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Abstract. Let E and F be Banach spaces. Our objective in this work is to find conditions
under which, whenever the topological dual spaces E′ and F ′ are isomorphic, the spaces of
multilinear mappings (resp. homogeneous polynomials) on E and F are isomorphic as well.
We also examine the corresponding problem for the spaces of multilinear mappings (resp.
homogeneous polynomials) of a certain type, for instance of finite, nuclear, compact or weakly
compact type.

Keywords: Banach space , Polynomials , Isomorphisms.

MSC 2000 classification: primary 46G20, secondary 46G25

Notation

Throughout the whole paper D,E, F and G always denote Banach spaces
over the same field K, where K = R or C. N denotes the set of all positive
integers. L(mE;G) denotes the vector space of all continuous m-linear mappings
from Em into G. L(mE;G) is a Banach space under its natural norm. If G = K,
we write L(mE;K) = L(mE). If m = 1, we write L(1E;G) = L(E;G). If m = 1
and G = K, we write L(E) = E′, the topological dual of E. The mapping

Im : L(m+nE;G)→ L(mE;L(nE;G))

defined by ImA(x)(y) = A(x, y) for all A ∈ L(m+nE;G), x ∈ Em, y ∈ En, is an
isometric isomorphism. Likewise the mapping

T t : A ∈ L(mE;L(nF ;G))→ At ∈ L(nF ;L(mE;G))

defined by At(y)(x) = A(x)(y) for all A ∈ L(mE;L(nF ;G)), x ∈ Em, y ∈ Fn,
is an isometric isomorphism. Let Ls(mE;G) denote the subspace of all A ∈
L(mE;G) which are symmetric. Let P(mE;G) denote the vector space of all
continuous m− homogeneous polynomials from E into G. If G = K, we write
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P(mE;K) = P(mE). For each A ∈ L(mE;G) let Â ∈ P(mE;G) be defined
by Â(x) = Axm for every x ∈ E. The mapping A → Â induces a topological
isomorphism between Ls(mE;G) and P(mE;G).

1 Definition. A mapping A ∈ L(mE;G) is said to be of finite type if there
exist c1, . . . , cn ∈ G, ϕ1i, . . . , ϕmi ∈ E′, 1 ≤ i ≤ n such that A can be written in
the form: A(x1, . . . , xm) =

∑n
i=1 ϕ1i(x1) · · ·ϕmi(xm)ci for all (x1, . . . , xm) ∈ Em.

2 Definition. A polynomial P ∈ P(mE;G) is said to be of finite type, if
there exist c1, . . . , cn ∈ G, ϕ1, . . . , ϕn ∈ E′ such that P can be written of the
form: P (x) =

∑n
i=1 ϕi(x)

mci for all x ∈ E.

3 Definition. A mapping A ∈ L(mE;G) is said to be nuclear, if there
exist sequence (ϕji)i∈N in E′, 1 ≤ j ≤ m and (ci)i∈N in G with

∑∞
i=1 ‖ϕ1i‖ · · ·

‖ϕmi‖‖ci‖ < ∞ such that A(x1, . . . , xm) =
∑∞

i=1 ϕ1i(x1) · · · ϕmi(xm)ci for all
(x1, . . . , xm) ∈ Em.

4 Definition. A polynomial P ∈ P(mE;G) is said to be nuclear, if there
exist sequences (ϕi)i∈N in E′, and (ci)i∈N in G with

∑∞
i=1 ‖ϕi‖m‖ci‖ <∞ such

that P (x) =
∑∞

i=1 ϕi(x)
mci for all x ∈ E.

Let Lf (
mE;G) denote the space of all A ∈ L(mE;G) which are of finite

type. Let Pf (
mE;G) denote the space of all P ∈ P(mE;G) which are of finite

type. Let LN (mE;G) denote the space of all A ∈ L(mE;G) which are nuclear
endowed with the nuclear norm ‖A‖N = inf

∑∞
i=1 ‖ϕ1i‖ · · · ‖ϕmi‖‖ci‖, where

the infimum is taken over all sequences (ϕji)i∈N and (ci)i∈N which satisfy the
definition. When G = K, we write LΘ(

mE,K) = LΘ(
mE), where Θ = f or

N . Let PN (mE;G) denote the space of all P ∈ P(mE;G) which are nuclear,
endowed with the nuclear norm ‖P‖N = inf

∑∞
i=1 ‖ϕi‖m‖ci‖, where the infimum

is taken over all sequences (ϕi)i∈N and (ci)i∈N which satisfy the definition. When
G = K, we write PΘ(

mE,K) = PΘ(
mE), where Θ = f or N . Let us recall that

A ∈ L(mE;G) is a compact (resp. weakly compact) mapping if A(BEm) is
relatively compact in G (resp. for the weak topology), where BEm denotes the
closed unit ball of Em. Let LK(mE;G) ( resp. LWK(mE;G) ) denote the space
of all A ∈ L(mE;G) which are compact (resp. weakly compact). Recall that
P ∈ P(mE;G) is a compact (resp. weakly compact) polynomial if P (BE) is
relatively compact in G (resp. for the weak topology), where BE denotes the
closed unit ball of E. Let PK(mE;G) (resp. PWK(mE;G)) denote the space
of all compact (resp. weakly compact) homogeneous polynomials from E into
G. We observe that in the case where G = K, all the continuous homogeneous
polynomials are compact (resp. weakly compact). For background information
on multilinear mappings and homogeneous polynomials we refer to the books
[7] and [12].
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1 Isomorphisms between spaces of multilinear map-

pings or homogeneous polynomials

In this work, we use the Nicodemi sequences defined in [8] to prove all the
theorems. We recall the definition of the Nicodemi sequences.

