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Abstract. If G is an arbitrary abelian p-group, an invariant KG is defined which measures
how closely G resembles a direct sum of cyclic groups. This invariant consists of a class of finite
sets of regular cardinals, and is inductively constructed using filtrations of various subgroups
of G; KG can also be considered to be a measure of the presence of non-zero elements of
infinite height in G. This construction is particularly useful when the group has final rank
less than the smallest weakly Mahlo cardinal; and in this case, G is a direct sum of cyclics iff
KG is empty. These deliberations are then used to place several of the most significant results
relating to direct sums of cyclics into a significantly broader context. For example, G is shown
to be almost a direct sum of cyclics iff every set in KG has at least two elements. Finally, KG

is used to give a more complete and concrete answer to a classical problem of Nunke, which
asks when the torsion product of two abelian p-groups is a direct sum of cyclics.
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1 Introduction

One of the most frequently encountered questions in the study of abelian
p-groups is to determine when a group G is isomorphic to a direct sum of cyclics;
such groups we will refer to as Σ-cyclic. This leads to the following interesting
question: Is there a way to describe, or even measure, just how far an arbitrary
abelian p-group G is from being Σ-cyclic? In this paper, one strikingly compact
and concrete answer is given to this question.

To begin, by the term “group” we will mean an abelian p-group, where p is a
prime fixed for the duration. Our terminology and notation will generally follow
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[5], and we will on occasion refer the reader to [4] for set-theoretic material.
Note that if a group G is Σ-cyclic, then it can have no non-zero elements of
infinite height, and in fact, if G is countable, then this condition is not only
necessary, but also sufficient. The main purpose of this paper is to inductively
generalize this observation to groups of larger cardinalities. We begin with some
terminology:

Suppose Q is a class of ordinals (which may or may not be a set). Usually
Q will be the class of uncountable regular cardinals, which we denote by R, but
Q might also be a particular ordinal α, which we identify with the collection of
all smaller ordinals. We now let Qf denote the class of finite subsets of Q. By
a Qf -antichain we mean a set M of finite subsets of Q (i.e., a subset of Qf )
such that whenever S, T ∈ M and S ⊆ T , then S = T . Given a Qf -antichain
M , let K be the class of all T ∈ Qf such that S ⊆ T for some S ∈M . We call
such a class a QK-invariant and we say M generates K. Note that if K is a
QK-invariant, then the set of minimal subsets of K under the inclusion ordering
is precisely M , and if S ∈ K and S ⊆ T ∈ Qf , then T ∈ K. Conversely, if K
is a subclass of Qf such that S ∈ K and S ⊆ T ∈ Qf implies T ∈ K, then the
collection of minimal sets for K is a set exactly when there is an α such that
T ∈ K iff T ∩α ∈ K; and if this happens, then K is the QK-invariant generated
by these minimal sets. We will write MK for the Qf -antichain corresponding to
K ∈ QK and KM for the QK-invariant generated by M .

We now point out two special, and extreme, cases of the above notions: If
M = ∅, then KM = ∅, which we denote by 0Q, and if M = {∅}, then KM = Qf ,
which we denote by 1Q. Note that the class of all QK-invariants, which we
denote by QK , is partially ordered by inclusion and 0Q is its least element and
1Q is its greatest element.

Putting this terminology to work, for any group G, we will inductively define
an RK-invariant, which we denote by KG, whose corresponding Rf -antichain of
minimal sets we will denote by MG. The elements of KG or MG can be viewed
as “obstructions” to G breaking apart into a direct sum of cyclics.

The first section of the paper is devoted to setting up this definition and ex-
ploring its basic properties; e.g., G will be separable iff KG �= 1R (Lemma 1(a)),
and these RK-invariants behave well with respect to subgroups (Lemma 1(c))
and direct sums (Theorem 3(a)). If G is Σ-cyclic, then it easily follows that
KG = 0G (Theorem 3(b)). On the other hand, if KG = 0G and the final rank of
G is strictly less than the first weakly Mahlo cardinal, then G is Σ-cyclic (The-
orem 6 - an uncountable regular cardinal κ is weakly Mahlo if the collection of
regular cardinals τ < κ is stationary in κ; in particular, a weakly Mahlo cardinal
is weakly inaccessible, i.e., a regular limit cardinal). We let δm denote the least
weakly Mahlo cardinal, if that exists, and otherwise, we let δm = ∞. We say
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G is a δm-group if its final rank is strictly less than δm. Assuming the axiom
of constructibility (V=L), we prove that if M is an Rf -antichain such that no
element of ∪M is (weakly) Mahlo, then there is a group G such that MG = M
(Theorem 10).

In the second section we relate these invariants to some other well known
aspects of the theory of Σ-cyclic groups. In particular, we present generalizations
of the following results:

(Hill - see [8]) If G is the ascending union of a (countable) sequence of pure
subgroups Gn which are all Σ-cyclic, then the same holds for G. We generalize
this by showing that if κ is a regular cardinal (i.e., κ ∈ {ℵ0} ∪ R) and G is the
smoothly ascending union of pure subgroups Gi for i < κ, then {T ∈ KG | κ �∈
T } is the union of the classes {T ∈ KGi

| κ �∈ T } (Theorem 14). Note that if
κ = ℵ0, this just says KG = ∪KGi

; and so if G is a δm-group, then Hill’s result
follows as a special case (where each KGi

= 0R).

(Danchev and Keef - see [1]) If A and G are separable groups, and g : A→ G
is an ω1-bijection (i.e., the kernel and cokernel of g are countable), then A is
Σ-cyclic iff G is Σ-cyclic. We generalize this to show that if κ is a cardinal and
g is a κ-bijection (i.e., the kernel and cokernel of g have cardinality less than
κ), then KA and KG essentially only differ by elements of κf (Theorem 16). In
particular, if κ = ℵ1, then this implies that KA = KG; and again, if in addition
A and G are δm-groups, then the above result of [1] follows.

(Dieudonne - see [2]) If A is a subgroup of G and C = G/A is Σ-cyclic, then
G is Σ-cyclic iff A is contained in a pure subgroup B of G which is Σ-cyclic.
We generalize this to show that if K ∈ RK , and KC ⊆ K, then KG ⊆ K iff A is
contained in a pure subgroup B of G such that KB ⊆ K (Theorem 20). Again,
if G is a δm-group and K = 0R, then the above result of Dieudonne follows.

It should perhaps be emphasized that our approach allows all three results
pertaining to Σ-cyclic groups to be generalized in such a way that they apply
to the entire class of groups, though admittedly, these work best in the case of
δm-groups.

We next relate our invariants to an interesting class of groups defined by Hill
in [9]: The separable group G is said to be almost Σ-cyclic if it has a collection
of closed (in the p-adic topology) subgroups which is closed under ascending
unions and such that for any countable X ⊆ G, there is a countable member
of the collection C such that X ⊆ C (Hill used the equivalent terminology
“almost a coproduct of cyclics”). We characterize this class using RK-invariants
by showing that a group G is almost Σ-cyclic iff every element of KG has at
least two elements (Theorem 26). In particular, this characterization allows us
to answer the following question of [9]: Is a summand of an almost Σ-cyclic
group also a member of this class? In fact, we show that the class of almost
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Σ-cyclic groups is actually closed under arbitrary subgroups (Corollary 27). We
also use this characterization to verify that the all the above results for Σ-
cyclic groups can be generalized to results pertaining to almost Σ-cyclic groups
(Corollaries 28, 29 and 30).

Since MG is an invariant of G, it follows that so is ∩MG, and in Theorem 33
we describe the elements of this set. We use this to obtain a new characterization
of Σ-cyclic δm-groups using ascending chain of subgroups, at least in the context
of Gödel axiom of constructibility (Corollary 34).

This paper grew out of and generalizes [15], where the following fundamen-
tal problem of R. Nunke on the torsion product was considered: Under what
circumstances is the torsion product of two groups Σ-cyclic (see also [16], [17],
[18], [7], [14], [11], [12] and [13])? The approach to this problem given in this
paper has at least three important advantages, however. First, it is consider-
ably more concrete, and correspondingly less abstract. In addition, several of
the key results in [15] were limited to groups whose final ranks did not exceed
the first weakly inaccessible cardinal, whereas in this paper, we are able to han-
dle all groups whose final ranks do not exceed the first weakly Mahlo cardinal,
which is considerably larger. And finally, the techniques of this paper are much
easier to apply to questions not involving the torsion p! roduct, such as the
study of almost Σ-cyclic groups. These two approaches are specifically related
in Theorem 12.

In the torsion-free case, Nunke’s problem is somewhat reminiscent of the
famousWhitehead problem, which asks if Ext(G, Z) = {0} implies thatG is free;
both questions ask when certain homologically defined groups are Σ-cyclic. In his
seminal work on the undecidability of the Whitehead problem, Shelah utilized
a construction referred to as a λ-system (see section VII.3 of [4]). Consequently,
it is perhaps unsurprising that there is a more than passing similarity between
the techniques used to construct KG and the construction of a λ-system of a
torsion-free abelian group.

We will denote the torsion product of the groupsG andH by the (admittedly
non-standard) notation G � H. One of the main reasons for this convention
(originally suggested by Claudia Metelli) is that it emphasizes the multiplicative
nature of the functor. For example, from the very beginning of the study of Tor,
the consideration of iterated products, G1� · · ·�Gn, has played an important
role (see [16], [18]). In particular, if we define Gn = G� · · · � G, it is natural
to ask the nilpotent version of Nunke’s problem: For what groups G does there
exist an integer n such that Gn is Σ-cyclic? Such a group we call K-nilpotent
and the smallest such n (if it exists) we refer to as the K-index of G.

We define a natural product structure on RK and show that for all groups
G and H, KG
H = KGKH (Theorem 4). It follows that when G and H are
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δm-groups, that G�H is Σ-cyclic iff KG and KH are never disjoint (i.e., for all
S ∈ KG and T ∈ KH , S ∩ T �= ∅ - Corollary 8).

In the third section, we use RK-invariants to give a more detailed analysis
of Nunke’s problem. If K ∈ QK , we are led to define its K-complement, denoted
K⊥ ∈ QK , as the set of all S ∈ Qf such that S ∩ T �= ∅ for all T ∈ K.
The assignment K → K⊥⊥ determines a closure operation on QK (Lemma 36)
and the topological properties of QK are closely related to its multiplicative
properties. For example, we show (Theorem 50) that K has infinite K-index
(i.e., Kn �= 0Q for every n < ω) iff K is dense (i.e., K = K⊥⊥ = 1Q).

