n)$, and Ω is one of its ovoids.

4 Theorem. [Thas, [10], 1973] A proper subset \mathcal{K} of the point-set of $\mathrm{PG}(r, n), r \geq 3$, meeting every hyperplane in either 1 or h points is a line or $r=3$ and it is an ovoid.

5 Theorem. [Biondi, [1], 1998] Let \mathbb{S} be a non-degenerate finite planar space of order ${ }^{1} n$ whose planes pairwise intersect in a line, and let Ω be an ovoid of \mathbb{S}. The planar space \mathbb{S} is embeddable if and only if the inversive plane defined by Ω is embeddable.

6 Theorem. [Durante-Napolitano-Olanda, [5], 2002] Let \mathbb{S} be a non-degenerate finite planar space of order n whose planes pairwise intersect in a line, and \mathcal{K} be a set of type $(1, h)$ of \mathbb{S}. Then \mathcal{K} is either a line (of length $n+1)$ or an ovoid of \mathbb{S}.

Thus, Theorem I generalizes Theorem 6 and Theorem 4 when $r=3$.

2 Sets of class [1,h] in ($\mathcal{P}, \mathcal{L}, \mathcal{H})$

Let $\mathbb{S}=(\mathcal{P}, \mathcal{L}, \mathcal{H})$ be a non-degenerate finite planar space of order n whose planes pairwise intersect either in the empty set or in a line, and let \mathcal{K} be a subset of \mathcal{P} meeting every plane in either 1 or $h(h \geq 2)$ points. A tangent plane is a plane meeting \mathcal{K} in exactly one point, a secant plane is a plane meeting \mathcal{K} in h points. An external line is a line missing \mathcal{K}, a tangent line is a line meeting \mathcal{K} in just one point, and a secant line is a line meeting \mathcal{K} in more than one point.

7 Proposition. $h>2$.
Proof. Assume by way of contradiction that $h=2$. Thus, every plane meets \mathcal{K} either 1 or 2 points. Let p and p^{\prime} be two points of \mathcal{K}, and let ℓ be the line $p p^{\prime}$. Since, every plane through ℓ meets \mathcal{K} in exactly two points, there is no other point of \mathcal{K} either on ℓ or outside ℓ. Thus, $\mathcal{K}=\left\{p, p^{\prime}\right\}$. Let π be a plane trough ℓ, and x be a point of π outside ℓ. Since $|\ell| \geq 3$, then through x there is an external line t, and all the planes through t, but π does not meet \mathcal{K}, a contradiction.

8 Proposition. If every plane of \mathbb{S} is secant to \mathcal{K}, then $\mathcal{K}=\mathcal{P}$ and \mathbb{S} is either $P G(3, n)$, or $A G(3, n)$ or a space with constant line length s in which every plane is I-affine, where either $I=\left\{s^{2}-s+1\right\}$ or $I=\left\{s^{3}+1\right\}$.

Proof. Let x and y be two points of \mathcal{K} and let t be the line joining them. Let $s=|t \cap \mathcal{K}|$. Since every plane through t is a secant plane and the planes through t partition the set $\mathcal{K} \backslash t$, it follows that:

[^1]\[

$$
\begin{equation*}
k=s+(n+1)(h-s) . \tag{1}
\end{equation*}
$$

\]

Equation (1) shows that every secant line to \mathcal{K} meets \mathcal{K} in a constant number $s=h-\frac{k-h}{n}$ of points. If there is a line $\ell \operatorname{missing} \mathcal{K}$, then counting k via the planes through ℓ gives

$$
\begin{equation*}
k=(n+1) h . \tag{2}
\end{equation*}
$$

Comparing equations (1) and (2) it follows that $n=0$ or $s=0$, a contradiction.

If there is a tangent line to \mathcal{K}, then

$$
\begin{equation*}
k=(n+1)(h-1)+1 . \tag{3}
\end{equation*}
$$

Comparing Equation (1) and Equation (2) we get $s=1$, a contradiction, since $s \geq 2$. It follows that every line is secant. If \mathcal{K} is a proper subset of \mathcal{P}, then there is a point p of \mathcal{P} not in \mathcal{K}.