5 Definition. [8] Given a continuous linear operator R1 : L(E;G) −→
L(F ;G), let Rm : L(mE;G) −→ L(mF ;G) be inductively defined by Rm+1A =
I−1
m [Rm ◦ (R1 ◦ Im(A))t]t for all A ∈ L(m+1E;G) and m ∈ N.

6 Example. [8, Example 1.2] Let T1 : E
′ ↪→ E′′′ be the natural embedding

and let Tm : L(mE)→ L(mE′′) be the Nicodemi sequence of operators beginning
with T1. This sequence is precisely the sequence of operators constructed by
Aron and Berner in [1, Proposition 2.1].

7 Definition. [8, Proposition 4.1] Given R1 ∈ L(E′;F ′), let R̃1 ∈
L(L(E;G′), L(F ;G′)) be defined by R̃1A(y)(z) = R1(δz ◦ A)(y) for all A ∈
L(E;G′), y ∈ F and z ∈ G, where δz : G′ → K is defined by δz(z

′) = z′(z) for

all z′ ∈ G′. If (Rm) and (R̃m) are the corresponding Nicodemi sequences, then

R̃mA(y)(z) = Rm(δz ◦A)(y) for all A ∈ L(mE;G′), y ∈ Fm and z ∈ G.

8 Example. Let Tm : L(mE) −→ L(mE′′) be the Nicodemi sequence
of operators beginning with the natural embedding T1 : E′ ↪→ E′′′, and let
T̃m : L(mE;G′) −→ L(mE′′;G′) be the corresponding sequence for vector-
valued multilinear mappings (See [8, Proposition 4.1]). We observe that as G′

is a C1−space, the sequence T̃m : L(mE;G′) −→ L(mE′′;G′) ⊂ L(mE′′;G′′′)
coincides with the sequence of operators constructed by Aron and Berner in [1,
Proposition 2.1].

The next theorem shows the relationship between an arbitrary Nicodemi
sequence of scalar-valued mappings and the Nicodemi sequence beginning with
the natural embedding E′ ↪→ E′′′.

9 Theorem. Let Rm : L(mE) −→ L(mF ) be a Nicodemi sequence, let
Tm : L(mE) −→ L(mE′′) be the Nicodemi sequence beginning with the natural
embedding T1 = JE′ : E′ ↪→ E′′′, and let JF : F ↪→ F ′′ be the natural embedding.
Then

RmA(y1, . . . , ym) = TmA(R′
1(JF y1), . . . , R

′
1(JF ym))

for all A ∈ L(mE), and y1, . . . , ym ∈ F , where R′
1 is the transpose of R1.

Proof. We will prove this theorem by induction on m. If A ∈ L(E) = E′,
we have

R1A(y) = 〈JF y,R1A〉 = 〈R′
1(JF y), A〉 = 〈T1A,R

′
1(JF y)〉 = T1A(R′

1(JF y))
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for all y ∈ F. Now let us assume that the identity in Theorem 9 is true for m−
linear forms. Let A ∈ L(m+1E). We will prove that

Tm+1A(z1, . . . , zm, R′
1(JF y)) = Tm[(R1 ◦ ImA)t(y)](z1, . . . , zm) (1)

for all z1, . . . , zm ∈ E′′ and y ∈ F . From the definition of Nicodemi sequences,
it follows that

Tm+1A(z1, . . . , zm, R′
1(JF y)) = Tm[(T1 ◦ ImA)t(R′

1(JF y))](z1, . . . , zm). (2)

Therefore, to get (1) comparing with (2), it is enough to prove that

(R1 ◦ ImA)t(y) = (T1 ◦ ImA)t(R′
1(JF y)).

In fact,

(T1 ◦ ImA)t(R′
1(JF y))(x1, . . . , xm) = T1[ImA(x1, . . . , xm)](R′

1(JF y))

= 〈R′
1(JF y), ImA(x1, . . . , xm)〉

= 〈JF y,R1[ImA(x1, . . . , xm)]〉
= 〈R1[ImA(x1, . . . , xm)], y〉
= R1[ImA(x1, . . . , xm)](y)

= (R1 ◦ ImA)t(y)(x1, . . . , xm)

for all x1, . . . , xm ∈ E. Thus by the induction hypothesis and (1) it follows that
for all y1, . . . , ym+1 ∈ F

Rm+1A(y1, . . . , ym+1) =Rm[(R1 ◦ ImA)t(ym+1)](y1, . . . , ym)

=Tm[(R1 ◦ ImA)t(ym+1)](R
′
1(JF y1), . . . , R

′
1(JF ym))

=Tm+1A(R
′
1(JF y1), . . . , R

′
1(JF ym), R′

1(JF ym+1)).