Nunke’s problem naturally leads to the consideration of RK-invariants of
the form K = J⊥ for some J ∈ RK , which are precisely those that are closed
in the above topology. If K ∈ QK , then K is closed whenever MK is finite
(Corollary 43). This is not the case when MK is infinite but we are able to
characterize precisely when a given QK-invariant is closed using subsets of MK

which are Δ-systems (i.e., families of sets, any distinct pair of which intersect in
a fixed set, called the root of the system – Theorem 42). Perhaps surprisingly,
this characterization implies that the property of being closed only depends
upon a countable subset of Q (Corollary 44). In addition, we are able to prove
that closure preserves products (Theorem 47).

We give a particularly satisfying answer to the nilpotent version of Nunke’s
problem (Theorem 55), again, at least for δm-groups. The general and nilpotent
versions of Nunke’s problem are closely related due to the following fact: A δm-
group G is a “zero divisor” (i.e., there is a group H which is not Σ-cyclic such
that G � H is Σ-cyclic) iff it is K-nilpotent. In other words, the groups that
arise in answering Nunke’s problem are precisely the K-nilpotent groups.

2 Rf-antichains and RK-invariants

Given a group G, we inductively define KG ⊆ Rf as follows: If pωG �= {0},
then T ∈ KG for all T ∈ Rf ; and if pωG = {0}, then T ∈ KG iff

(†) There is a κ ∈ T such that if T ′ = κ∩ T = {β ∈ T | β < κ }, then G has
a subgroup A of cardinality κ, with a filtration A = {Ai | 0 < i < κ } such that

ΓT ′(A) = { 0 < i < κ | T ′ ∈ KA/Ai
}

is stationary in κ, i.e., for any CUB (closed and unbounded) subset C ⊆ κ,
C ∩ ΓT ′(A) is non-empty. Observe that we do not assume the filtration starts
at A0 = {0}, or is even defined for i = 0, though there will be occasions when
we demand these conditions be satisfied. Of course, we let MG be the minimal
elements of KG under set inclusion.
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Note that we will only be concerned with whether ΓT ′(A) is stationary in
κ. If A′ is another filtration of A, it follows that A and A′ will agree on a CUB
subset of κ, so that the property that ΓT ′(A) is stationary does not depend
upon which filtration is chosen. As a result, we will often, without comment,
replace one filtration by another, e.g., one composed of pure subgroups.

1 Lemma. Suppose G is a group. The following hold:

(a) KG = 1R iff pωG �= {0} (i.e., G is not separable);

(b) KG ∈ Rf ;

(c) If H is a subgroup of G, then KH ⊆ KG;

(d) If T ∈MG is non-empty and κ is the largest element of T , then there is a
subgroup A of G of cardinality κ such that T ∈MA;

Proof. (a): If G is not separable, then it immediately follows from the
definition that KG = 1R. On the other and, if G is separable, then (†) implies
that every T ∈ KG is non-empty, so that KG �= 1G.

(b): We use induction, so suppose T ∈ KG, T ⊆ S ∈ Rf with n = |S|. If
G is not separable, then KG = 1R, and S ∈ KG. On the other hand, if G is
separable, then select κ ∈ T and A ⊆ G as in (†). By induction on n, for all
i ∈ ΓT ′(A), T ′ ⊆ S′ = S ∩ κ implies S′ ∈ KA/Ai

, so that S ∈ KG, as required.
In addition, if γ is any cardinal greater than |G|, then it is easy to check that
T ∈ KG iff T ∩ γ ∈ KG, so that MG is a set, as required.

(c): If G is not separable, then KG = 1R, and the result follows. If G is
separable, then so is H. In this case, if T ∈ KH together with A ⊆ H and κ ∈ T
satisfies (†) for H, then it also satisfies (†) for G, so that T ∈ KG, as required

(d): Note ∅ �∈ KG, so G is separable. Choose κ′ ∈ KG and A ⊆ G satisfying
(†). It follows that T ′′ = { τ ∈ T | τ ≤ κ′ } together with A also satisfies (†), so
that T ′′ ∈ KA ⊆ KG. The minimality of T , however, implies that T = T ′′ ∈MA,
and that κ = κ′ = |A|, as required. QED

Mimicking (†), if T ∈ Rf , then a group H of regular cardinality κ will be
said to be T -stationary if for some filtration {Hi}i<κ of H,

ΓT (H) = { i < κ | T ∈ KH/Hi
}

is stationary in κ.

2 Lemma. Suppose T ∈ Rf and H is a group of cardinality κ ∈ R.

(a) If H is T -stationary and κ �∈ T , then T ∪ {κ} ∈ KH ∈ RK ;

(b) If T ∈MH , κ ∈ T and T ′ = T − {κ} then H is T ′-stationary.
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Proof. Regarding (a), if H is not separable, then this follows from KH =
1R. Otherwise, T ∪{k} and A = H clearly satisfies (†). As to (b), choose κ0 ∈ T
and A as in (†). Note that if κ0 < κ, then T0 = { t ∈ T | t ≤ κ0 } will be in
KH contradicting the minimality of T . We may therefore assume that κ0 = κ.
If H = {Hi}i<κ is a filtration of H, then A = {Hi ∩ A}i<κ is a filtration of A.
Since A/(Hi ∩A) embeds in H/Hi, it follows that ΓT ′(A) ⊆ ΓT ′(H), so that H
is T ′-stationary. QED

3 Theorem. Suppose G is a group.

(a) If G = ⊕i∈IGi, then KG = ∪i∈IKGi
;

(b) If G is Σ-cyclic, then KG = 0R.

Proof. Regarding (a), the containment ⊇ follows from Lemma 1(c). Once
again we prove the converse by inducting on n = |T |, so suppose T ∈ MG; we
will be done if we can show that T is in KGi

for some i ∈ I. Note G is not
separable iff some Gi is not separable, so the result follows in this case; so we
may assume all these groups are separable and T �= ∅. If κ is the largest element
of T , choose A as in Lemma 1(d). In fact, after possibly expanding A without
altering its cardinality, we may assume A = ⊕j∈JAj , where Aj is a subgroup
of Gj of cardinality at most κ and J ⊆ I also has cardinality at most κ. In
fact, we will assume that J = λ ≤ κ. We claim that there is a j < λ such that
T ∈ KAj

, which will imply that T ∈ KGj
, proving the result. So assume that

this does not hold. Note that we certainly cannot have T ′ = T − {κ} ∈ KAj
for

any j < λ, since this would immediately imply that T ∈ KAj
, as well.

Let Aj = {Aj,�}�<κ be defined as follows: If |Aj | < κ, let Aj,� = Aj , and if
|Aj | = κ, let it be a filtration of Aj such that T ′ �∈ KAj/Aj,�

for all � < κ. If
for each � < κ, B� = ⊕j<�Aj,�, then B = {B�}�<κ is a filtration of A. Now, by
induction on n, for all j < κ we have

T ′ �∈ K[⊕j<�Aj/Aj,�]⊕[⊕�≤j<κAj ] = KA/B�
,

however, this implies that ΓT ′(A) is not stationary in κ, contrary to Lemma 2(b).
Turning to (b), it is easily checked that if Gi is cyclic, then KGi

= 0R, so
that the result follows from (a) QED

If Q is a class of ordinals, we now define a product on QK : If K and L are
QK-invariants, let

KL = {U ∈ Qf | U = S ∪ T for some disjoint sets S ∈ K, and T ∈ L }.
It is easy to verify that KL is another QK-invariant. Equivalently, in this def-
inition we can require that S ∈ MK and T ∈ ML are disjoint and S ∪ T ⊆ U .
It can readily be checked that the product is associative and commutative, and
that for all K ∈ QK , 0QK = 0Q and 1QK = K.



90 B. A. Balof, P. W. Keef

4 Theorem. If G and H are groups, then their RK-invariants satisfy

KG
H = KGKH .

Proof. Let T ∈ Rf ; we show by induction on n = |T | that T ∈ KG
H

iff T ∈ KGKH . Note first that if n = 0, then it follows trivially, since G� H
has a non-zero element of infinite height iff both G and H have such elements
(see, for example, 62.4 of [5]). So assume the result holds for all groups G and
H and all finite sets of regular cardinals of size less than n. Let κ be the largest
element of T and T ′ = T − {κ}.

Assume that T ∈ KG
H . Note that if T ′′ ∈ KG
H were a proper subset of T ,
then by induction on n, T ′′ ∈ KGKH , so that T ∈ KGKH as required; we may
therefore assume T ∈MG
H . By Lemmas 1(d) and 2(b) there is a subgroup A
of G of cardinality κ which is T ′-stationary. After possibly expanding A a bit, we
may assume A = B�C, where B and C are subgroups of G and H respectively,
and max{|B|, |C|} = κ. We will be done if we can show T ∈ KBKC ⊆ KGKH ; in
fact, after possibly replacing these groups by direct sums of copies of themselves
(which by Theorem 3(a) does not affect their RK-invariants), we may assume
that B and C have cardinality κ.

Let {Bi}i<κ and {Ci}i<κ be pure filtrations of B and C respectively. So for
each i < κ, the kernel of the obvious map

B � C → [(B/Bi)� C]⊕ [B � (C/Ci)]

is
(Bi � C) ∩ (B � Ci) = Bi � Ci,

(see, for example, Lemma 7 of [18]) so that there is an embedding

(B � C)/(Bi � Ci)→ [(B/Bi)� C]⊕ [B � (C/Ci)]

It follows that either T ′ ∈ K(B/Bi)
C for all i in some stationary set S0 ⊆
ΓT ′(B�C) or T ′ ∈ KB
(C/Ci) for all i in some stationary set S1 ⊆ ΓT ′(B�C).
Without loss of generality, assume that the former condition holds. Then by
induction on n, for each i ∈ S0, T

′ is the disjoint union of some Ti,B ∈ KB/Bi

and Ti,C ∈ KC . Since there are only a finite number of ways to so represent T ′,
it follows that there is a stationary subset S2 ⊆ S0 such that for all i, j ∈ S2,
Ti,B = Tj,B and Ti,C = Tj,C . Let T ′

B be the former set and TC be the latter.
It follows from Lemma 2(a) that if we let TB = T ′

B ∪ {κ}, then TB ∈ KB and
TC ∈ KC are disjoint and T = TB ∪ TC ∈ KBKC ⊆ KGKH , as required.