Computing the size of \mathcal{K} via the lines through p we get

$$
\begin{equation*}
k=\left(n^{2}+n+1\right) s \tag{4}
\end{equation*}
$$

while computing the size of \mathcal{K} via the lines through a point p^{\prime} in \mathcal{K}, we get

$$
\begin{equation*}
k=\left(n^{2}+n+1\right)(s-1)+1 \tag{5}
\end{equation*}
$$

Comparing equations (4) and (5) we get a contradiction. Hence, $\mathcal{K}=\mathcal{P}$. Every plane is contained in \mathcal{K}, and so the planes have constant size h. Moreover, each line is contained in \mathcal{K}, and so all the lines are secant and have constant length s.

Thus, \mathbb{S} is a 3-dimensional locally projective planar space with constant line size, by Theorem 2 the assertion follows.

From now on we may assume that there is at least a tangent plane π_{0} to \mathcal{K} and hence that \mathcal{K} is a proper subset of \mathcal{P}. Let $p_{0}=\pi_{0} \cap \mathcal{K}$. Every line in π_{0} not through p_{0} is an external line, while a line in π_{0} through p_{0} is a tangent line.

Let r be a secant line and let s be the number of points in which r intersects \mathcal{K}. Now, the same argument involving Equation 1 can be used to compute the number of planes through r. Hence, such a number is s, it is constant and independent from the choice of the line r. So, every line of \mathbb{S} is a i-secant, where $i=0,1, s$.

Let t be a tangent line to \mathcal{K}. Let μ be the number of secant planes through t, then

$$
\begin{equation*}
k=1+\mu(h-1) . \tag{6}
\end{equation*}
$$

Thus μ is independent from the line t and

$$
\begin{equation*}
(h-1) \mid(k-1) . \tag{7}
\end{equation*}
$$

Let E be an external line. Let γ be the number of secant planes through E. Then

$$
\begin{equation*}
k=\gamma h+n+1-\gamma=\gamma(h-1)+n+1 \tag{8}
\end{equation*}
$$

There follows that $\gamma=\frac{k-1}{h-1}-\frac{n}{h-1}$ and since $h-1$ divides $k-1$ then

$$
\begin{equation*}
(h-1) \mid n \tag{9}
\end{equation*}
$$

hence

$$
\begin{equation*}
h \leq n+1 \tag{10}
\end{equation*}
$$

Since for every point p of \mathcal{K} there is at least a tangent line and since through every tangent line there is at least a tangent plane, through every point of \mathcal{K} there is at least a tangent plane. Let p be a point of $\mathcal{K} \backslash\left\{p_{0}\right\}$, and let π_{p} be a tangent plane at p. Then $\pi_{p} \neq \pi_{0}$, and through the common line E_{0} of these two planes there are at least two tangent planes. Since $h \leq n+1$ it follows, computing k via the planes through E_{0}

$$
\begin{equation*}
n+1 \leq k \leq n^{2}+1 \tag{11}
\end{equation*}
$$

Let π be a plane of \mathbb{S}, denote with i_{π} the number of planes intersecting π, then $i_{\pi} \leq\left(n^{2}+n+1\right) n+1=(n+1)\left(n^{2}+1\right)$. Let $i_{\pi}=(n+1)\left(n^{2}+1\right)-u_{\pi}$, and let δ_{π} be the number of planes disjoint from π, then $c=n^{3}+n^{2}+n+1-u_{\pi}+\delta_{\pi}$. So the number of planes c of \mathbb{S} may be written as the sum of $n^{3}+n^{2}+n+1$ and an integer z.

From now on put $c=n^{3}+n^{2}+n+1+z$, with z an integer.
Let α and β be the number of planes tangent and secant respectively. It follows

$$
\begin{equation*}
n^{3}+n^{2}+n+1+z=\alpha+\beta \tag{12}
\end{equation*}
$$

Counting in two ways the pairs (p, π) with $p \in \mathcal{K}$ and $p \in \pi$ gives

$$
\begin{equation*}
k\left(n^{2}+n+1\right)=\alpha+\beta h \tag{13}
\end{equation*}
$$

Counting in two ways the pairs ($\left\{p, p^{\prime}\right\}, \pi$) with $p, p^{\prime} \in \mathcal{K} \cap \pi$ gives

$$
\begin{equation*}
k(k-1)(n+1)=\beta h(h-1) . \tag{14}
\end{equation*}
$$

From equations (12) and (13) there follows:

$$
\begin{equation*}
k\left(n^{2}+n+1\right)-\left(n^{3}+n^{2}+n+1+z\right)=\beta(h-1) . \tag{15}
\end{equation*}
$$

