Note di Matematica Note Mat. 29 (2009), n. 2, 191-199 ISSN 1123-2536, e-ISSN 1590-0932 DOI 10.1285/i15900932v29n2p191 http://siba-ese.unisalento.it, © 2009 Università del Salento

k-sets of type (1, h) in finite planar spaces

Vito Napolitanoⁱ

Dipartimento di Ingegneria Civile, Seconda Università degli Studi di Napoli Real Casa dell'Annunziata – Via Roma, 29 – I – 81031 Aversa (CE)–Italy vito.napolitano@unina2.it

Received: 04/06/2008; accepted: 04/03/2009.

Abstract. A set of type (m, n) is a set \mathcal{K} of points of a planar space with the property that each plane of the space meets \mathcal{K} either in m or n points, and there are both planes intersecting \mathcal{K} in m points and in n points. In this paper, sets of type (1, h) in a planar space whose planes pairwise intersect either in the empty–set or in a line, are studied.

Keywords: Linear spaces, projective planes, semiaffine planes, maximal arcs

MSC 2000 classification: 51E26

1 Introduction

A (finite) linear space is a pair $\mathbb{S} = (\mathcal{P}, \mathcal{L})$ consisting of a (finite) set \mathcal{P} of elements called *points* and a set \mathcal{L} of distinguished subsets of points, called *lines*, such that any two distinct points are contained in exactly one line, any line has at least two points, and there are at least two lines.

A subspace of a linear space is a subset of points X such that for every pair of distinct points of X the line joining them is entirely contained in X.

A (*finite*) planar space is a (finite) linear space endowed with a family of subspaces, called *planes*, such that any three non–collinear points are contained in a unique plane, every plane contains at least three non–collinear points, and there are at least two planes.

Clearly, projective and affine spaces of dimension at least three are planar spaces.

A planar space is *non-degenerate* if every line contains at least 3 three points.

Let S be a finite planar space. We use v, b and c to denote respectively the number of points, of lines and of planes of S. For any point p, the *degree* of p is the number r_p of lines on p, and for any line L, the *length* of L is the number k_L of its points.

A k-subset \mathcal{K} of points of S is of class $[m_1, \ldots, m_s]$ if a plane of S meets \mathcal{K} in m_1, m_2, \ldots , or m_s points. Let t_{m_i} be the number of planes meeting \mathcal{K} into

ⁱThis research was supported by G.N.S.A.G.A. of INdAM.

exactly m_j points. A k-set \mathcal{K} is of type (m_1, \ldots, m_s) if it is of class $[m_1, \ldots, m_s]$ and $t_{m_j} \neq 0$ for every $j = 1, \ldots, s$. The m_j 's are the *characters* of S.

A tangent plane is a plane meeting \mathcal{K} in exactly one point. A secant plane is a plane meeting \mathcal{K} in h points (h > 1).

A line which meets \mathcal{K} in *i* points is called an *i*-secant. A 0-secant line is an *external* line, and a 1-secant line is a *tangent* line.

In the literature, one can find a number of papers devoted to the study of sets of a finite projective (or affine) space with respect to their intersection with all the subspaces of a given dimension d, see e.g [8–10]. Moreover, some authors have extended such a study to other incidence structures [3, 4, 7].

Finite planar spaces whose planes pairwise intersect either in the empty–set or in a line have their *local parameters* (that is the point–degree, the point– degree in every plane, the number of planes through a point, and the number of planes through a line) equal to those of the desarguesian projective space of dimension three. It is a longstanding conjecture [6] to prove that, if there are no disjoint planes, these planar spaces are obtained from PG(3, n) by deleting a subset of points.

In particular, given such a finite (non–degenerate) planar space there is an integer $n \ge 2$ (the *order* of the planar space) such that

- every point has degree $n^2 + n + 1$
- through every point there are $n^2 + n + 1$ planes
- in every plane each point has degree n+1
- through every line there are n+1 planes
- every plane contains at most $n^2 + n + 1$ lines
- every plane contains at most $n^2 + n + 1$ points
- the number of points is at most $n^3 + n^2 + n + 1$.

Moreover, if there are no disjoint planes, the number of planes is n^3+n^2+n+1 and every plane has n^2+n+1 lines.

Recall that every plane of such a planar space is embeddable in a finite projective plane, actually if π is a plane and p is a point not in π , the plane π can be embedded, by projection through p, in the projective plane whose points are the lines through p and whose lines are the planes through p.