QED

We next extend Theorem 9 to the case of a Nicodemi sequence of vector-
valued mappings. Let us recall that each Nicodemi sequence (Rm) for scalar-

valued mappings yields a Nicodemi sequence (R̃m) for vector - valued mappings.

10 Theorem. Let Rm : L(mE) −→ L(mF ) be a Nicodemi sequence, and let
Tm : L(mE) −→ L(mE′′) be the Nicodemi sequence beginning with the natural
embedding T1 = JE′ : E′ ↪→ E′′′. Let

R̃m : L(mE;G′)→ L(mF ;G′)
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and
T̃m : L(mE;G′)→ L(mE′′;G′)

be the corresponding Nicodemi sequences for vector-valued multilinear mappings.
Then

R̃mA(y1, . . . , ym) = T̃mA(R′
1(JF y1), . . . , R

′
1(JF ym))

for all A ∈ L(mE;G′), and y1, . . . , ym ∈ F , where R′
1 is the transpose of R1.

Proof. We will prove this theorem by induction on m. If A ∈ L(E;G′), it
follows that

R̃1A(y)(z) =R1(δz ◦A)(y)
=〈JF y,R1(δz ◦A)〉
=〈R′

1(JF y), (δz ◦A)〉
=〈T1(δz ◦A), R′

1(JF y)〉
=T̃1A(R

′
1(JF y))(z)

for all y ∈ F and z ∈ G. Now let us assume that the identity is true for m−
linear forms. Let A ∈ L(m+1E;G′). We prove initially that

T̃m+1A(z1, . . . , zm, R′
1(JF y)) = T̃m[(R̃1 ◦ ImA)t(y)](z1, . . . , zm) (3)

for all z1, . . . , zm ∈ E′′ and y ∈ F . From the definition of Nicodemi sequences,
it follows that

T̃m+1A(z1, . . . , zm, R′
1(JF y)) = T̃m[(T̃1 ◦ ImA)t(R′

1(JF y))](z1, . . . , zm). (4)

Therefore, to get (3) comparing with (4), it is enough to prove that

(R̃1 ◦ ImA)t(y) = (T̃1 ◦ ImA)t(R′
1(JF y)).

In fact,

(T̃1 ◦ ImA)t(R′
1(JF y))(x1, . . . , xm)(z) =T̃1[ImA(x1, . . . , xm)](R′

1(JF y))(z)

=T1[δz ◦ ImA(x1, . . . , xm)](R′
1(JF y))

=〈R′
1(JF y), δz ◦ ImA(x1, . . . , xm)〉

=〈JF y,R1[δz ◦ ImA(x1, . . . , xm)]〉
=〈R1[δz ◦ ImA(x1, . . . , xm)], y〉
=R1[δz ◦ ImA(x1, . . . , xm)](y)

=(R̃1 ◦ ImA)t(y)(x1, . . . , xm)(z)
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for all x1, . . . , xm ∈ E and z ∈ G. Thus, from the induction hypothesis and (3),
it follows that for all y1, . . . , ym+1 ∈ F

R̃m+1A(y1, . . . , ym+1) =R̃m[(R̃1 ◦ ImA)t(ym+1)](y1, . . . , ym)

=T̃m[(R̃1 ◦ ImA)t(ym+1)](R
′
1(JF y1), . . . , R

′
1(JF ym))

=T̃m+1A(R
′
1(JF y1), . . . , R

′
1(JF ym), R′

1(JF ym+1)).

QED

Recall that a Banach space E is said to be Arens - regular if all linear
operator E −→ E′ are weakly compact, and symmetrically Arens - regular if
this is so for all symmetric linear operators. An operator T : E → E′ is said
to be symmetric if Tx(y) = Ty(x) for all x, y ∈ E(see [3] and [9]). Let us
recall that if E is symmetrically Arens - regular, then TmA ∈ Ls(mE′′) for all
A ∈ Ls(mE), where (Tm) is the Nicodemi sequence beginning with the natural
embedding T1 = JE′ : E′ ↪→ E′′′ (see [2, Theorem 8.3]). Now, we are ready to
study the theorems of preservation of symmetric multilinear mappings.

11 Theorem. Let Rm : L(mE) −→ L(mF ) be a Nicodemi sequence and let
Tm : L(mE) −→ L(mE′′) be the Nicodemi sequence beginning with the natural
embedding T1 = JE′ : E′ ↪→ E′′′. If TmA is symmetric, then RmA is also
symmetric. In particular, if E is symmetrically Arens - regular, then RmA ∈
Ls(mF ) for all A ∈ Ls(mE).