Comparing equations (14) and (15) we get

$$
\begin{equation*}
k(k-1)(n+1)=h\left[k\left(n^{2}+n+1\right)-\left(n^{3}+n^{2}+n+1+z\right)\right] . \tag{16}
\end{equation*}
$$

Hence we have the following equation in k :

$$
\begin{equation*}
k^{2}(n+1)-k\left[(n+1)+h\left(n^{2}+n+1\right)\right]+h\left(n^{3}+n^{2}+n+1+z\right)=0 \tag{17}
\end{equation*}
$$

Since $k=s+(n+1)(h-s)$, Equation (17) becomes

$$
\begin{equation*}
n(n+1) h^{2}-n\left(s n^{2}-n^{2}+s+3 s n+1\right) h+s^{2} n^{3}+s^{2} n^{2}+s n^{2}+s n=-h z \tag{18}
\end{equation*}
$$

Even if part of the proof of the next Lemma (the case $s \geq 3$) is similar to that of the main theorem of [5], we give it since our argument uses only h for both cases $s=2$ and $s \geq 3$, and also to make the reading of the paper independent from that of [5].

9 Lemma. If $z=0$, and \mathcal{K} is a proper subset of \mathcal{P}, then \mathcal{K} is a line of length $n+1$ or an ovoid of \mathbb{S}.

Proof. Let $z=0$, then Equation (18) becomes

$$
\begin{equation*}
(n+1) h^{2}-\left(s n^{2}-n^{2}+s+3 s n+1\right) h+s^{2} n^{2}+s^{2} n+s n+s=0 . \tag{19}
\end{equation*}
$$

The discriminant of Equation (19) is

$$
\begin{aligned}
\Delta & =(s-1)^{2} n^{4}+2 s(s-3) n^{3}+\left(3 s^{2}-4 s-2\right) n^{2}+2 s(s-1) n+(s-1)^{2}= \\
& =\left[(s-1) n^{2}-s n-(s-1)\right]^{2}+4 s(s-2) n^{3}+4 s(s-2) n^{2}
\end{aligned}
$$

which is non-negative for $s \geq 2$.
For $s=2, \Delta=\left(n^{2}-2 n-1\right)^{2}$, and $h_{1}=n+1, h_{2}=4-\frac{2}{n+1}$. Since h_{2} is an integer, we have $n=1$, a contradiction.

Hence $h=n+1, k=2+(n+1)(n-1) n=n^{2}+1$ and \mathcal{K} is an ovoid.
Now, let $s \geq 3$.

We have

$$
h \in\left\{\frac{\left(n^{2}+3 n+1\right) s-\left(n^{2}-1\right)-\sqrt{\Delta}}{2(n+1)}, \frac{\left(n^{2}+3 n+1\right) s-\left(n^{2}-1\right)+\sqrt{\Delta}}{2(n+1)}\right\} .
$$

Since $\sqrt{\Delta}>\left[(s-1) n^{2}-s n-(s-1)\right]+1$, we have that
$h_{2}=\frac{\left(n^{2}+3 n+1\right) s-\left(n^{2}-1\right)+\sqrt{\Delta}}{2(n+1)}>n+1$, a contradiction.
Let $h_{1}=\frac{\left(n^{2}+3 n+1\right) s-\left(n^{2}-1\right)-\sqrt{\Delta}}{2(n+1)}$. From $\sqrt{\Delta}>\left[(s-1) n^{2}-s n-\right.$ $(s-1)]+1$ it follows that $h<2 s-\frac{2 s+1}{2(n+1)}<2 s$.

Thus, there is no plane with two secant lines. It follows that if r is a secant line, then there is no point of \mathcal{K} outside r. Since every plane meets \mathcal{K}, and there are $\left(n^{2}+n\right)(n+1)$ planes it follows that $s n^{2}+n+1=\left(n^{2}+1\right)(n+1)$, that is $s=n+1$. So, \mathcal{K} is a line of length $n+1$ of \mathbb{S}.

QED
10 Lemma. $z \geq 0$.
Proof. Assume $z<0$. Let $z^{\prime}=\frac{z}{n}$, then Equation (18) becomes

$$
\begin{equation*}
(n+1) h^{2}-\left(s n^{2}-n^{2}+s+3 s n+1-z^{\prime}\right) h+(n+1) s(s n+1)=0 \tag{20}
\end{equation*}
$$

Let Δ be the discriminant of Equation (19) and let Δ^{\prime} be the discriminant of Equation (20), and let $h_{1}^{\prime}, h_{2}^{\prime}$ be the roots of equation (20), and h_{1}, h_{2} be the roots of Equation (19), as above. Then $\Delta^{\prime}>\Delta$.

