Note di Matematica Note Mat. 29 (2009), n. 2, 77-81 ISSN 1123-2536, e-ISSN 1590-0932 DOI 10.1285/i15900932v29n2p77 http://siba-ese.unisalento.it, © 2009 Università del Salento

On a Theorem of Burnside

Marco Barlotti

Dip. di Matematica per le Decisioni, Università di Firenze marco.barlotti@dmd.unifi.it

Virgilio Pannone

Dip. di Matematica "U. Dini", Università di Firenze virgilio.pannone@unifi.it

Received: 06/06/2008; accepted: 17/11/2008.

Abstract. We introduce an algebraic integer related to the irreducible complex characters of finite groups and use it to obtain a generalization of a theorem of Burnside.

Keywords: Finite groups, complex character, Burnside

MSC 2000 classification: primary 20C15, secondary 11R04

1 Introduction

Let G be a finite group, \mathcal{C} a conjugacy class of G and χ an irreducible (complex) character of G. Let $|\mathcal{C}|$ denote the length of \mathcal{C} . It is well known [see, e. g., [3], Corollary 3.5, and Theorem 3.6] that both $\chi(\mathcal{C})$ and $\frac{|\mathcal{C}|}{\chi(1)}\chi(\mathcal{C})$ belong to the set \mathcal{I} of the (complex) algebraic integers (over \mathbb{Z}).

For $a, b \in \mathbb{Z}$, let (a, b) denote the greatest common divisor of a and b. In this note we observe (in Section 2) that $\frac{(|\mathcal{C}|,\chi(1))}{\chi(1)}\chi(\mathcal{C})$ and $\frac{(|\mathcal{C}|,\chi(1))}{\chi(1)}|\chi(\mathcal{C})|$ are algebraic integers, and use this fact (in Section 3) to prove a generalization (Corollary 5) of

1 Theorem. [Burnside] Let G be a finite group, C a conjugacy class of G and χ an irreducible character of G of degree coprime to the length of C. Then either $\chi(\mathcal{C}) = 0$ or $|\chi(\mathcal{C})| = \chi(1)$.

Throughout this paper, "group" will mean "finite group" and "character" will mean "complex character"; moreover, an "integer" will be an element of \mathbb{Z} .

We also recall that \mathcal{I} is a Dedekind ring and that $\mathcal{I} \cap \mathbb{Q} = \mathbb{Z}$ [[4], Theorem 5.3]: thus, a rational algebraic integer is, tout court, an integer.

Last, we observe that $z \in \mathcal{I}$ if and only if $\overline{z} \in \mathcal{I}$ (\overline{z} being the complex conjugate of z); therefore, if $z \in \mathcal{I}$ then $|z| (= \sqrt{z \cdot \overline{z}}) \in \mathcal{I}$. Hence, in addition to $\chi(\mathcal{C})$ and $\frac{|\mathcal{C}|}{\chi(1)} \chi(\mathcal{C})$, also $|\chi(\mathcal{C})|$ and $\frac{|\mathcal{C}|}{\chi(1)} |\chi(\mathcal{C})|$ belong to \mathcal{I} .

$\mathbf{2}$ Some algebraic integers related to group theory

2 Proposition. The following hold:

- (a) Let $z \in \mathcal{I}$, and $k, m \in \mathbb{Z}, m \neq 0$. Then $\frac{k}{m}z \in \mathcal{I}$ if and only if $\frac{(k,m)}{m}z \in \mathcal{I}$
- (b) Let G be a group, χ an irreducible character of G and C a conjugacy class of G. The complex numbers

$$\frac{(|\mathcal{C}|,\chi(1))}{\chi(1)}\chi(\mathcal{C}) \quad and \quad \frac{(|\mathcal{C}|,\chi(1))}{\chi(1)}|\chi(\mathcal{C})|$$

belong to \mathcal{I} .

PROOF. If $w \in \mathcal{I}$ then also $hw \in \mathcal{I}$ for any $h \in \mathbb{Z}$. So, to prove (a) we only have to show that if $\frac{k}{m}z \in \mathcal{I}$ then $\frac{(k,m)}{m}z \in \mathcal{I}$. Writing

$$(k,m) = rk + sm$$
 for suitable $r, s \in \mathbb{Z}$

we obtain that $(k, m) \frac{z}{m}$ (being equal to $(rk + sm) \frac{z}{m} = r \frac{k}{m} z + sz$) is a \mathbb{Z} -linear combination of algebraic integers, hence is itself an algebraic integer. Now (b) is obvious, because $\frac{|\mathcal{C}|}{\chi(1)} \chi(\mathcal{C})$ and $\frac{|\mathcal{C}|}{\chi(1)} |\chi(\mathcal{C})|$ are algebraic integer.