Proof. By Theorem 9 we have that

RmA(y1, . . . , ym) = TmA(R′
1(JF y1), . . . , R

′
1(JF ym)).

Thus, if TmA is symmetric, then RmA is also symmetric. Now if E is sym-
metrically Arens - regular, we have that the Aron - Berner extension TmA
is symmetric for all A ∈ Ls(mE)(See [2, Proposition 8.3]). We conclude that
RmA ∈ Ls(mF ) for all A ∈ Ls(mE). QED

12 Theorem. Let Rm : L(mE) −→ L(mF ) be a Nicodemi sequence and

let R̃m : L(mE;G′) −→ L(mF ;G′) be the corresponding Nicodemi sequence for
vector-valued multilinear mappings. If E is symmetrically Arens - regular, then
R̃mA ∈ Ls(mF ;G′) for all A ∈ Ls(mE;G′).

Proof. By [8, Proposition 4.1], we have that

R̃mA(y)(z) = Rm(δz ◦A)(y) (5)

for all A ∈ L(mE,G′), y ∈ Fm and z ∈ G. The identity (5) and Theorem 11

imply that if A is symmetric, then R̃mA is also symmetric. QED
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In Theorem 13 we will denote JF (y) by y for all y ∈ F and JE(x) by x for
all x ∈ E.

13 Theorem. Let Rm : L(mE) −→ L(mF ) be a Nicodemi sequence, let
Tm : L(mE) −→ L(mE′′) be the Nicodemi sequence beginning with the natural
embedding T1 = JE′ : E′ ↪→ E′′′, and let Qm : L(mF ) −→ L(mF ′′) be the
Nicodemi sequence beginning with the natural embedding Q1 = JF ′ : F ′ ↪→ F ′′′.
If TmA is symmetric, then

Qm ◦RmA(w1, . . . , wm) = TmA(R′
1w1, . . . , R

′
1wm)

for all A ∈ L(mE), wj ∈ F ′′, j = 1, . . . ,m, and m ∈ N.

Proof. We will prove by induction on k ∈ N that

Qm ◦RmA(w1, . . . , wk, yk+1, . . . , ym) =

TmA(R′
1(w1), . . . , R

′
1(wk), R

′
1(yk+1), . . . , R

′
1(ym))

for all yj ∈ F and wj ∈ F ′′. Recall that (i) QmB and TmA are weak� continuous
in its first variable for all B ∈ L(mF ) and A ∈ L(mE) by [8, Proposition 5.1]; (ii)
elements of F ′′ and of JF (F ) commute in variables of QmB by [8, Lemma 3.4];
(iii) R′

1 is σ(F
′′, F ′)−σ(E′′, E′) continuous; (iv) by [8, Proposition 2.1] , we have

that TmA(x1, . . . , xm) = A(x1, . . . , xm) for all A ∈ L(mE) and x1, . . . , xm ∈ E;
and QmB(y1, . . . , ym) = B(y1, . . . , ym) for all B ∈ L(mF ) and y1, . . . , ym ∈ F .
If k = 1, by Goldstine´ s theorem, there is a net (yα) ⊂ F such that yα −→ w1

for the topology σ(F ′′, F ′). Then by Theorem 9

Qm ◦RmA(w1, y2 . . . , ym) =Qm(RmA)(w1, y2 . . . , ym)

= lim
α

Qm(RmA)(yα, y2 . . . , ym)

= lim
α
(RmA)(yα, y2 . . . , ym)

= lim
α

TmA(R′
1yα, R

′
1y2, . . . , R

′
1ym)

=TmA(R′
1w1, R

′
1y2, . . . , R

′
1ym).

Now assuming that the identity holds for k, we will prove that the identity holds
for k+1. By the induction hypothesis and TmA being symmetric, it follows that

Qm ◦RmA(w1, . . . , wk+1,yk+2, . . . , ym)

=Qm(RmA)(w1, . . . , wk+1, yk+2, . . . , ym)

= lim
α

Qm(RmA)(yα, w2, . . . , wk+1, yk+2, . . . , ym)

= lim
α

Qm(RmA)(w2, . . . , wk+1, yα, yk+2, . . . , ym)
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= lim
α

TmA(R′
1w2, . . . , R

′
1wk+1, R

′
1yα, R

′
1yk+2, . . . , R

′
1ym)

= lim
α

TmA(R′
1yα, R

′
1w2, . . . , R

′
1wk+1, R

′
1yk+2, . . . , R

′
1ym)

=TmA(R′
1w1, . . . , R

′
1wk+1, R

′
1yk+2, . . . , R

′
1ym).

QED

Next we will prove that each isomorphism between E′ and F ′ induces an
isomorphism between L(mE;G′) and L(mF ;G′) for all m ∈ N. If E and F
are symmetrically Arens - regular, then each isomorphism between E′ and F ′

induces an isomorphism between P(mE;G′) and P(mF ;G′) for all m ∈ N.
Given a continuous linear operator

Rm : L(mE;G) −→ L(mF ;G),

we define

Um : A ∈ L(nD;L(mE;G)) −→ Rm ◦A ∈ L(nD;L(mF ;G)).