A *cap* of a planar space is a set \mathcal{K} of points which meets every line in at most two points.

An ovoid of a planar spaces $\mathbb{S} = (\mathcal{P}, \mathcal{L}, \mathcal{H})$ is a cap \mathcal{K} such that for every point $p \in \mathcal{K}$ the union of the tangent lines through p is a plane π_p , called the *tangent plane* at p.

Let S be a planar space whose planes pairwise intersect either in the empty set or in a line, and let \mathcal{K} be a cap, and p, q be two points of \mathcal{K} . A plane π through p and q is different from π_p and intersects π_p in a tangent line t_p at p. The n lines of π trough p and different from t_p are all secant lines, and so π meets K exactly in n + 1 points.

Thus, $k = 2 + (n+1)(n-1) = n^2 + 1$.

In this paper, we study finite planar spaces whose planes pairwise intersect each other either in the empty–set or in a line, and with a set of type (1, h). In particular, the following result will be proved.

Theorem I Let $S = (\mathcal{P}, \mathcal{L}, \mathcal{H})$ be a finite (non-degenerate) planar space of order n whose planes pairwise intersect each other either in the empty-set or in a line. If S contains a set \mathcal{K} of type (1, h), then $c \ge n^3 + n^2 + n + 1$, and equality holds if and only if \mathcal{K} is either a line of length n + 1 or an ovoid.

1.1 Some preliminary results

In this section we collect some results on both finite linear spaces and on two-character sets of a finite linear spaces, which will be useful in the next sections.

1.1.1 Linear spaces

1 Definition. Let S be a finite linear space, and let H be a finite set of non-negative integers. S is H-semiaffine if for every point-line pair (p, ℓ) , with $p \notin \ell$, the number $\pi(p, \ell) := r_p - k_\ell \in H$.

We recall part of a result of Doyen and Hubaut ([2], 1971), whose statement we have rewritten in terms of planar spaces with planes pairwise intersecting either in a line or in the empty–set.

2 Theorem. [Doyen-Hubaut, [2]1971] A finite planar space whose planes pairwise intersect either in the empty-set or in a line and with constant line length s, is either a projective space, or an affine space or a space in which each plane is I-semiaffine, where $I = \{s^2 - s + 1\}$ or $I = \{s^3 + 1\}$.

1.1.2 Caps, ovoids and planar spaces

3 Theorem. [Tallini, [9] 1986] Let \mathbb{S} be a non-degenerate finite planar space with constant line size n + 1, and constant plane size. If \mathbb{S} contains an ovoid Ω then \mathbb{S} is PG(3, n), and Ω is one of its ovoids.

4 Theorem. [Thas, [10], 1973] A proper subset \mathcal{K} of the point-set of PG(r, n), $r \geq 3$, meeting every hyperplane in either 1 or h points is a line or r = 3 and it is an ovoid.

5 Theorem. [Biondi, [1], 1998] Let \mathbb{S} be a non-degenerate finite planar space of order¹ n whose planes pairwise intersect in a line, and let Ω be an ovoid of \mathbb{S} . The planar space \mathbb{S} is embeddable if and only if the inversive plane defined by Ω is embeddable.

6 Theorem. [Durante-Napolitano-Olanda, [5], 2002] Let S be a non-degenerate finite planar space of order n whose planes pairwise intersect in a line, and K be a set of type (1, h) of S. Then K is either a line (of length n + 1) or an ovoid of S.

Thus, Theorem I generalizes Theorem 6 and Theorem 4 when r = 3.

2 Sets of class [1, h] in $(\mathcal{P}, \mathcal{L}, \mathcal{H})$

Let $S = (\mathcal{P}, \mathcal{L}, \mathcal{H})$ be a non-degenerate finite planar space of order n whose planes pairwise intersect either in the empty set or in a line, and let \mathcal{K} be a subset of \mathcal{P} meeting every plane in either 1 or h ($h \geq 2$) points. A *tangent* plane is a plane meeting \mathcal{K} in exactly one point, a *secant* plane is a plane meeting \mathcal{K} in h points. An *external* line is a line missing \mathcal{K} , a *tangent* line is a line meeting \mathcal{K} in just one point, and a *secant* line is a line meeting \mathcal{K} in more than one point.