QEDgers.

In the following, we shall refer to the algebraic integer $\frac{(|\mathcal{C}|,\chi(1))}{\chi(1)}\chi(\mathcal{C})$ as the standard algebraic integer of the pair (χ, \mathcal{C}) . Note that the "classical" algebraic integers $\chi(\mathcal{C})$ and $\frac{|\mathcal{C}|}{\chi(1)}\chi(\mathcal{C})$ are integer multiples of it.

3 The Forbidden Annulus Theorem

We now obtain a generalization of Burnside's Theorem 1 by exploiting the standard algebraic integer of the pair (χ, \mathcal{C}) .

Let u be an algebraic integer and let

$$x^{r} + a_{r-1}x^{r-1} + \dots + a_{1}x + a_{0}$$

be the minimal (monic) polynomial of u over \mathbb{Q} . By Gauss' lemma its coefficients are rational integers; we call $|a_0|$ the *pseudo-norm* of u.

3 Theorem. [Forbidden Annulus Theorem] Let d be a positive integer, z a sum of d complex roots of unity and q a positive rational such that

$$q\frac{z}{d}$$
 is an algebraic integer.

Let r be the algebraic degree of $q\frac{z}{d}$ over \mathbb{Q} , and t its pseudo-norm. Then the real number |z| does not belong to the open interval

$$\left(0, \ \frac{dt}{q^r}\right).$$

PROOF. We may assume that $z \neq 0$. We have to show that $|z| \geq dt/q^r$.

Let $\lambda_1 := q \frac{z}{d}$ and let $p(x) := x^r + \cdots + a_0$ be the minimal (monic) polynomial of λ_1 over \mathbb{Q} (so that $t = |a_0|$).

If r = 1, then $p(x) = x + a_0$ $(a_0 \neq 0)$ so that $0 = p(\lambda_1) = \lambda_1 + a_0$ i. e. $|z| = \frac{dt}{q}$; hence we may suppose that r > 1.

Let us assume by contradiction that $|z| < \frac{dt}{q^r}$; from the definition of λ_1 we obtain that

$$|\lambda_1| < \frac{t}{q^{r-1}}.\tag{1}$$

Let $\lambda_1, \lambda_2, \ldots, \lambda_r$ be the algebraic conjugates of λ_1 . Since $\lambda_1, \lambda_2, \ldots, \lambda_r$ are exactly the roots of the polynomial p(x),

$$t = |\lambda_1| \cdot |\lambda_2| \cdot \cdots \cdot |\lambda_r|.$$

By hypothesis,

$$z = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_d$$
 for some roots of unity ε_i .

Then

$$z = \varepsilon^{m_1} + \varepsilon^{m_2} + \dots + \varepsilon^{m_d}$$
 for certain $m_i \in \mathbb{N}$

where ε is a suitable root of unity. Thus we can rewrite λ_1 as

$$\lambda_1 := q \frac{z}{d} = \frac{q}{d} \left(\varepsilon^{m_1} + \varepsilon^{m_2} + \dots + \varepsilon^{m_d} \right)$$

and its algebraic conjugates as

$$\lambda_i = \frac{q}{d} \left(\varepsilon^{s_1^{(i)}} + \varepsilon^{s_2^{(i)}} + \dots + \varepsilon^{s_d^{(i)}} \right) \qquad i := 2, 3, \dots, n$$

for certain $s_1^{(i)}, s_2^{(i)}, \ldots, s_d^{(i)} \in \mathbb{N}$ [see, e.g., [4], Proposition 5.2]. Thus for $i := 2, 3, \ldots, r$ we have

$$\begin{aligned} |\lambda_i| &= \frac{q}{d} \cdot \left| \varepsilon^{s_1^{(i)}} + \varepsilon^{s_2^{(i)}} + \dots + \varepsilon^{s_d^{(i)}} \right| \leq \\ &\leq \frac{q}{d} \cdot \left(\left| \varepsilon^{s_1^{(i)}} \right| + \left| \varepsilon^{s_2^{(i)}} \right| + \dots + \left| \varepsilon^{s_d^{(i)}} \right| \right) = \frac{q}{d} d = q. \end{aligned}$$
(2)

From (1) and (2) we finally obtain

$$t = |\lambda_1| \cdot |\lambda_2| \cdot \dots \cdot |\lambda_r| < \frac{t}{q^{r-1}} \cdot q^{r-1} = t$$

a contradiction.