We observe that if Rm is an isomorphism then Um is also an isomorphism, whose
inverse

U−1
m : L(nD;L(mF ;G)) −→ L(nD;L(mE;G))

is defined by U−1
m (B) = R−1

m ◦B for all B ∈ L(nD;L(mF ;G)) where R−1
m is the

inverse of Rm. Thus, with the previous notations, it is possible to rewrite the
definition of the Nicodemi operators in the following way:

14 Lemma. Given an operator

Rm : L(mE;G) −→ L(mF ;G),

the operator

Rm+1 : L(
m+1E;G) −→ L(m+1F ;G)

is given by

Rm+1(A) = I−1
m [Rm ◦ (R1 ◦ Im(A))t]t = I−1

m ◦ T t ◦ Um ◦ T t ◦ U1 ◦ Im(A)

for all A ∈ L(m+1E;G).

The following theorem was obtained in [4]. But we will need our proof in
the proof of the subsequent theorem.

15 Theorem. If E′ and F ′ are isomorphic, then L(mE) and L(mF ) are
isomorphic for all m ∈ N.
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Proof. Since E′ and F ′ are isomorphic, there exists an isomorphism R1 :
E′ −→ F ′. Let Rm : L(mE) −→ L(mF ) be the Nicodemi sequence beginning
with R1. We will prove by induction on m ∈ N that Rm is an isomorphism
between L(mE) and L(mF ) for all m ∈ N. By hypothesis R1 : E′ −→ F ′ is an
isomorphism. Assuming that R1 and Rm are isomorphisms, we show that Rm+1

is also an isomorphism. In fact, by Lemma 1 it is possible to rewrite

Rm+1 = I−1
m ◦ T t ◦ Um ◦ T t ◦ U1 ◦ Im.

Since R1 and Rm are isomorphisms, we have that U1 and Um are also isomor-
phisms. Thus Rm+1 is an isomorphism between L(m+1E) and L(m+1F ) being
a composite of isomorphisms. Therefore L(mE) and L(mF ) are isomorphic for
all m ∈ N. QED

16 Theorem. If E′ and F ′ are isomorphic, then L(mE;G′) and L(mF ;G′)
are isomorphic for all m ∈ N.

Proof. Since E′ and F ′ are isomorphic, there exists an isomorphism R1 :
E′ −→ F ′. Let Rm : L(mE) −→ L(mF ) be the Nicodemi sequence beginning
with R1. Let

R̃m : L(mE,G′) −→ L(mF,G′)

be the corresponding Nicodemi sequence for vector-valued multilinear mappings.
We observe that

(δz ◦ R̃mA) = Rm(δz ◦A) (6)

for all z ∈ G and A ∈ L(mE;G′). In fact, by [8, Proposition 4.1],

(δz ◦ R̃mA)(y) = R̃mA(y)(z) = Rm(δz ◦A)(y)

for all y ∈ Fm. It follows from the proof of Theorem 15 that Rm is an isomor-
phism for all m ∈ N. Let Sm : L(mF ) −→ L(mE) denote the inverse of Rm for
all m ∈ N. We define

S̃m : L(mF ;G′) −→ L(mE;G′)

by S̃mB(x)(z) = Sm(δz◦B)(x) for all B ∈ L(mF ;G′), x ∈ Em, z ∈ G andm ∈ N.
Thus S̃m is linear and continuous. We will show that R̃m is an isomorphism
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between L(mE;G′) and L(mF ;G′) for all m ∈ N. In fact, we have that by (6)

S̃m ◦ R̃mA(x)(z) =S̃m(R̃mA)(x)(z)

=Sm(δz ◦ R̃mA)(x)

=Sm(Rm(δz ◦A))(x)
=[Sm ◦Rm(δz ◦A)](x)
=(δz ◦A)(x)
=A(x)(z)

for all A ∈ L(mE,G′), x ∈ Em and z ∈ G. In a similar way, we can get that

(R̃m ◦ S̃m)B = B for all B ∈ L(mF ;G′). QED

17 Theorem. If E and F are symmetrically Arens - regular, and E′ and
F ′ are isomorphic, then Ls(mE) and Ls(mF ) are isomorphic for all m ∈ N.