Conversely, suppose T is the disjoint union of T0 ∈ KG and T1 ∈ KH .
Without loss of generality, assume κ ∈ T0. Note that induction on n again
implies that there is no loss of generality in assuming T0 ∈ MG. Let T

′
0 = { t ∈
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T0 | t < κ }; so again by Lemmas 1(d) and 2(b) there is a subgroup B of G
with |B| = κ which is T ′

0-stationary; let B = {Bi}i<κ be a pure filtration of B.
By (†), there is a subgroup C of H such that |C| < κ and T1 ∈ KC . Note that
{Bi�C}i<κ is a filtration of B�C and for all i ∈ ΓT ′

0
(B) we have a pure exact

sequence:
0→ Bi � C → B � C → (B/Bi)� C → 0

(see, for example, 63.2 of [5]). By induction,

T ′ = T ′
0 ∪ T1 ∈ K[(B/Bi)
C] = K[(B
C)/(Bi
C)].

However, using Lemma 2(a) again, this means that T ∈ KB
C ⊆ KG
H , as
required. QED

We pause to recall a few more standard definitions: If κ is an uncountable
cardinal, then the group G is κ-Σ-cyclic if every subgroup A of G with |A| < κ
is Σ-cyclic. The subgroup A of G is said to be κ-pure if it is a summand of every
subgroup C of G for which A ⊆ C and |C/A| < κ. Finally, the κ-Σ-cyclic group
G is strongly κ-Σ-cyclic if every subgroup B ⊆ G with |B| < κ is contained in
a κ-pure subgroup A with |A| < κ. We will also adopt the convention that any
group is strongly ℵ0-Σ-cyclic.

5 Lemma. Suppose G is a group and κ is an uncountable cardinal.

(a) If κ is singular, then G is κ-Σ-cyclic iff it is κ+-Σ-cyclic (where κ+ is the
next largest cardinal);

(b) If κ is regular and G is κ-Σ-cyclic, then KG ∩ κf = ∅ (i.e., no element of
KG consists entirely of regular cardinals smaller than κ).

Proof. Clearly (a) is a consequence of Shelah’s Singular Compactness The-
orem (see, for example, [3]). Regarding (b), if T ∈ KG and T ⊆ κ, then there
is a subgroup A of G such that |A| < κ and T ∈ KA. It follows that A is not
Σ-cyclic and hence G is not κ-Σ-cyclic. QED

A regular cardinal κ is weakly Mahlo if { τ < κ | τ ∈ R} is stationary in κ.
Let M denote the class of all weakly Mahlo cardinals; if M is non-empty, let
δm be its smallest element, and otherwise, let δm =∞. We say G is a δm-group
if its final rank is less than δm. Note that since any group G is isomorphic to a
direct sum B⊕G′, where B is bounded and the rank and final rank of G′ agree,
the terms “cardinality” and “final rank” are often interchangeable.

6 Theorem. A δm-group G is Σ-cyclic iff KG = 0R.

Proof. By Theorem 3(b), if G is Σ-cyclic, thenKG = 0R, so we concentrate
on the converse, inducting on κ = |G|. Note that if κ = ℵ0, the result is well
known; so assume the result is valid for all groups of smaller cardinality than
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κ. Next, if κ is singular, then for all subgroups A of G with |A| < κ, we have
KA ⊆ KG = 0R, so that A is Σ-cyclic by induction. It follows from the Singular
Compactness Theorem that G is Σ-cyclic, as well.

Therefore, we may assume that κ is regular. Consider first the case where
κ is isolated, i.e., κ = ℵβ+1 for some ordinal β. Note that by induction, G is
κ-Σ-cyclic. In addition, for any finite subset T of R∩κ = { τ ∈ R | τ < κ }, since
T ∪{κ} is not in KG, there is a filtration GT = {AT,i}i<κ of G consisting of pure
subgroups such that T �∈ KG/AT,i

for all i < κ. Since the number of such finite
subsets is at most ℵβ , it follows that G = ∩TGT will also be a filtration of G. If
we index G = {Ai}i<κ, and we let A0 = {0}, then for every i < κ, T �∈ KG/Ai

for all finite T ⊆ R ∩ κ. However, this implies that T �∈ KAi+1/Ai
for all finite

T ⊆ R ∩ κ. Since |Ai+1/Ai| < κ, this means that KAi+1/Ai
must be empty,

so that Ai+1/Ai is Σ-cyclic. This, however, implies that G ∼= ⊕i<κ[Ai+1/Ai] is
Σ-cyclic as required.

Suppose next that κ is weakly inaccessible. Let G = {gi}i<κ be an enu-
meration of G [in fact, the reader may wish to simply identify G with κ]. For
each cardinal γ < κ, there are at most γ finite subsets of γ. It follows from the
argument above that there is a filtration Gγ of G consisting of pure subgroups
A such that for each finite set T ⊆ R ∩ γ, T �∈ KG/A. It follows by induction,
then, that for A ∈ Gγ , that G/A is γ-Σ-cyclic. Now, for i < κ, let Gi = G|i|.
Consider the diagonal intersection of the Gi

D = {A | (∀gi ∈ A)A ∈ Gi }
Note that D will also be a filtration of G (see, for example, Proposition II.4.10
of [4]). Since κ is smaller than the first weakly Mahlo cardinal, there is a CUB
subset of κ consisting of singular cardinals; after intersecting D with that CUB,
we may assume that for every A ∈ D, τA = { i < κ | gi ∈ A } is a singular
cardinal. We may also assume that {0} ∈ D. If A ∈ D, then for every cardinal
γ < τA, A ∈ Gγ , so that G/A is γ-Σ-cyclic. However, since τA is singular, this
implies that G/A is τ+A -Σ-cyclic.

Let A′ be the next largest element of D. Since A has cardinality τA, we can
conclude that A′ ∼= A0 ⊕ A1, where A ⊆ A0 and A0 and A1 are Σ-cyclic and
A0 also has cardinality τA. Since G/A is τ+A -Σ-cyclic, A0/A is also Σ-cyclic; and
since A is pure in A0, there is a spitting A0 = A⊕A′

0. It follows that each A is
a summand of each A′, whose complementary summand CA

∼= A′
0 ⊕A1 will be

Σ-cyclic. Therefore, G ∼= ⊕A∈DCA is Σ-cyclic, as required. QED

7 Corollary. Suppose G is a group, κ ∈ R and κ ≤ δm. Then G is κ-Σ-
cyclic iff KG ∩ κf = ∅.

Proof. One direction following from Lemma 5(b), assume A is a subgroup
of G of cardinality less than κ; then MA ⊆ KG ∩ κf , so if the latter is empty
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then MA must always be empty, so that A must always be Σ-cyclic. QED

If Q is a class of ordinals and K ∈ QK , then let K⊥ denote the collection of
all S ∈ Qf such that S is not disjoint from any element ofK, or equivalently, S is
not disjoint from any element of MK . We will refer to K⊥ as the K-complement
of K. Note that for J,K ∈ QK , we have JK = 0Q iff J ⊆ K⊥ iff K ⊆ J⊥. The
following expresses the above results in this new notation:

8 Corollary. Suppose G and H are groups.

(a) If G�H is Σ-cyclic, then KGKH = 0R (or equivalently, KG ⊆ KH
⊥, or

KH ⊆ KG
⊥).

(b) Conversely, if G and H are δm-groups and KGKH = 0R (or equivalently,
KG ⊆ KH

⊥, or KH ⊆ KG
⊥), then G�H is Σ-cyclic.

We now prove a significant realization theorem. Before doing so, recall that
a stationary subset E ⊆ κ is non-reflecting if

{ γ ∈ E | cf(γ) > ℵ0 and E ∩ γ is stationary in γ } = ∅.

If T ∈ Rf , we say a group G is T -principal if MG = {T}.
9 Lemma. (V=L) Assuming the axiom of constructibility, suppose T is

a finite subset of R −M. If T = ∅, let κ = ℵ0, and otherwise, let κ be the
greatest element of T ; then there is a strongly κ-Σ-cyclic, T -principal group G
of cardinality κ.

Proof. As usual, we induct on n = |T |. If n = 0, then we can simply let
G be any countable, non-separable group. Next, suppose the result is valid for
finite subsets of R−M of size less than n = |T | > 0.

Let T ′ = T − {κ} and κ′ be defined from T ′ as was κ from T . By our
induction hypothesis, there is a group G′ which is a strongly κ′-Σ-cyclic T ′-
principal group of cardinality κ′. Let D = { i < κ | i > κ′ is a limit ordinal of
cofinality κ′ }. Clearly, D is a stationary subset of κ (since the κ′-th element of
any CUB is a member of D). It follows from Theorem VI.3.13 of [4] that D has
a non-reflecting stationary subset E ⊆ D. There is a strongly κ-Σ-cyclic group
G, with a filtration A = {Ai}i<κ such that:

(a) If i �∈ E, then Ai is κ-pure in G;

(b) If i ∈ E, then Ai+1/Ai
∼= G′.

(The verification of this claim closely mimics the, by now, standard construc-
tion of strongly κ-free groups contained in Theorem VII.2.3 of [4], and will be
omitted.)
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We need to show that this G is T -principal; since G and T clearly satisfy (†),
we can conclude that T ∈ KG. Consequently, we need to verify that if T0 is a
finite subset of R which does not contain T , then T0 �∈ KG. Suppose, therefore,
that T �⊆ T0 and T0 ∈ KG. Choose κ0 ∈ K0 as in (†); note that if κ0 < κ, then
it would follow that T0 ∈ KG0 for some subgroup G0 of G of smaller cardinality.
However, G is κ-Σ-cyclic, so this is impossible. Therefore, we must have κ0 = κ.

If T ′
0 = T0 − {κ}, then T ′ �⊆ T ′

0, and so T ′
0 �∈ KG′ . If for some i ∈ E we had

T ′
0 ∈ KG/Ai

, then there would be a j > i such that T ′
0 ∈ KAj/Ai

. But Ai+1 is
κ-pure in G, so that Aj/Ai

∼= (Aj/Ai+1)⊕G′, and in this sum, the first term is
Σ-cyclic. This implies that T ′

0 cannot be an element of KG/Ai
.

On the other hand, if i �∈ E, then G/Ai is κ-Σ-cyclic, so that it follows that
T ′
0 �∈ KG/Ai

. We can conclude that T0 �∈ KG, and this contradiction proves the
result. QED

10 Theorem. (V=L) Assuming the axiom of constructibility, if M is an
Rf -antichain such that (∪M) ∩ M = ∅, then there is a group G such that
MG = M .