In the above theorem, any appropriate choice of the positive rational q provides a "forbidden annulus" (and the smaller q is, the larger the annulus we get).

Let $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ denote the real and imaginary part of the complex number z. Since $2 \operatorname{Re}(z)$ and $2 \operatorname{Im}(z)$ are in \mathcal{I} whenever $z \in \mathcal{I}$, analogous bounds on $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ can be obtained by mimicking the above proof.

We now specialize to groups.

4 Theorem. Let G be a group, χ an irreducible character of G and C a conjugacy class of G. Take $q \in \mathbb{Q}^+$ such that

$$q \frac{\chi(\mathcal{C})}{\chi(1)}$$
 is an algebraic integer

and let r be its algebraic degree over \mathbb{Q} , and t its pseudo-norm. Then the real number $|\chi(\mathcal{C})|$ does not belong to the open interval

$$\left(0, \ \frac{\chi(1)t}{q^r}\right)$$

PROOF. Let $d := \chi(1)$. Let k be the order of any $g \in \mathcal{C}$; then [see e. g. [4], pag. 59]

 $\chi(\mathcal{C}) = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_d$ for certain k-th roots of 1.

Now apply Theorem 3 (with $z := \chi(\mathcal{C})$) to obtain the result. QED

Finally we observe that the standard algebraic integer of the pair (χ, C) gives $(|\mathcal{C}|, \chi(1))$ as a possible value of q in Theorem 4, and we obtain

5 Corollary. Let G be a group, χ an irreducible character of G, C a conjugacy class of G, r the algebraic degree of $\chi(\mathcal{C})$ over \mathbb{Q} and t the pseudo-norm of $(|\mathcal{C}|, \chi(1)) \frac{\chi(\mathcal{C})}{\chi(1)}$. Then the real number $|\chi(\mathcal{C})|$ does not belong to the open interval

$$\left(0, \frac{\chi(1)t}{\left(\left(\left|\mathcal{C}\right|, \chi(1)\right)\right)^{r}}\right)$$

QED

4 Final remarks

- (1) When $(|\mathcal{C}|, \chi(1) = 1)$, Corollary 5 yields Burnside's Theorem 1.
- (2) It is intuitive that, for a given positive integer k, the modulus of a sum of k-th roots of unity (if non-zero) cannot be arbitrarily small (think of them as unit vectors in the complex plane). The problem of how small this sum can be has been already addressed by several authors [see e. g. [2] and [5]], but no general result seems to have emerged which can be useful in our context.
- (3) It is natural to ask whether there exist any other forbidden annuli that could be described in similar terms. For example, how close can $\chi(\mathcal{C})$ get to $\chi(1)$? Special cases of this problem are discussed, e.g., in [1].
- (4) As the group A_5 shows, the integer r in the statement of Corollary 5 cannot be replaced, in general, by a smaller integer. However, since $|\chi(\mathcal{C})| \in \mathcal{I}$, if it is not integer it is irrational: hence, in such a case, $|\chi(\mathcal{C})|$ is strictly greater than $\frac{\chi(1)t}{((|\mathcal{C}|, \chi(1)))^r}$.

References

- D. GLUCK, K. MAGAARD: Character and fixed point ratios in finite classical groups, Proc. London Math. Soc. (3) 71 (1995), 547–584.
- [2] R. L. GRAHAM, N. J. A. SLOANE: Anti-Hadamard matrices, Linear Algebra Appl. 62 (1984), 113–137.
- [3] I. M. ISAACS: Character Theory of Finite Groups, Academic Press, (1976).
- [4] W. LEDERMANN: Introduction to group characters, Cambridge University Press, (1977).
- [5] G. MYERSON: How small can a sum of roots of unity be?, Amer. Math. Monthly 93 (1986), 457–459.