Proof. We write JE(x) = x for all x ∈ E. Recall that by [8, Proposition
2.1] TmA(x1, . . . , xm) = A(x1, . . . , xm) for all A ∈ L(mE) and x1, . . . , xm ∈ E.
Since E′ and F ′ are isomorphic, there exists an isomorphism R1 : E′ −→ F ′.
Let Rm : L(mE) −→ L(mF ) be the Nicodemi sequence beginning with R1. Let
S1 = R−1

1 : F ′ −→ E′ be the inverse of R1 and let Sm : L(mF ) −→ L(mE)
be the Nicodemi sequence beginning with S1. Since F is symmetrically Arens
- regular, we have by Theorem 11 that Sm(Ls(mF )) ⊂ Ls(mE). By Theorem
9 we have that SmB(x1, . . . , xm) = QmB(S′

1x1, . . . , S
′
1xm) for all B ∈ L(mF ),

and x1, . . . , xm ∈ E, where S′
1 is the transpose of S1. In particular, we have that

Sm(RmA)(x1, . . . , xm) = Qm(RmA)(S′
1x1, . . . , S

′
1xm) (7)

for all A ∈ L(mE). On the other hand, since E is symmetrically Arens - regular,
it follows from Theorem 11 that Rm(Ls(mE)) ⊂ Ls(mF ).Moreover, by Theorem
13 we have that

Qm(RmA)(S′
1x1, . . . , S

′
1xm) = TmA(R′

1(S
′
1x1), . . . , R

′
1(S

′
1xm)), (8)

for all A ∈ Ls(mE). Therefore we conclude by (7) and (8) that

Sm(RmA)(x1, . . . , xm) =Qm(RmA)(S′
1x1, . . . , S

′
1xm)

=TmA(R′
1(S

′
1x1), . . . , R

′
1(S

′
1xm))

=TmA(x1, . . . , xm)

=A(x1, . . . , xm),

for all A ∈ Ls(mE), that is

(Sm ◦Rm)A = A (9)
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for all A ∈ Ls(mE). In an analogous way, we can prove that (Rm ◦ Sm)B = B
for all B ∈ Ls(mF ). QED

The following Corollary 18 was proven by Lassalle - Zalduendo in [11] and
by F. Cabello Sánchez, J. Castillo and R. Garćıa in [4] by a different method.

18 Corollary. If E and F are symmetrically Arens - regular, and E′ and
F ′ are isomorphic, then P(mE) and P(mF ) are isomorphic for all m ∈ N.

19 Theorem. If E and F are symmetrically Arens - regular, and E′ and F ′

are isomorphic, then Ls(mE;G′) and Ls(mF ;G′) are isomorphic for all m ∈ N.

Proof. Since E′ and F ′ are isomorphic, there exists an isomorphism R1 :
E′ −→ F ′. Let Rm : L(mE) −→ L(mF ) be the Nicodemi sequence beginning
with R1. Let S1 = R−1

1 : F ′ −→ E′ be the inverse of R1, and let Sm : L(mF ) −→
L(mE) be the Nicodemi sequence beginning with S1. Let R̃m : L(mE;G′) −→
L(mF ;G′) and S̃m : L(mF ;G′) −→ L(mE;G′) be the corresponding Nicodemi
sequence for vector-valued multilinear mappings. By Theorem 12 we have that

R̃m(Ls(mE;G′)) ⊂ Ls(mF ;G′). (10)

and

S̃m(Ls(mF ;G′)) ⊂ Ls(mE;G′). (11)

It follows from the proof of Theorem 16 that R̃m is an isomorphism between

L(mE;G′) and L(mF ;G′) such that R̃m
−1

= S̃m. By (10) and (11), we have that

R̃m|Ls(mE;G′) is an isomorphism between Ls(mE;G′) and Ls(mF ;G′). QED

The following Corollary 20 was proven for Carando - Lassalle in [5] by a
different method.

20 Corollary. If E and F are symmetrically Arens - regular, and E′ and F ′

are isomorphic, then P(mE;G′) and P(mF ;G′) are isomorphic for all m ∈ N.

2 Isomorphisms between spaces of nuclear multilin-

ear mappings or homogeneous polynomials.

We will use the following notation:

(ϕ1 ⊗ ϕ2 ⊗ c)(x1, x2) = ϕ1(x1)ϕ2(x2)c

for all ϕ1, ϕ2 ∈ E′, c ∈ F and x1, x2 ∈ E. The next lemma comes essentially
from Aron and Berner [1].
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21 Lemma. [1, Proposition 2.2] Let Tm : L(mE) −→ L(mE′′) be the
Nicodemi sequence beginning with the natural embedding T1 = JE′ : E′ ↪→ E′′′.
Let A ∈ Lf (

mE) and let c1, . . . , cn ∈ K, ϕ1i, . . . , ϕmi ∈ E′, 1 ≤ i ≤ n such that

A(x1, . . . , xm) =
n∑

i=1

ϕ1i(x1) · · · ϕmi(xm)ci

for all (x1, . . . , xm) ∈ Em, then

Tm(A)(x′′1, . . . , x
′′
m) =

n∑
i=1

(T1ϕ1i)(x
′′
1) · · · (T1ϕmi)(x

′′
m)ci

for all (x′′1, . . . , x
′′
m) ∈ (E′′)m. In particular Tm(A) ∈ Lf (

mE′′).