7 Proposition. h > 2.

PROOF. Assume by way of contradiction that h = 2. Thus, every plane meets \mathcal{K} either 1 or 2 points. Let p and p' be two points of \mathcal{K} , and let ℓ be the line pp'. Since, every plane through ℓ meets \mathcal{K} in exactly two points, there is no other point of \mathcal{K} either on ℓ or outside ℓ . Thus, $\mathcal{K} = \{p, p'\}$. Let π be a plane trough ℓ , and x be a point of π outside ℓ . Since $|\ell| \geq 3$, then through x there is an external line t, and all the planes through t, but π does not meet \mathcal{K} , a contradiction.

8 Proposition. If every plane of S is secant to K, then $\mathcal{K} = \mathcal{P}$ and S is either PG(3,n), or AG(3,n) or a space with constant line length s in which every plane is I-affine, where either $I = \{s^2 - s + 1\}$ or $I = \{s^3 + 1\}$.

PROOF. Let x and y be two points of \mathcal{K} and let t be the line joining them. Let $s = |t \cap \mathcal{K}|$. Since every plane through t is a secant plane and the planes through t partition the set $\mathcal{K} \setminus t$, it follows that:

¹The order of a finite planar space with planes pairwise intersecting in a line, is the integer n such that through any line ℓ there pass exactly n + 1 planes.

$$k = s + (n+1)(h-s).$$
 (1)

Equation (1) shows that every secant line to \mathcal{K} meets \mathcal{K} in a constant number $s = h - \frac{k-h}{n}$ of points. If there is a line ℓ missing \mathcal{K} , then counting k via the planes through ℓ gives

$$k = (n+1)h. \tag{2}$$

Comparing equations (1) and (2) it follows that n = 0 or s = 0, a contradiction.

If there is a tangent line to \mathcal{K} , then

$$k = (n+1)(h-1) + 1.$$
 (3)

Comparing Equation (1) and Equation (2) we get s = 1, a contradiction, since $s \geq 2$. It follows that every line is secant. If \mathcal{K} is a proper subset of \mathcal{P} , then there is a point p of \mathcal{P} not in \mathcal{K} .

Computing the size of \mathcal{K} via the lines through p we get

$$k = (n^2 + n + 1)s, (4)$$

while computing the size of \mathcal{K} via the lines through a point p' in \mathcal{K} , we get

$$k = (n^{2} + n + 1)(s - 1) + 1.$$
(5)

Comparing equations (4) and (5) we get a contradiction. Hence, $\mathcal{K} = \mathcal{P}$. Every plane is contained in \mathcal{K} , and so the planes have constant size h. Moreover, each line is contained in \mathcal{K} , and so all the lines are secant and have constant length s.

Thus, S is a 3-dimensional locally projective planar space with constant line size, by Theorem 2 the assertion follows. QED

From now on we may assume that there is at least a tangent plane π_0 to \mathcal{K} and hence that \mathcal{K} is a proper subset of \mathcal{P} . Let $p_0 = \pi_0 \cap \mathcal{K}$. Every line in π_0 not through p_0 is an external line, while a line in π_0 through p_0 is a tangent line.

Let r be a secant line and let s be the number of points in which r intersects \mathcal{K} . Now, the same argument involving Equation 1 can be used to compute the number of planes through r. Hence, such a number is s, it is constant and independent from the choice of the line r. So, every line of S is a *i*-secant, where i = 0, 1, s.

Let t be a tangent line to \mathcal{K} . Let μ be the number of secant planes through t, then

$$k = 1 + \mu(h - 1). \tag{6}$$

Thus μ is independent from the line t and

$$(h-1)|(k-1). (7)$$

Let E be an external line. Let γ be the number of secant planes through E. Then

$$k = \gamma h + n + 1 - \gamma = \gamma (h - 1) + n + 1.$$
(8)

There follows that $\gamma = \frac{k-1}{h-1} - \frac{n}{h-1}$ and since h-1 divides k-1 then

$$(h-1)|n$$
 (9)

hence

$$h \le n+1. \tag{10}$$

Since for every point p of \mathcal{K} there is at least a tangent line and since through every tangent line there is at least a tangent plane, through every point of \mathcal{K} there is at least a tangent plane. Let p be a point of $\mathcal{K} \setminus \{p_0\}$, and let π_p be a tangent plane at p. Then $\pi_p \neq \pi_0$, and through the common line E_0 of these two planes there are at least two tangent planes. Since $h \leq n+1$ it follows, computing k via the planes through E_0

$$n+1 \le k \le n^2 + 1. \tag{11}$$

Let π be a plane of \mathbb{S} , denote with i_{π} the number of planes intersecting π , then $i_{\pi} \leq (n^2 + n + 1)n + 1 = (n+1)(n^2 + 1)$. Let $i_{\pi} = (n+1)(n^2 + 1) - u_{\pi}$, and let δ_{π} be the number of planes disjoint from π , then $c = n^3 + n^2 + n + 1 - u_{\pi} + \delta_{\pi}$. So the number of planes c of \mathbb{S} may be written as the sum of $n^3 + n^2 + n + 1$ and an integer z.