Proof. For each T ∈ M , let GT be T -principal group, and let G = ⊕T∈M

GT . Using Theorem 3(a), it is easily checked that MG = M . QED

We now present a natural way to “measure” how close a group G is to being
Σ-cyclic. If A is a non-empty collection of finite sets, let

‖A‖ = min{ |S| | S ∈ A }.
If K ∈ QK , we define

c(K) =

{
2−‖K‖, if K �= 0Q;

0, if K = 0Q.
(1.1)

(we could clearly have used MK in this definition instead of K); and if G is
a group, we let c(G) = c(KG). We summarize a few elementary properties of
these definitions in the following:

11 Theorem. The following hold:

(a) If G is a group, then c(G) = 1 iff G has elements of infinite height;

(b) If G is Σ-cyclic, then c(G) = 0;

(c) If G is a δm-group and c(G) = 0, then G is Σ-cyclic;

(d) If H is a subgroup of G, then c(H) ≤ c(G);

(e) If {Gi}i∈I is a collection of groups, then c(⊕i∈IGi) = sup{ c(Gi) | i ∈
I } = c(Gi) for some i ∈ I;
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(f) If G and H are groups, then c(G�H) ≤ c(G)c(H).

Proof. These follow either directly from the definitions, or from Lemma 1,
and Theorems 3, 4 and 6. QED

The last result of this section describes how the results of [15] can be reduced
to the techniques presented above. Since our approach in this paper is not only
more general than that of [15], but is also self-contained, we will omit its proof.
In that work, for every ordinal α, a partially ordered set Pα was defined, and
for every group G, an invariant μα(G) ∈ Pα was constructed. Since an ordinal
α can be identified with the set of all smaller ordinals, we can speak of αf , αf -
antichains, αK-invariants and αK . Let θα : α → R be defined by θ(β) = ℵβ+1,
so that θα enumerates all the isolated (and hence regular) cardinals less than
ℵα+1. A natural induction can be used to prove the following:

12 Theorem. If α is an ordinal, then there is a natural order and product
preserving bijection φα : Pα → αK such that if G is a group, then

φα(μα(G)) = {S ∈ αf | θα(S) ∈ KG }.

Theorem 12 implies that the results of [15] can be obtained simply by re-
stricting our attention in this paper to the class of isolated (and hence regular)
cardinals. The current approach, therefore, allows us to extend these notions
to regular limit cardinals, though some of the same kind of limitations that
occurred in [15] at weakly inaccessible cardinals reoccur in the present context
at those cardinals that are weakly Mahlo.

3 Applications to groups

We begin this section by observing that our results really only depend upon
the behavior of the socles of groups (i.e., G[p] = {x ∈ G | px = 0 }). To that end,
suppose Hω+1 is the “generalized Prüfer group” of length ω+1. For a group G,
let G′ = G�Hω+1. Note that G′ will be pω+1-projective (i.e., pω+1Ext(G,X) =
{0} for all X) and two such groups are isomorphic iff there is an isometry (i.e.,
an isomorphism that preserves heights) between their respective socles (see, for
example, [6]).

The following is a generalization of the classical result that when G and H
are both pω-high subgroups of A (i.e., maximal with respect to the property
pωA ∩G = {0}), and G is Σ-cyclic, then so is H (see, for example, [10]); and if
A is a δm-group, it actually implies that result:

13 Theorem. Suppose G and H are groups. The following hold:

(a) KG = KG′ ;
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(b) If there is an isometry f : G[p]→ H[p], then KG = KH ;

(c) If G and H are both pω-high subgroups of A (i.e., maximal with respect to
the property pωA ∩G = {0}), then KG = KH .

Proof. Regarding (a), by Theorem 4, KG′ = KGKHω+1 = KG1R = KG.
Now, (b) then follows, since the isometry f induces an isometry f ′ : G′[p] →
H ′[p]; but since G′ and H ′ are pω+1-projective, it follows that G′ ∼= H ′, so that
KG = KG′ = KH′ = KH . Finally, (c) follows from (b) and the fact that when G
and H are pω-high subgroups of A, then there is an isometry f : G[p] → H[p].
[This last fact follows from the observation that G[p] and H[p] map to the same
subgroup under the homomorphism A→ A/pωA.] QED

It is a classical result, due to Hill (see [8]), that if G is the ascending union
of a sequence of pure subgroups, {Gi}i<ω, such that each Gi is Σ-cyclic, then G
itself is Σ-cyclic. The following, then, can be viewed as a generalization of that
result (especially for δm-groups).

14 Theorem. Suppose κ is a regular cardinal and G is a group which is
the smoothly ascending union of pure subgroups {Gi}i<κ. Then

{T ∈ KG | κ �∈ T } = ∪i<κ{T ∈ KGi
| κ �∈ T }.

Before we begin, note that if κ = ℵ0, what we are asserting is that KG =
∪i<ωKGi

. In particular, if each KGi
= 0R, then KG = 0R. Therefore, if each Gi

is Σ-cyclic and G is a δm-group, then it follows that G is also Σ-cyclic.

Proof. Since the containment ⊇ is routine, we consider the inclusion ⊆.
We prove by induction on n = |T | that if T ∈ KG and κ �∈ T then there is a
j < κ such that T ∈ KGj

.
Note that if n = 0, then T = ∅. So if T ∈ KG, then G has a non-zero element

of infinite height. Since all the Gj are pure, it would follow that for some j < κ,
Gj would have a non-zero element of infinite height, which is just what is being
asserted.

Suppose, therefore, that we have verified the result for all T0 ∈ KG with
κ �∈ T0 and 0 < |T0| < n, and T ∈ KG, with κ �∈ T and |T | = n. Let γ be the
largest element of T , so that γ �= κ. Note first that if T is not in MG, then it
has a proper subset T1 ∈ MG. By induction, then, there is a j < κ such that
T1 ∈ KGj

, so that T ∈ KGj
, as required. These remarks, therefore, justify the

assumption that T ∈MG.
Find a subgroup H of G such that γ = |H| and T ∈ KH . Since T is minimal

in KG, it follows that T ∈ MH . Consider first the case where γ < κ: it follows
that there is a j < κ such that H ⊆ Gj , and it immediately follows that
T ∈ KH ⊆ KGi

, as required.
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Assume next that γ > κ. Since γ is regular, there is a λ < κ such that
|H ∪Gj | = γ for all γ ≥ λ. Without loss of generality, assume this holds for all
j < κ. After possibly expanding H a bit (without changing its cardinality), we
can also assume that

(a) For all j < κ, H ∩ Gj is pure in Gj , and hence in G, and hence in H,
and |H ∩Gj | = γ;

If T ′ = T − {γ}, then H is T ′-stationary, so let H = {Hi}i<γ be a filtration
of H. Note that [Hi + (H ∩Gj)]/(H ∩Gj) will be a smoothly ascending chain
with union H/(H ∩Gj), so by restricting to a CUB subset, we may assume that
for all i < γ and j < κ,

(b) [Hi + (H ∩Gj)]/(H ∩Gj) is pure in H/(H ∩Gj), and so Hi + (H ∩Gj)
will be pure in H.

Note that this implies that [Hi + (H ∩Gj)]/Hi is a pure subgroup of H/Hi,
and their union over j < κ will be H/Hi.

Let S = ΓT ′(H) ⊆ γ. Then for all i ∈ S, by induction on n, we can conclude
that there is a ji < κ such that T ′ is in the RK-invariant corresponding to

[Hi + (H ∩Gji)]/Hi
∼= (H ∩Gji)/(Hi ∩Gji)

It follows from Fodor’s Lemma (see, for example, Corollary II.4.11 of [4]) that
there is a fixed j0 < κ such that S0 = { i ∈ J | ji = j0 } is stationary in γ.

Since {Hi ∩ Gj0}i<γ is a filtration of H ∩ Gj0 , it follows that H ∩ Gj0 is
T ′-stationary, so by Lemma 2(a), T ∈ KH∩Gj0

⊆ KGj0
, as required. QED

15 Corollary. Suppose G is a group and κ ∈ R.

(a) If G can be expressed as the smoothly ascending union of the pure sub-
groups {Gi}i<κ where each Gi is Σ-cyclic, then κ ∈ ∩MG;

(b) Conversely, in the constructible universe (V=L), if M is an Rf -antichain,
(∪M) ∩ M = ∅ and κ ∈ ∩M , then there is a group G, which can be
expressed as a smoothly ascending chain indexed by κ consisting of pure
Σ-cyclic subgroups, such that MG = M .

Proof. Regarding (a), since KGi
= 0R, it follows that ∪i<κKGi

= 0R, so
that κ ∈ T for all T ∈ KG, and hence κ ∈ T for all T ∈MG.

Turning to (b), if T ∈M , letBT be a group that is T−{κ}-principal. Suppose
A is a {κ}-principal group of cardinality κ that is κ-Σ-cyclic. Note that A can
clearly be expressed as the smoothly ascending union of pure Σ-cyclic subgroups
{Xi}i<κ. It follows that GT = A� BT is the smoothly ascending union of the
pure subgroups {Xi�BT }i<κ, each of which is again Σ-cyclic. Note that GT is
T -principal, and it follows that

G = ⊕T∈MGT
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has all the required properties. QED

Recall that if κ is an infinite cardinal, then a homomorphism g : A → G
is called κ-bijective if its kernel and cokernel have cardinality less than κ. It
is a routine exercise that if A and G are separable groups and g : A → G
is an ω1-bijective homomorphism, then A is Σ-cyclic iff G is Σ-cyclic (see, for
example, [1]). We generalize this observation in the following:

16 Theorem. Suppose A and G are separable groups, κ ∈ R and g : A→ G
is a κ-bijective homomorphism. Then

{T ∈MG | T �⊆ κ } ⊆ KA and {T ∈MA | T �⊆ κ } ⊆ KG.

Proof. Suppose first that T ∈ MA and T �⊆ κ. Since A is separable, T is
non-empty; let τ be the largest element of T , so that τ ≥ κ. If X be the kernel
of g, let γ = max{|X|, |G/g(A)|} < κ. Let H be a subgroup of A of cardinality
τ such that T ∈ KH . Note first that by possibly expanding H a bit, we may
assume X ⊆ H; observe further that T ∈ MA implies that T ∈ MH , so by
Lemma 2(b), H is T ′ = T − {τ}-stationary, and we let {Hi}i<τ be a filtration
of H. Note that for some i0 < τ , X ⊆ Hi0 . It follows that for i ≥ i0, we have

H/Hi
∼= g(H)/g(Hi),

and since T ′ ∈ KH/Hi
for i ranging over a stationary set, it follows from

Lemma 2(a) that T ∈ Kg(H), as well, so that it is also in KG, as desired.
Similarly, suppose T ∈ MG, T �⊆ κ and τ is the greatest element of T .