22 Lemma. Let Tm : L(mE) −→ L(mE′′) be the Nicodemi sequence begin-
ning with the natural embedding T1 = JE′ : E′ ↪→ E′′′. Let A ∈ LN (mE) and let
(ϕji)i∈N in E′, 1 ≤ j ≤ m and (ci)i∈N in K with

∞∑
i=1

‖ϕ1i‖ · · · ‖ϕmi‖‖ci‖ <∞

such that

A(x1, . . . , xm) =
∞∑
i=1

ϕ1i(x1) · · · ϕmi(xm)ci

for all (x1, . . . , xm) ∈ Em. Then Tm(A) has the following form:

Tm(A)(x′′1, . . . , x
′′
m) =

∞∑
i=1

(T1ϕ1i)(x
′′
1) · · · (T1ϕmi)(x

′′
m)ci

for all (x′′1, . . . , x
′′
m) ∈ (E′′)m. In particular Tm(A) ∈ LN (mE′′).

Proof. Let An =
∑n

i=1 ϕ1i⊗···⊗ϕmi⊗ci for all n ∈ N. Then An ∈ Lf (
mE)

and An → A for the nuclear norm, that is

‖An −A‖N −→ 0. (12)

By Lemma 21 TmAn has the following form: TmAn =
∑n

i=1 T1ϕ1i⊗···⊗T1ϕmi⊗ci
for all n ∈ N. It follows that TmAn −→

∑∞
i=1 T1ϕ1i ⊗ · · · ⊗ T1ϕmi ⊗ ci for the

nuclear norm. In particular

TmAn −→
∞∑
i=1

T1ϕ1i ⊗ · · · ⊗ T1ϕmi ⊗ ci (13)
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pointwise. On the other hand, we have that

TmAn → TmA (14)

pointwise. Then by (12)

‖TmA(x′′1, . . . , x
′′
m)− TmAn(x

′′
1, . . . , x

′′
m)‖
=‖(TmA− TmAn)(x

′′
1, . . . , x

′′
m)‖

=‖Tm(A−An)(x
′′
1, . . . , x

′′
m)‖

≤‖Tm‖‖A−An‖‖(x′′1, . . . , x′′m)‖
≤‖Tm‖‖A−An‖N‖(x′′1, . . . , x′′m)‖ −→ 0

for all x′′1, . . . , x
′′
m ∈ E′′. By (13) and (14), we have that

Tm(A)(x′′1, . . . , x
′′
m) =

∞∑
i=1

(T1ϕ1i)(x
′′
1) · · · (T1ϕmi)(x

′′
m)ci

for all x′′1, . . . , x
′′
m ∈ E′′ and therefore Tm(A) ∈ LN (mE′′). QED

Next we will see that the operators from the Nicodemi sequence preserve
multilinear mappings of finite type and nuclear multilinear mappings. We con-
sider first the case of scalar-valued multilinear mappings.

23 Theorem. Let Rm : L(mE) −→ L(mF ) be a Nicodemi sequence. Then
RmA ∈ LΘ(

mF ) for all A ∈ LΘ(
mE), where Θ = f or N .

Proof. We will write the proof in detail in the case Θ = N . In the case
Θ = f , the proof is similar. Given A ∈ LN (mE), there exist sequences (ϕji)i∈N
in E′, 1 ≤ j ≤ m, and (ci)i∈N in K, with

∑∞
i=1 ‖ϕ1i‖ · · · ‖ϕmi‖|ci| < ∞ such

that A(x1, . . . , xm) =
∑∞

i=1 ϕ1i(x1) · · ·ϕmi(xm)ci for all (x1, . . . , xm) ∈ Em. Let
Tm : L(mE) −→ L(mE′′) be the Nicodemi sequence beginning with the natural
embedding T1 = JE′ : E′ ↪→ E′′′. By Theorem 9 we have that

RmA(y1, . . . , ym) = TmA(R′
1(JF y1), . . . , R

′
1(JF ym))

for all A ∈ L(mE), and y1, . . . , ym ∈ F , where R′
1 is the transpose of R1 and by

Lemma 22 we have that

Tm(A)(x′′1, . . . , x
′′
m) =

∞∑
i=1

(T1ϕ1i)(x
′′
1) · · · (T1ϕmi)(x

′′
m)ci

for all (x′′1, . . . , x
′′
m) ∈ (E′′)m. Therefore
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RmA(y1, . . . , ym) =TmA(R′
1(JF y1), . . . , R

′
1(JF ym))

=
∞∑
i=1

(T1ϕ1i)(R
′
1JF y1) · · · (T1ϕmi)(R

′
1JF ym)ci

=
∞∑
i=1

R1ϕ1i(y1) · · ·R1ϕmi(ym)ci

for all y1, . . . , ym ∈ F because < T1ϕ,R
′
1(JF y) >=< JE′ϕ,R′

1(JF y) >=
< R′

1(JF y), ϕ >=< JF y,R1ϕ >=< R1ϕ, y >, for all ϕ ∈ E′ and all y ∈ F .
Therefore

RmA =

∞∑
i=1

R1ϕ1i ⊗ · · · ⊗R1ϕmi ⊗ ci (15)

and then RmA ∈ LN (mF ). QED

The next theorem considers the case of vector-valued multilinear mappings.