Thus,

$$
\begin{aligned}
h_{2}^{\prime} & =\frac{\left(s n^{2}-n^{2}+s+3 s n+1-z^{\prime}\right)+\sqrt{\Delta^{\prime}}}{2(n+1)} \\
& >\frac{\left(s n^{2}-n^{2}+s+3 s n+1\right)+\sqrt{\Delta}}{2(n+1)}-\frac{z^{\prime}}{2(n+1)} \\
& =\frac{\left(n^{2}+3 n+1\right) s-\left(n^{2}-1\right)+\sqrt{\Delta}}{2(n+1)}-\frac{z^{\prime}}{2(n+1)} \\
& =h_{2}-\frac{z^{\prime}}{2(n+1)}>n+1-\frac{z^{\prime}}{2(n+1)}>n+1,
\end{aligned}
$$

which cannot occur since $h \leq n+1$.
Moreover, since $h_{1}^{\prime} h_{2}^{\prime}=h_{1} h_{2}=s(s n+1)$, from $h_{2}^{\prime}>h_{2}$ it follows that $h_{1}^{\prime}<h_{1}<2 s$.

Hence, there is no plane with two secant lines. It follows that if r is a secant line, then there is no point of \mathcal{K} outside r. Since every plane meets \mathcal{K}, and there
are $\left(n^{2}+n\right)(n+1)$ planes it follows that $s n^{2}+n+1=c \leq n^{3}+n^{2}+n$, that is $s \leq n$. Let α be a plane through r, and let ℓ be a line of α disjoint from r. Any plane through r, different from α, is disjoint with r, that is there are planes disjoint with \mathcal{K}, a contradiction.

QED
11 Lemma. If \mathcal{K} is either a line of length $n+1$ or an ovoid then $z=0$.
Proof. If \mathcal{K} is a line of length $n+1$, then it intersects all the planes of the planar space, and so $c=(n+1) n^{2}+n+1=n^{3}+n^{2}+n+1$.

Now, let \mathcal{K} be an ovoid of \mathbb{S}. Then, $k=n^{2}+1$, and every secant line is 2-secant.

From $k=s+(n+1)(h-s)$, it follows that $h=n+1$. Then by Equation (18) it follows that $z=0$.

QED
The previous Lemmata proves Theorem I.

References

[1] P. Biondi: An embedding theorem for finite planar spaces, Rend. Circ. Mat. Palermo, serie II, tomo XLVII (1998), 265-276.
[2] J. Doyen, X. Hubaut: Finite regular locally projective spaces, Math. Z., 119 (1971), 83-88.
[3] M.J. de Resmini: On k-sets of type (m, n) in a Steiner $S(2, \ell, v)$, London Math. Soc. Lecture Note Ser. 49, Cambridge Univ. Press, Cambridge-New York (1981).
[4] M.J. de Resmini: On sets of type (m, n) in BIBD's with $\lambda \geq 2$, Ann. Discrete Math., 14 (1982), 183-206.
[5] N. Durante, V. Napolitano, D. Olanda: On k-sets of class $[1, h]$ in a planar space, Atti Sem. Mat. Fis. Univ. Modena, L (2002), 305-312.
[6] W.M. Kantor: Dimension and embedding theorems for geometric lattices, J. Combin. Theory (A), 17 (1974), 173-195.
[7] S.M. Kim: Sets of type $(1, n)$ in biplanes, European J. Combin., 25 (2004), 745-756.
[8] M. Tallini Scafati, G. Tallini: Geometria di Galois e teoria dei codici, C.I.S.U. (1995).
[9] G. Tallini: Ovoid and caps in planar spaces, Annals of Discrete Math., 30 (1986), 347354.
[10] J.A. Thas: On a combinatorial problem, Geom. Ded., 2 (1973), 236-240.

[^0]: ${ }^{\text {i }}$ This research was supported by G.N.S.A.G.A. of INdAM.

[^1]: ${ }^{1}$ The order of a finite planar space with planes pairwise intersecting in a line, is the integer n such that through any line ℓ there pass exactly $n+1$ planes.