Again, let H be a subgroup of G of cardinality τ such that T ∈MH . Let Y be
a subgroup of G of cardinality less than κ such that g(A) + Y = G. Note that
replacing H by H + Y does not alter its cardinality or the fact that T ∈ MH .
Again, if T ′ = T − {τ}, then H is T ′-stationary; let {Hi}i<τ be a filtration of
H. It follows that there is an i0 such that Y ⊆ Hi0 . If we let H ′ = g−1(H) and
H ′

i = g−1(Hi), then {H ′
i}i<τ is a filtration of H ′. Now, for every i ≥ i0 we have

(H ∩ g(A)) + Hi = H [since if h ∈ H, then h = x + y, where x ∈ g(A) and
y ∈ Y ⊆ Hi, and it follows that x = h−y ∈ H ∩g(A), as required]. This implies
that there are isomorphisms

H ′/H ′
i
∼= (H ∩ g(A))/(Hi ∩ g(A)) ∼= [(H ∩ g(A)) +Hi]/Hi = H/Hi.

Therefore, H ′ is T ′-stationary, so that T ∈ KH′ ⊆ KA, as required. QED

17 Corollary. Suppose A and G are separable groups and g : A → G is a
κ-bijective homomorphism. Then

{S ∈MA | S ∩ κ = ∅ } = {S ∈MG | S ∩ κ = ∅ }.
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The following observation clearly implies the aforementioned result of [1], at
least for δm-groups, by considering when these RK-invariants equal 0R:

18 Corollary. If A and G are separable groups and g : A → G is an ω1-
bijection, then KA = KG.

19 Corollary. Suppose A, B, G and H are separable δm-groups and g :
A→ G and h : B → H are ω1-bijections. Then A�B is Σ-cyclic iff G�H is
Σ-cyclic.

Proof. Since KA
B = KAKB = KGKH = KG
H , we have KA
B = 0R
iff KG
H = 0R. QED

We now introduce some notation, originally due to Hill (see, e.g., [9]). If A
and B are subgroups of G, we will write A

∥∥B if for all a ∈ A and b ∈ B, if
n < ω and n ≤ htG(a+ b), then there is an x ∈ A∩B such that n ≤ htG(a+x).
Note that this will imply that n ≤ htG(b − x), as well, so that the relation is
symmetric. In Hill’s original definition, n < ω was allowed to be any (possibly
infinite) ordinal, but since we are primarily concerned with separable groups,
this restriction will be appropriate for our uses. We note two easily verified
properties of this definition:

(A) If A and B are infinite subgroups of G, then there is a subgroup A′ con-
taining A such that |A| = |A′| and A′

∥∥B.

(B) If B is a subgroup of G and {Ai}i<λ is an ascending chain of subgroups
of G with union A, then if Ai

∥∥B for all i < λ, then A
∥∥B.

A classical result, due to Dieudonne ( [2]), can be slightly, but equivalently,
reformulated thus: When A is a subgroup of G where C = G/A is Σ-cyclic,
then G is Σ-cyclic iff A is contained in a pure subgroup B of G which is also
Σ-cyclic. The following can be viewed as a generalization of this result, at least
for δm-groups, by letting K = 0R:

20 Theorem. Suppose K ∈ RK , A is a subgroup of G and C = G/A. If
KC ⊆ K, then KG ⊆ K iff A is contained in a pure subgroup B of G such that
KB ⊆ K.

Before beginning, note that we can restate the theorem in the following way:
If A is a subgroup of G and C = G/A, then whenever B is a pure subgroup of
G containing A, we have

KG ∪KC = KB ∪KC .

Again, another way to state this is that with the above notation, if T ∈ KG−KC

and B is a pure subgroup of G containing A, then T ∈ KB.
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Proof. We verify this last way of expressing the result by inducting on
n = |T |. If n = 0, then if T ∈ KG − KC and B is a pure subgroup of G
containing A, then there is a non-zero x ∈ G of infinite height. Since C is
separable, it follows that x + A = 0 + A ∈ C, so that x ∈ A ⊆ B. It therefore
follows that x has infinite height in B, so that T ∈ KB, as required.

We may therefore assume that n > 0, so that T ∈ KG −KC is non-empty,
and let B be some pure subgroup of G containing A. In fact, the induction
hypothesis clearly implies that we may assume that T ∈MG (since if T0 ∈ KG

is a proper subset of T , then T0 �∈ KC , so that by induction T0 ∈ KB, which
gives T ∈ KB). Let κ be the largest element of T , and T ′ = T − {κ} and X
be a T ′-stationary subgroup of G of cardinality κ. Note that after expanding X
while not altering its cardinality, we may assume that BX = B∩X is pure in X.
Let AX = A ∩X ⊆ A and CX = [X + A]/A ⊆ C. Suppose first that |AX | < κ:
It follows that X → CX is a κ-bijection. Since T ∈ MX , we could conclude
from Theorem 16 that T ∈ KCX

⊆ KC , which is not true. We can therefore
conclude that |AX | = κ. Suppose now that |CX | < κ: It follows that AX → X
is a κ-bijection, and by Theorem 16, we again have that T ∈ KAX

⊆ KA ⊆ KB,
as required. We may therefore also assume that |CX | = κ.

By a standard argument using (A) and (B) above, we can construct a filtra-
tion {Yi}i<κ of X such that for all i < κ, Yi

∥∥BX .

For i < κ, let Gi = X/Yi and

Ai = [AX + Yi]/Yi ∼= AX/(A ∩ Yi),

Bi = [BX + Yi]/Yi ∼= BX/(B ∩ Yi),

Ci = Gi/Ai = (X/Yi)/([AX + Yi]/Yi) ∼= X/[AX + Yi].

Since A∩ ((A∩X) + Yi) = (A∩X) + (A∩ Yi) = A∩X, we have isomorphisms

Ci
∼= [X/AX ]/[(AX + Yi)/AX ]

= [X/(A ∩X)]/[((A ∩X) + Yi)/(A ∩X)]

= [X/(A ∩X)]/[((A ∩X) + Yi)/(A ∩ ((A ∩X) + Yi))]
∼= [(X +A)/A]/[((A ∩X) + Yi) +A)/A]

= [(X +A)/A]/[(A+ Yi)/A] = CX/[(A+ Yi)/A].

We now verify that our construction guarantees that Bi is pure in Gi: Let b+Yi
be an element of Bi (where b ∈ BX) whose height in Gi is at least n < ω.
It follows that there is a y ∈ Yi such that b + y has height at least n in X.
Therefore, since Yi

∥∥BX , there is a z ∈ BX ∩ Yi such that b + z has height at
least n. However, since BX is pure in X, this implies that b+ z = pnb0 for some
b0 ∈ BX , so that pn(b0 + Yi) = b+ Yi, as required.
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Now observe that {(A + Yi)/A}i<κ is a filtration of CX . Since T �∈ KC ,
it follows that T �∈ KCX

, so there is a CUB subset C ⊆ κ such that T ′ �∈
KCX/[(A+Yi)/A] = KCi

for all i ∈ C. Since {Yi}i∈C is a filtration of X, for all i in
some stationary set S ⊆ C, we have T ′ ∈ KGi

. It follows from induction that for
every i ∈ S, T ′ ∈ KBi

= KBX/(B∩Yi). However, since {B ∩ Yi}i<κ is a filtration
of BX , it follows that BX is T ′-stationary, so that T ∈ KBX

⊆ KB, completing
the proof. QED

21 Corollary. If A is a pure subgroup of G and C = G/A, then KG∪KC =
KA ∪KC .

Proof. This follows from the discussion immediately following Theorem 20
by letting B = A. QED

We noted early on that if A is a subgroup of G, that KA ⊆ KG. As to
quotients, we have the following interesting special case of this last result:

22 Corollary. If A is a pure Σ-cyclic subgroup of G and C = G/A, then
KG ⊆ KC .

For example, when A is a basic subgroup of G, then C is divisible and the
last result generalizes the observation that KG ⊆ 1R = KC .

We now relate RK-invariants to a class of groups defined by Hill in [9]. The
separable group G is said to be almost Σ-cyclic if it has a collection of subgroups
C such that:

(1) For all C ∈ C, C is closed in G (i.e., G/C is separable);

(2) If λ is an ordinal and {Ci}i<λ ⊆ C is an ascending chain in C, then
∪i<λCi ∈ C;

(3) If X ⊆ G is countable, then there is a countable C ∈ C such that X ⊆ C.

We begin our discussion of this class with the following elementary observa-
tion:

23 Lemma. Suppose G is almost Σ-cyclic using the family C and X ⊆ G
is infinite. Then there is an A ∈ C such that |X| = |A| and X ⊆ A.

Proof. We prove this by induction on |X|, it being part of the definition
if this is countable. Assume, therefore, that it works for all subsets of smaller
cardinality, and let λ = |X|, X = {xi}i<λ and Xα = {xi}i<α. We inductively
choose Aα ∈ C such that

(a) Xα ⊆ Aα;

(b) If β < α < λ then Aβ ⊆ Aα;

(c) |Aα| = |α|+ ℵ0.
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If α is a limit, we just take unions, and if α = β+1 is isolated, then by induction
there is an Aα+1 ∈ C such that Aα∪{xα} ⊆ Aα+1 and |Aα| = |Aα+1|, completing
the proof. QED

24 Lemma. If G is the smoothly ascending union of closed pure subgroups
{Gi}i<λ, and for each i < λ, Gi is almost Σ-cyclic, then G is almost Σ-cyclic.

Proof. Clearly, we may assume that λ is a limit ordinal. If x ∈ G, let s(x)
be the first i < λ such that x ∈ Gi, and if X ⊆ G, let s(X) = { s(x) | x ∈ X }.
Suppose for each i < λ that Ci is a collection of subgroups of Gi which show
that it is almost Σ-cyclic. Let C be the collection of subgroups A of G satisfying
the following:

(a) For each i ∈ s(A), A ∩Gi ∈ Ci;

(b) For each i ∈ s(A), A
∥∥Gi.