From now on put $c = n^3 + n^2 + n + 1 + z$, with z an integer.

Let α and β be the number of planes tangent and secant respectively. It follows

$$n^{3} + n^{2} + n + 1 + z = \alpha + \beta.$$
(12)

Counting in two ways the pairs (p, π) with $p \in \mathcal{K}$ and $p \in \pi$ gives

$$k(n^2 + n + 1) = \alpha + \beta h. \tag{13}$$

Counting in two ways the pairs $(\{p, p'\}, \pi)$ with $p, p' \in \mathcal{K} \cap \pi$ gives

$$k(k-1)(n+1) = \beta h(h-1).$$
(14)

From equations (12) and (13) there follows:

$$k(n^{2} + n + 1) - (n^{3} + n^{2} + n + 1 + z) = \beta(h - 1).$$
(15)

Comparing equations (14) and (15) we get

$$k(k-1)(n+1) = h[k(n^2+n+1) - (n^3+n^2+n+1+z)].$$
 (16)

Hence we have the following equation in k:

$$k^{2}(n+1) - k[(n+1) + h(n^{2} + n + 1)] + h(n^{3} + n^{2} + n + 1 + z) = 0.$$
 (17)

Since k = s + (n+1)(h-s), Equation (17) becomes

$$n(n+1)h^2 - n(sn^2 - n^2 + s + 3sn + 1)h + s^2n^3 + s^2n^2 + sn^2 + sn = -hz.$$
 (18)

Even if part of the proof of the next Lemma (the case $s \ge 3$) is similar to that of the main theorem of [5], we give it since our argument uses only h for both cases s = 2 and $s \ge 3$, and also to make the reading of the paper independent from that of [5].

9 Lemma. If z = 0, and \mathcal{K} is a proper subset of \mathcal{P} , then \mathcal{K} is a line of length n + 1 or an ovoid of \mathbb{S} .

PROOF. Let z = 0, then Equation (18) becomes

$$(n+1)h^2 - (sn^2 - n^2 + s + 3sn + 1)h + s^2n^2 + s^2n + sn + s = 0.$$
(19)

The discriminant of Equation (19) is

$$\Delta = (s-1)^2 n^4 + 2s(s-3)n^3 + (3s^2 - 4s - 2)n^2 + 2s(s-1)n + (s-1)^2 =$$

= [(s-1)n^2 - sn - (s-1)]^2 + 4s(s-2)n^3 + 4s(s-2)n^2

which is non–negative for $s \ge 2$.

For s = 2, $\Delta = (n^2 - 2n - 1)^2$, and $h_1 = n + 1$, $h_2 = 4 - \frac{2}{n+1}$. Since h_2 is an integer, we have n = 1, a contradiction.

Hence h = n + 1, $k = 2 + (n + 1)(n - 1)n = n^2 + 1$ and \mathcal{K} is an ovoid. Now, let $s \ge 3$. We have

$$h \in \Big\{\frac{(n^2 + 3n + 1)s - (n^2 - 1) - \sqrt{\Delta}}{2(n+1)}, \ \frac{(n^2 + 3n + 1)s - (n^2 - 1) + \sqrt{\Delta}}{2(n+1)}\Big\}.$$

Since
$$\sqrt{\Delta} > [(s-1)n^2 - sn - (s-1)] + 1$$
, we have that
 $h_2 = \frac{(n^2 + 3n + 1)s - (n^2 - 1) + \sqrt{\Delta}}{2(n+1)} > n+1$, a contradiction.
Let $h_1 = \frac{(n^2 + 3n + 1)s - (n^2 - 1) - \sqrt{\Delta}}{2(n+1)}$. From $\sqrt{\Delta} > [(s-1)n^2 - sn - (s-1)] + 1$ it follows that $h < 2s - \frac{2s+1}{2(n+1)} < 2s$.