It is fairly clear that the ascending union of groups in C will once again be in C,
and that any countable subset of G can be embedded in a countable member of
C. The crucial point, however, is to verify that every A ∈ C is actually closed.
Let xn be a sequence in A converging (in the p-adic topology) to y ∈ G; we may
assume ht(y− xn) ≥ n. Note that if there is i ∈ s(A) such that s(xn) ≤ i for all
n, then each xn ∈ A ∩ Gi, and since this group is closed in Gi, which is closed
in G, it follows that y ∈ A ∩Gi ⊆ A, as required. It follows, therefore, that we
may assume γ = sup{ s(xn) | n < ω } is a limit ordinal. Since Gγ is closed, it
follows that y ∈ Gγ , so that s(y) < γ. Choose � < ω such that s(y) < s(x�) < γ.
Now, if i = s(x�), then by condition (b), for each n, since ht(xn − y) ≥ n, we
can write xn − wn = zn, where wn ∈ A ∩ Gi and ht(zn) ≥ n. It follows that
y − wn = (y − xn) + (xn − wn) = (y − xn) + zn also has height at least n, so
that wn converges to y in the p-adic topology. It follows that y ∈ A ∩ Gi ⊆ A,
as required. QED

25 Lemma. Suppose G is a separable group and κ ∈ R. Then T = {κ} ∈
MG iff G has a subgroup H of cardinality κ that is ∅-stationary, i.e., for some
(and hence every) filtration {Hi}i<κ of H,

Γ∅(H) = { i < κ | Hi is not closed in H (in the p-adic topology) }

is stationary in κ.

Proof. Suppose T ∈MG. By Lemmas 1(d) and 2(b), G has an ∅-stationary
subgroup of cardinality κ. Conversely, if such an H exists, then by Lemma 2(a),
T ∈ KH ⊆ KG. Since G is separable, ∅ is not in KG, so that we can conclude
that T is actually a minimal set in KG, as required. QED
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We have now done all the “heavy lifting” for our characterization of al-
most Σ-cyclic groups using RK-invariants. We will adopt the convention that a
countable group G is ∅-stationary iff it is not separable.

26 Theorem. If G is a group, then the following are equivalent:

(a) G is almost Σ-cyclic;

(b) c(G) ≤ 1/4;

(c) Every T ∈ KG has at least two elements;

(d) G has no subgroups of regular cardinality which are ∅-stationary.
Proof. Note that (b) and (c) are clearly equivalent and by Lemma 25, these

are equivalent to (d). Suppose next that (a) holds, so that G is almost Σ-cyclic
using the collection of subgroups C, and H is an arbitrary subgroup of G with
|H| = κ ∈ R; in fact, letH = {xi}i<κ be an enumeration ofH. Using Lemma 23,
we inductively construct a smoothly ascending chain of groups {Ai}i<κ ⊆ C such
that for all β < κ

(a) {xi}i<β ⊆ Aβ ;

(b) |Aβ | = |β|+ ℵ0 < κ.

Once again, at limit ordinals we just take unions, and at isolated ordinals β =
γ + 1, we employ Lemma 23 to construct Aβ containing Aγ and xγ .

Note that each Ai is closed in G, so that Hi = Ai ∩ H is closed in H. It
follows that Γ∅(H) is empty, and in particular, non-stationary. Since this applies
to all subgroups of G of regular cardinality, we can conclude that (d) holds.

We prove that (b-d) implies (a) by induction on |G| = τ , so assume |G| = τ
and it holds for all groups of strictly smaller cardinality. Let κ be the cofinality
of τ . We first verify that G is the union of a smoothly ascending chain {Gi}i<κ

such that each Gi is pure and closed in G, and |Gi| < τ : Note that this is trivial
if τ is regular (since otherwise G would be an ∅-stationary subgroup of itself), so
assume κ < τ . Suppose G is the smoothly ascending union of the pure subgroups
{Gi}i<κ. If S = { j < κ | Gj is not closed in G } is stationary in κ, then, for
every j ∈ S, let Xj be a countable subgroup of G such that [Xj + Gj ]/Gj has
elements of infinite height. Consider H = 〈Xj : j ∈ S〉; clearly H has cardinality
κ. For each i < κ, let Hi = H ∩ Gi, so that {Hi}i<κ is a filtration of H. Since
for every j ∈ S, [Xj +Gj ]/Gj

∼= Xj/[Xj ∩Gj ] embeds in H/Hj , it follows that
S ⊆ Γ∅(H); therefore, H is ∅-stationary, contrary to our assumption on G.

Restricting to a CUB subset, we may assume that each Gi is closed in G.
Since G has no subgroup of regular cardinality that is ∅-stationary, it follows



104 B. A. Balof, P. W. Keef

that the same can be said of Gi for all i < κ. By induction, therefore, each Gi

is almost Σ-cyclic, so by Lemma 24, G is almost Σ-cyclic, as required. QED

Note that if G is almost Σ-cyclic and |G| = ℵ1, then every T ∈ MG must
be a subset of {ℵ1}, and hence KG = 0R, and G is Σ-cyclic. This observation
is Theorem 2 of [9]. On the other hand, it can easily be verified that the groups
G constructed in Theorem 4 of [9] have cardinality ℵ2 and MG = {{ℵ1,ℵ2}}.
These G are, therefore, the smallest possible examples of groups that are almost
Σ-cyclic which fail to actually be Σ-cyclic.

In [9] it was asked whether a summand of a group that is almost Σ-cyclic is
also almost Σ-cyclic. The following observation provides an even more general
result:

27 Corollary. Suppose G is almost Σ-cyclic and A is an arbitrary subgroup
of G. Then A is also almost Σ-cyclic.

Proof. By Theorem 11(d) and Theorem 26 we have c(A) ≤ c(G) ≤ 1/4.
Applying Theorem 26 again, we have that A is also almost Σ-cyclic. QED

We now generalize the three results on Σ-cyclic groups mentioned in the
introduction to the class of almost Σ-cyclic groups. The following is a version
of the aforementioned theorem of Hill from [8]:

28 Corollary. Suppose G is a group which is the union of an ascending
sequence of pure subgroups {Gi}i<ω. If each Gi is almost Σ-cyclic, then so is G.

Proof. By Theorem 14, KG = ∪i<ωKGi
, so in particular, since every ele-

ment of each KGi
has at least two elements, the same can be said of G. QED

In [9] it was observed (using slightly different language) that if A and G
are separable groups and f : A → G is an ω1-bijective homomorphism, then
G is almost Σ-cyclic if A is almost Σ-cyclic. We now generalize that result to
larger cardinalities. If κ ∈ R, we will say a group G is κ-almost Σ-cyclic if every
subgroup H of G of cardinality less than κ is almost Σ-cyclic. It easily follows
that a group is ℵ1-almost Σ-cyclic iff it is separable and ℵ2-almost Σ-cyclic iff
it is ℵ2-Σ-cyclic.

29 Corollary. Suppose κ ∈ R, A and G are κ-almost Σ-cyclic groups and
g : A → G is a κ-bijective homomorphism. Then A is almost Σ-cyclic iff G is
almost Σ-cyclic.

Proof. Suppose G is almost Σ-cyclic and T ∈ MA. Since A is separable,
we can conclude T is non-empty, so let τ be its largest element. If τ < κ, then
A has a subgroup H of cardinality at most τ with T ∈ KH ; since A is κ-almost
Σ-cyclic and |H| ≤ τ < κ, H is almost Σ-cyclic, so T has at least two elements
by Theorem 26. If τ ≥ κ, then by Theorem 16, T ∈ KG, and since G is almost
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Σ -cyclic, Theorem 26 implies that T has at least two elements. However, by
Theorem 26 once more, this implies that A is almost Σ-cyclic, as required.

Conversely, suppose A is almost Σ-cyclic and T ∈MG. Since G is separable,
we can conclude T is non-empty, so let τ be its largest element. If τ < κ, then
G has a subgroup H of cardinality at most τ with T ∈ KH ; since G is κ-almost
Σ-cyclic and |H| ≤ τ < κ, H is almost Σ-cyclic, so T has at least two elements.
If τ ≥ κ, then again by Theorem 16, T ∈ KA, and since A is almost Σ-cyclic, T
has at least two elements. However, by a final application of Theorem 26, this
implies that G is almost Σ-cyclic, as required. QED

The interested reader can verify that the last result is also true for Σ-cyclic
groups (as opposed to almost Σ-cyclics).

Next we show that Dieudonne’s result for Σ-cyclic groups generalizes to
almost Σ-cyclic groups:

30 Corollary. Suppose A is a subgroup of G and C = G/A is almost Σ-
cyclic. Then G is almost Σ-cyclic iff A is contained in a pure subgroup B ⊆ G
which is almost Σ-cyclic.

Proof. If G is almost Σ-cyclic, the result follows from Corollary 27, so
assume we can find the pure subgroup B. Since KG ⊆ KB ∪KC , every element
of KG is in either KB or KC , and in particular, it must have at least two
elements. The result, therefore, follows from Theorem 26. QED

Again we can be a bit more specific in the case of pure subgroups:

31 Corollary. Suppose A is a pure subgroup of G and C = G/A is almost
Σ-cyclic. Then G is almost Σ-cyclic iff A is almost Σ-cyclic.

Our next observation, which follows directly from Theorems 13(c) and 26,
continues the parallel between Σ-cyclic and almost Σ-cyclic groups:

32 Corollary. Suppose G and H are pω-high subgroups of a group A. If G
is almost Σ-cyclic, then so is H.

We now turn to characterizing the elements of ∩MG, at least in some set
theoretic environments:

33 Theorem. Suppose G is a δm-group, κ ∈ R, κ < δm and H is some
{κ}-principal δm-group of cardinality κ. Then the following are equivalent:

(a) κ ∈ ∩MG;

(b) c(G�H) = 0;

(c) G is the union of a smoothly ascending chain of pure subgroups {Gi}i≤λ

starting at G0 = {0} such that for all i < λ, Gi+1/Gi is a κ-Σ-cyclic group
of cardinality at most κ.
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Proof. We first observe that if A is a group with |A| ≤ κ, then by Corol-
lary 7, A�H is Σ-cyclic iff A is a κ-Σ-cyclic group.

Note that (a) is equivalent to (b), since κ ∈ ∩MG iff KGKH = 0R iff
c(G�H) = 0.

Assume next that (c) is valid and we are given {Gi}i≤λ with the described
properties; note that for each i, the pure exact sequence

0→ Gi → Gi+1 → (Gi+1/Gi)→ 0,

determines another pure-exact sequence,

0→ Gi �H → Gi+1 �H → (Gi+1/Gi)�H → 0.

Now, our hypotheses imply each (Gi+1/Gi)�H is Σ-cyclic, so that the latter
exact sequences all must necessarily split. It follows that

G�H ∼= ⊕i<λ[(Gi+1/Gi)�H],

so that c(G�H) = 0.
Conversely, suppose c(G�H) = 0 for some κ-principal H. Fix a decompo-

sition G�H ∼= ⊕j∈JCj , where each Cj is cyclic. If λ = |G|, we can inductively
construct a smoothly ascending chain of pure subgroups {Gi}i<λ of G such that

(0) G0 = {0};
(1) Gi �H = ⊕j∈JiCj for some subset Ji ⊆ J ;

(2) |Gi+1/Gi| ≤ κ.

These conditions imply that c((Gi+1/Gi)�H) = 0, so that KGi+1/Gi
KH = 0R,

but this is equivalent to the statement that Gi+1/Gi is a κ-Σ-cyclic group, as
required. QED

We conclude this section with a new characterization of the class of Σ-cyclic
δm-groups, at least in V=L:

34 Corollary. (V=L) Assuming the axiom of constructibility, a δm-group
G is Σ-cyclic iff for an infinite collection of cardinals κn ∈ R with κn < δm,
we can write G as the smoothly ascending union of pure subgroups {Gn,i}i<λn

starting at Gn,0 = {0} such that for all i < λn, Gn,i+1/Gn,i is κn-Σ-cyclic of
cardinality at most κn.

Proof. If c(G) = 0, then it can be written as a smoothly ascending union
of pure subgroups whose corresponding factors are, in fact, cyclic, and such an
expression satisfies the hypotheses for any infinite cardinal κ.

Conversely, if G satisfies this property, then for all n < ω, κn ∈ ∩MG. The
only way this is possible is for MG = ∅, but this implies that G is Σ-cyclic, as
required. QED
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4 Applications to Nunke’s Problem

We begin by observing that the obvious translation of Nunke’s problem to
the class of almost Σ-cyclic groups has an essentially trivial solution:

35 Corollary. If G and H are separable groups, then G � H is almost
Σ-cyclic.

Proof. Note c(G) = 2−j and c(H) = 2−k, where k, j are non-negative
integers, and by Theorem 11(a), sinceG andH are separable, neither j and k can
equal 0. Using Theorem 11(f), since c(G�H) ≤ c(G)c(H) ≤ (1/2)(1/2) = 1/4,
the result is an immediate consequence of Theorem 26. QED

We collect some properties of K-complements in the following:

36 Lemma. If Q is a class of ordinals and J,K ∈ QK , then

(a) JK = ∅ iff K ⊆ J⊥ iff J ⊆ K⊥;

(b) J ⊆ K implies K⊥ ⊆ J⊥;

(c) K ⊆ K⊥⊥;

(d) K⊥ = K⊥⊥⊥;

(e) K = K⊥⊥ iff K = J⊥ for some J ∈ QK ;

(f) (J ∩K)⊥ = J⊥ ∪K⊥;

(g) If {Ki}i∈I ⊆ QK , then (∪i∈IKi)
⊥ = ∩i∈I(Ki

⊥).

Proof. (a), (b) and (c) follow immediately from the definitions. (d) and (e)
follow from (b) and (c). For (f), since J∩K ⊆ J,K, we have J⊥,K⊥ ⊆ (J ∩K)⊥,
so J⊥ ∪ K⊥ ⊆ (J ∩K)⊥. Conversely, if S ∈ (J ∩K)⊥ then S ∩ V �= ∅ for all
V ∈ J ∩ K. Now, if S �∈ J⊥, then there is an T0 ∈ J such that S ∩ T0 = ∅.
Therefore, for all U ∈ K, T0 ∪U ∈ J ∩K, which implies that S ∩ (T0 ∪U) �= ∅.
Since S∩T0 = ∅, we conclude that S∩U �= ∅, so S ∈ K⊥, proving (f). Regarding
(g), S ∈ (∪i∈IKi)

⊥ iff S ∩ T �= ∅ for all T ∈ ∪i∈IKi iff S ∩ T �= ∅ for all i ∈ I
and for all T ∈ Ki iff S ∈ ∩i∈I(Ki

⊥). QED

We say K ∈ QK is closed if it satisfies (e). By (f) and (g), the complements
of the closed elements of QK form a topology on Qf . For K ∈ QK , K⊥⊥ is the
smallest closed set containing K, so it is the closure of K in the topology, and
we denote K⊥⊥ by K. Naturally, K is dense iff K = 1Q. We will see that when
Q is finite, every element of KQ is closed, but that this fails when Q is infinite.

If V is a subclass of Q there is a natural function ψQ
V : QK → VK , where for

K ∈ QK ,
ψQ
V (K) = K ∩ Vf = {S ∈ Vf | S ∈ K }.
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In addition, whenever K ∈ QK , then ∪MK is a set, and if we let V = ∪MK ,
then it is fairly clear for X ∈ Qf , that X ∈ K iff X ∩V ∈ K, and that we might
as well assume all calculations regarding K take place in V . We will utilize this
observation often in the sequel without making specific mention of it.

We note in passing that if K1, . . . ,Kn are in QK , then the elements of the
iterated product K1 · · ·Kn are the unions of pairwise disjoint sets S1 ∪ · · · ∪ Sn

such that each Si ∈ Ki. Equivalently, T ∈ K1 · · ·Kn iff for i = 1, . . . n, there
are pairwise disjoint sets Si ∈ MKi

such that S1 ∪ · · · ∪ Sn ⊆ T . We use this
observation in the following:

37 Proposition. If Q is a finite set of ordinals with |Q| = n, n < m < ω
and K1 . . . ,Km ∈ QK are proper QK-invariants (i.e., each Ki �= 1Q), then
K1 · · ·Km = 0Q.

Proof. Note that any pairwise disjoint union S1 ∪ · · · ∪ Sm ∈ K1 · · ·Km

must have at least m elements, which implies that no such things exist. QED

We can use KG-invariants to give short and elementary proofs of nearly all
of the previous work on Nunke’s problem. For example, the next result is a
restatement of Theorem 5 of [13] and follows directly from Proposition 37.

38 Corollary. Suppose n,m < ω, n < m and G1, . . . , Gm are separable
groups of final rank at most ℵn. Then G1 � · · · �Gm is Σ-cyclic.

Proof. Note that if we let V = {ℵ1, . . . ,ℵn}, then ∪i≤mMGi
⊆ V , so we

can perform our computation in V. The result therefore follows directly from
Proposition 37. QED

On the other hand, the last result can be significantly strengthened for
almost Σ-cyclic groups:

39 Corollary. Suppose n,m < ω, n/2 < m and G1, . . . , Gm are almost
Σ-cyclic groups of final rank at most ℵn. Then G1 � · · · �Gm is Σ-cyclic.

Proof. Note that every element of KGi
has at least two elements, so if

S1 ∈ KG1 ,. . . , Sm ∈ KGm are pairwise disjoint, it follows that 2m ≤ n. QED

Of course, a QK-invariant K is finitely generated if MK is finite. In this
case, V = ∪M will also be finite. We next note that for finitely generated Qf

invariants, K-nilpotency is easily characterized:

40 Corollary. If K ∈ QK is finitely generated, then K is K-nilpotent iff
K �= 1Q (i.e., K is proper).

Proof. Note 1Q is not K-nilpotent, but Proposition 37 implies that any
proper QK-invariant is. QED

Suppose K is a QK-invariant and X ∈ Qf . Our next result characterizes
when X ∈ K. Recall that a collection of sets D ⊆ Qf is a Δ-system if there is
a fixed X ⊆ Q such that S ∩ T = X for all distinct pairs S, T ∈ D. The set X
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is called the root of D. This notion has an important role in set theory (see, for
example, section II.6 of [4]).

41 Lemma. If Q is a class of ordinals, X ∈ Qf and K ∈ QK , then the
following are equivalent:

(a) X ∈ K;

(b) For all Z ∈ (Q−X)f , there exists S ∈ K, such that X ⊆ S and Z∩S = ∅;

and if Q is infinite, these are equivalent to:

(c) There is an infinite subset D ⊆ K which is a Δ-system with X as a root.

Proof. We first suppose that X satisfies (b) and verify that (a) holds. If
Z ∈ K⊥, we need to show that Z ∩X �= ∅. Note that if this does not happen,
then by hypothesis, there is an S ∈ K such that X ⊆ S and S ∩ Z = ∅. But
this would contradict that Z ∈ K⊥.

We now show that (a) implies (b), so suppose X ∈ K, and Z ∈ (Q−X)f .

Since Z ∩X = ∅, we can conclude that Z �∈ K
⊥
= K⊥⊥⊥ = K⊥. It follows that

there is an S0 ∈ K such that Z ∩S0 = ∅. Letting S = X ∪S0 gives the required
set.

We now show the equivalence of (b) and (c) assuming that Q is infinite:
Suppose first that we are given the infinite Δ-system, D ⊆ K, with X as a root.
If Z is a finite subset of Q − X, then since D is a Δ-system, every z ∈ Z is
an element of at most one element of D. Therefore, there is a T ∈ D which
contains no element of Z, as required. Conversely, suppose X satisfies (b); we
will construct D = {Tn | n < ω } by induction. Choose T0 ∈ K such that
X ⊆ T0 (such a T0 must exist by letting Z equal, say, ∅ in (b)). Since Q is
infinite, we may, in fact, expand T0 so that the containment X ⊂ T0 is proper.
Suppose we have constructed T0, . . . , Tn, all of which properly contain X, such
that for all distinct i, j ≤ n, Ti ∩Tj = X. Using (b), we can find Tn+1 ∈ K such
that there is a proper containment X ⊂ Tn+1, and such that

Tn+1 ∩ ((T0 ∪ · · · ∪ Tn)−X) = ∅.

It follows that for all distinct i, j ≤ n+ 1, Ti �= Tj and Ti ∩ Tj = X, completing
the argument. QED

42 Theorem. If Q is a class of ordinals and K ∈ QK , then K is closed iff
MK has no infinite subset that is a Δ-system.

Proof. Let C = K. Suppose first that Q is finite. If X ∈ C, then letting
Z = Q − X ∈ (Q − X)f in Lemma 41(b), we can find an S ∈ K such that



110 B. A. Balof, P. W. Keef

X ⊆ S and X ∩ Z = ∅. These conditions, however, imply that X = S ∈ K, so
that K is closed, as required.

We may therefore assume that Q is infinite. Now, assume that {Ti | i <
ω } ⊆MK is a Δ-system having X as a root. By Lemma 41(c), we can conclude
X ∈ C. Note that since X is a proper subset of each Ti, and these are all
minimal sets in K, we can conclude that X �∈ K, so that K is not closed.