Thus, there is no plane with two secant lines. It follows that if r is a secant line, then there is no point of \mathcal{K} outside r. Since every plane meets \mathcal{K} , and there are $(n^2 + n)(n + 1)$ planes it follows that $sn^2 + n + 1 = (n^2 + 1)(n + 1)$, that is s = n + 1. So, \mathcal{K} is a line of length n + 1 of S.

10 Lemma. $z \ge 0$.

PROOF. Assume z < 0. Let $z' = \frac{z}{n}$, then Equation (18) becomes

$$(n+1)h^2 - (sn^2 - n^2 + s + 3sn + 1 - z')h + (n+1)s(sn+1) = 0.$$
 (20)

Let Δ be the discriminant of Equation (19) and let Δ' be the discriminant of Equation (20), and let h'_1, h'_2 be the roots of equation (20), and h_1, h_2 be the roots of Equation (19), as above. Then $\Delta' > \Delta$.

Thus,

$$\begin{aligned} h_2' = & \frac{(sn^2 - n^2 + s + 3sn + 1 - z') + \sqrt{\Delta'}}{2(n+1)} \\ > & \frac{(sn^2 - n^2 + s + 3sn + 1) + \sqrt{\Delta}}{2(n+1)} - \frac{z'}{2(n+1)} \\ = & \frac{(n^2 + 3n + 1)s - (n^2 - 1) + \sqrt{\Delta}}{2(n+1)} - \frac{z'}{2(n+1)} \\ = & h_2 - \frac{z'}{2(n+1)} > n + 1 - \frac{z'}{2(n+1)} > n + 1, \end{aligned}$$

which cannot occur since $h \leq n+1$.

Moreover, since $h'_1h'_2 = h_1h_2 = s(sn + 1)$, from $h'_2 > h_2$ it follows that $h'_1 < h_1 < 2s$.

Hence, there is no plane with two secant lines. It follows that if r is a secant line, then there is no point of \mathcal{K} outside r. Since every plane meets \mathcal{K} , and there

are $(n^2 + n)(n + 1)$ planes it follows that $sn^2 + n + 1 = c \le n^3 + n^2 + n$, that is $s \le n$. Let α be a plane through r, and let ℓ be a line of α disjoint from r. Any plane through r, different from α , is disjoint with r, that is there are planes disjoint with \mathcal{K} , a contradiction.

11 Lemma. If \mathcal{K} is either a line of length n + 1 or an ovoid then z = 0.

PROOF. If \mathcal{K} is a line of length n+1, then it intersects all the planes of the planar space, and so $c = (n+1)n^2 + n + 1 = n^3 + n^2 + n + 1$.

Now, let \mathcal{K} be an ovoid of S. Then, $k = n^2 + 1$, and every secant line is 2–secant.

From k = s + (n+1)(h-s), it follows that h = n+1. Then by Equation (18) it follows that z = 0.

The previous Lemmata proves Theorem I.

References

- P. BIONDI: An embedding theorem for finite planar spaces, Rend. Circ. Mat. Palermo, serie II, tomo XLVII (1998), 265–276.
- [2] J. DOYEN, X. HUBAUT: Finite regular locally projective spaces, Math. Z., 119 (1971), 83–88.
- [3] M.J. DE RESMINI: On k-sets of type (m,n) in a Steiner S(2, l, v), London Math. Soc. Lecture Note Ser. 49, Cambridge Univ. Press, Cambridge-New York (1981).
- [4] M.J. DE RESMINI: On sets of type (m, n) in BIBD's with λ ≥ 2, Ann. Discrete Math., 14 (1982), 183–206.
- [5] N. DURANTE, V. NAPOLITANO, D. OLANDA: On k-sets of class [1, h] in a planar space, Atti Sem. Mat. Fis. Univ. Modena, L (2002), 305–312.
- [6] W.M. KANTOR: Dimension and embedding theorems for geometric lattices, J. Combin. Theory (A), 17 (1974), 173–195.
- [7] S.M. KIM: Sets of type (1, n) in biplanes, European J. Combin., 25 (2004), 745–756.
- [8] M. TALLINI SCAFATI, G. TALLINI: Geometria di Galois e teoria dei codici, C.I.S.U. (1995).
- [9] G. TALLINI: Ovoid and caps in planar spaces, Annals of Discrete Math., 30 (1986), 347– 354.
- [10] J.A. THAS: On a combinatorial problem, Geom. Ded., 2 (1973), 236-240.