Conversely, suppose C �= K and choose X ∈ C−K. By Lemma 41(c), there
is a Δ-system, {Ti : i < ω} ⊆ K having X as a root. For each i < ω, choose
Si ∈ MK such that Si ⊆ Ti. Since X �∈ K, we can conclude that for all i < ω,
Si is not contained in X. However, since for all distinct i, j < ω, Si ∩ Sj ⊆ X,
we can conclude that Si �= Sj . Because X has only finitely many subsets, there
is X ′ ⊆ X such that Si ∩X = X ′ for infinitely many i < ω, and it immediately
follows that this infinite subset is a Δ-system with X ′ as a root. QED

43 Corollary. If Q is a class of ordinals and K ∈ QK is finitely generated,
then K is closed.

Proof. Since MK has no infinite subsets, it must be closed. QED

44 Corollary. If Q is a class of ordinals and K ∈ QK is closed, then MK

is countable.

Proof. It is a well known result that any uncountable collection of finite
sets has a infinite subcollection which is a Δ-system. (See, for example Corol-
lary II.6.2 of [4].) QED

45 Example. A specific closed Q-invariant K such that MK is (countably)
infinite can be constructed as follows: Suppose Q = ω and for every odd number
j < ω, Sj = {j} ∪ { k < j | k is even }. It is obvious that the collection of all
such Sj is an ωf -antichain, and if j0 < j1 are odd numbers, then Sj0 ∩ Sj1 =
{ k < j0 | k is even }, from which it can readily be seen that MK = {Sj | j is
odd } has no infinite subset that is a Δ-system.

46 Lemma. If Q is a class of ordinals and J,K ∈ QK are closed, then so
is their product JK.

Proof. Suppose JK is not closed. Then by Theorem 42, we can find an
infinite collection {Sn ∪ Tn}n<ω ⊆ JK, where Sn ∈ MJ and Tn ∈ MK are
disjoint, which is a Δ-system with X as a root. Note that either {Sn}n<ω or
{Tn}n<ω must be an infinite collection; without loss of generality, assume it is
the former. Note that for all n,m < ω, Sn ∩ Sm ⊆ X. Since X has only a finite
number of subsets, there is an infinite subset L ⊆ ω such that for all n ∈ R,
Sn ∩X always equals some fixed X0 ⊆ X. It follows {Sn | n ∈ L } is an infinite
Δ-system with X0 as a root, so by Theorem 42 that J is not closed, contrary
to hypothesis. QED

The above results have the following consequence regarding products.
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47 Theorem. If Q is a class of ordinals and J,K ∈ QK , then JK = J K.

Proof. The result is trivial if Q is finite, so assume Q is infinite. Note
first that JK ⊆ J K, and by Lemma 46, the latter is closed, so JK ⊆ J K.
Conversely, suppose X ∪Y ∈ J K, where X ∈ J , Y ∈ K and X ∩Y = ∅. We use
the characterization of the closure of a QK-invariant given by Lemma 41(b). If
Z ∈ (Q− (X ∪ Y ))f , then since X ∈ J , there is an S ∈ J such that

X ⊆ S and S ∩ (Z ∪ Y ) = ∅.

Now, since Y ∈ K, there is a T ∈ K such that

Y ⊆ T and T ∩ (Z ∪ S) = ∅.

It follows that S ∩ T = ∅, so that S ∪ T ∈ JK. Also, since

(X ∪ Y ) ⊆ (S ∪ T ) and (S ∪ T ) ∩ Z = ∅,

it follows that X ∪ Y ∈ JK. This proves that J K ⊆ JK, so that JK = J K.
QED

48 Example. It is usually not the case that (JK)⊥ = J⊥K⊥, even for finite
sets Q. If Q = 2 = {0, 1}, MJ = {{0}} and MK = {{1}}, then MJK = {{0, 1}}
and M(JK)⊥ = {{0}, {1}}. On the other hand, J⊥ = J and K⊥ = K, so
M J⊥ K⊥ = {{0, 1}} �= M(JK)⊥ .

Recall the K-index of a QK-invariant K is the smallest positive integer n
such that Kn = 0Q if it exists, and otherwise, we say K has infinite K-index.

49 Corollary. If Q is a class of ordinals and K ∈ QK , then K and K have
the same K-index.

Proof. By Theorem 47, Kn = K n, so Kn = 0Q iff Kn = 0Q iff K n =
0Q. QED

The following reformulation of the above discussion gives a more complete
characterization of K-nilpotency:

50 Theorem. Suppose Q is a class of ordinals and K ∈ QK . Then the
following are equivalent:

(a) K is K-nilpotent;

(b) K is not dense;

(c) K⊥ �= 0Q;

(d) There is J ∈ QK such that J �= 0Q but JK = 0Q;
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(e) K �= 1Q and MK has no infinite pairwise disjoint subset.

Proof. (a) ⇒ (b): If K is K-nilpotent, so is K, which implies that it is
necessarily proper, and hence K is not dense.

(b) ⇒ (c): If K⊥ = 0Q, then K = 1Q, so that K is dense.
(c) ⇒ (d): Just let J = K⊥.
(d) ⇒ (a): Suppose X ∈ J has n elements. If S1, . . . , Sn+1 are in K, then

S1 ∩ X �= ∅, . . . , Sn+1 ∩ X �= ∅. If follows that there are i, j ∈ {1, . . . , n + 1}
such that Si ∩ Sj �= ∅. Therefore, Kn+1 = ∅, as required.

(a) ⇒ (e): Is clear.
(e) ⇒ (b): If K is dense and proper, then Q must be infinite, and by

Lemma 41(c), there is an infinite Δ-system {Sn}n<ω ⊆ K with ∅ as a root.
We may clearly assume that each Sn ∈MK , but then this would be an infinite,
pairwise disjoint subset, as required. QED

As a consequence of the argument which showed (d) ⇒ (a), we have the
following bound on K-indices:

51 Corollary. If Q is a class of ordinals, K ∈ QK is K-nilpotent and
n = ‖K⊥ ‖, then Kn+1 = 0Q.

We next note that, even in the finite case, the bound to the K-index men-
tioned in Corollary 51 is, in some sense, the best possible.

52 Example. Suppose Q = n = {0, . . . , n − 1}, M is the Qf -antichain
{ {i} | i < n }. It can be checked that KM

⊥ has only one minimal set, namely n
itself, and that the K-index of KM is exactly n+ 1 = ‖KM

⊥ ‖+ 1.

On the other hand, this bound may be strict:

53 Example. Suppose Q = 3 = {0, 1, 2}, M = {{0, 1}, {0, 2}, {1, 2}}. It
can be checked that KM

⊥ = KM , so that 2 = ‖KM
⊥ ‖, but K2

M = 0Q, so that
KM has K-index 2 < 2 + 1.

We now translate Theorem 50 into the language of groups. In keeping with
the above terminology, recall that the K-index of a group G is the smallest
positive integer n such that Gn = G� · · ·�G (n-copies) is Σ-cyclic if it exists,
and otherwise, we say it has infinite K-index. A group is K-nilpotent if it has
finite K-index; let K denote the class of K-nilpotent groups. Note that if G is a
separable group of cardinality ℵn, then by Corollary 38, the K-index of G is at
most n+ 1; and if G is almost Σ-cyclic of cardinality ℵn, then by Corollary 39,
its K-index is at most n/2+1. The next result follows easily from the definition:

54 Proposition. Suppose G is a group.

(a) If G ∈ K and A is a subgroup of G, then A ∈ K;
(b) If G is the direct sum of A and B, then G ∈ K iff A and B ∈ K;



Invariants on primary abelian groups 113

(c) If G ∈ K and H is any group, then G�H ∈ K.
The following gives a complete answer to the nilpotent version of Nunke’s

problem (at least for δm-groups):

55 Theorem. If G is a δm-group, then the following are equivalent:

(a) G ∈ K;
(b) KG is not dense;

(c) KG
⊥ �= 0R;

(d) There is a group H of with c(H) > 0 but c(G�H) = 0;

(e) G is separable and MG has no infinite pairwise disjoint subset.

Proof. Each part corresponds to a statement from Theorem 50. The only
small point to be considered is whether it is necessary to use the axiom of
constructibility to produce the group H mentioned in (d). This is, however,
unnecessary, since if G has K-index n, we need merely let H = Gn−1. QED

The following is a direct consequence of Corollary 51.

56 Corollary. If G is a δm-group, G ∈ K and n = ‖KG
⊥ ‖, then the K-

index of G does not exceed n + 1. Furthermore, in the constructible universe
(V=L),

2−n = max{ c(H) | G�H is Σ-cyclic }.
Proof. Regarding the second statement, G�H is Σ-cyclic implies KH ⊆

KG
⊥, so that c(H) ≤ 2−n. On the other hand, in V=L, we can construct a

group H such that KH = KG
⊥, and for this H, c(H) = 2−n. QED

We conclude by showing that K is closed under other natural operations.

57 Corollary. If n < ω, A and G are separable δm-groups and g : A → G
is an ωn-bijection, then A ∈ K iff G ∈ K.

Proof. It follows from Corollary 17 that

{S ∈MA | S ∩ ℵn = ∅ } = {S ∈MG | S ∩ ℵn = ∅ }.
From this, it can be seen that MA has an infinite pairwise disjoint subset iff MG

has an infinite pairwise-disjoint subset. It follows, then, that A is K-nilpotent
iff G is K-nilpotent. QED

We have the following Dieudonne-type result for K.
58 Corollary. Suppose A is a subgroup of the δm-group G and C = G/A ∈

K. Then G ∈ K iff A is contained in a pure subgroup B of G such that B ∈ K.
In fact, if c(Bm) = 0 and c(Cn) = 0, then c(Gm+n−1) = 0.
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Proof. Clearly, if G ∈ K, then we may let B = G. Conversely, if we are
given the pure subgroup B ∈ K, then by Theorem 20,KG ⊆ KB∪KC . Therefore,
if S1, . . . , Sm+n−1 ∈ KG, then either m of these sets are in KB or n of them
are in KC . In either case, this means that they cannot be pairwise disjoint, so
that the result follows. QED

The last result can be sharpened if A itself is pure.

59 Corollary. Suppose A is a pure subgroup of the δm-group G and C =
G/A ∈ K. Then G ∈ K iff A ∈ K. In fact, if c(Am) = 0 and c(Cn) = 0, then
c(Gm+n−1) = 0.
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