24 Theorem. Let Rm : L(mE) −→ L(mF ) be a Nicodemi sequence and let

R̃m : L(mE;G′) −→ L(mF ;G′) be the corresponding sequence for vector-valued

multilinear mappings. Then R̃mA ∈ LΘ(
mF ;G′) for all A ∈ LΘ(

mE;G′) where
Θ = f or N .

Proof. We will only write the proof in the case Θ = N . In the case Θ = f ,
the proof is similar. Given A ∈ LN (mE;G′) there exist sequences (ϕji)i∈N in
E′, 1 ≤ j ≤ m, and (ci)i∈N in G′, with

∑∞
i=1 ‖ϕ1i‖ · · · ‖ϕmi‖‖ci‖ <∞ such that

A =
∑∞

i=1 ϕ1i ⊗ · · · ⊗ ϕmi ⊗ ci. Then δz ◦ A =
∑∞

i=1 ϕ1i ⊗ · · · ⊗ ϕmi ⊗ ci(z) for
all z ∈ G, and clearly δz ◦A ∈ LN (mE). We have by (15) that

Rm(δz ◦A) =
∞∑
i=1

R1ϕ1i ⊗ · · · ⊗R1ϕmi ⊗ ci(z)

for all z ∈ G. Then

R̃mA(y1, . . . , ym)(z) =Rm(δz ◦A)(y1, . . . , ym)

=

∞∑
i=1

R1ϕ1i(y1) · · ·R1ϕmi(ym)ci(z)

for all z ∈ G and y1, . . . , ym ∈ F. We conclude that

R̃mA =
∞∑
i=1

R1ϕ1i ⊗ · · · ⊗R1ϕmi ⊗ ci (16)

and then R̃mA ∈ LN (mF ;G′). QED
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25 Definition. Given a Nicodemi sequence Rm : L(mE;G) −→ L(mF ;G),
we define

R̂m : P(mE;G) −→ P(mF ;G)

by R̂mÂ = R̂mA por every symmetric A ∈ L(mE;G).

26 Lemma. Let Tm : L(mE) −→ L(mE′′) be the Nicodemi sequence begin-
ning with the natural embedding T1 = JE′ : E′ ↪→ E′′′. Let P ∈ PN (mE) and let
c1, . . . , cn ∈ K, ϕ1, . . . , ϕm ∈ E′ such that

P =

∞∑
i=1

ϕm
i ⊗ ci.

Then

T̂m(P ) =
∞∑
i=1

(T1ϕi)
m ⊗ ci.

In particular T̂m(P ) ∈ PN (mE′′).

The proof of Lemma 26 is similar to the proof of Lemma 22 and is omit-
ted. Next we will see that the operators from the Nicodemi sequence preserve
homogeneous polynomials of finite type and nuclear homogeneous polynomials.
We consider first the case of scalar-valued homogeneous polynomials.

27 Theorem. Let Rm : L(mE) −→ L(mF ) be a Nicodemi sequence. Then
R̂mP ∈ PΘ(

mF ) for all P ∈ PΘ(
mE) where Θ = f or N .

Proof. We will only write the proof in the case Θ = N . In the case Θ = f ,
the proof is similar. Given P ∈ PN (mE), there exist (ci)i∈N ∈ K, (ϕi)i∈N ∈ E′

such that P can be written in the form: P (x) =
∑∞

i=1 ϕi(x)
mci for all x ∈ E. Let

Tm : L(mE) −→ L(mE′′) be the Nicodemi sequence beginning with the natural
embedding T1 = JE′ : E′ ↪→ E′′′. By Theorem 9 we have that

RmA(y1, . . . , ym) = TmA(R′
1(JF y1), . . . , R

′
1(JF ym))

for all A ∈ L(mE), and y1, . . . , ym ∈ F , where R′
1 is the transpose of R1 and by

Lemma 26 we have that T̂m(P ) has the following form:

T̂m(P )(x′′) =
∞∑
i=1

(T1ϕi)(x
′′)mci

for all x′′ ∈ E′′. Therefore, A being the m-linear mapping associated with P , it
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follows that

R̂mP (y) =RmA(y, . . . , y︸ ︷︷ ︸
m−times

)

=TmA(R′
1(JF y), . . . , R

′
1(JF y)︸ ︷︷ ︸

m−times

)

=T̂mP (R′
1(JF y))

=
∞∑
i=1

(T1ϕi)(R
′
1(JF y))

mci

=
∞∑
i=1

(R1ϕiy))
mci

for all y ∈ F . Therefore,

R̂mP =
∞∑
i=1

(R1ϕi)
m ⊗ ci (17)

and then R̂mP ∈ PN (mF ). QED

The next theorem consider the case of vector-valued homogeneous polyno-
mials.

28 Theorem. Let Rm : L(mE) −→ L(mF ) be a Nicodemi sequence, let R̃m :
L(mE;G′) −→ L(mF ;G′) be the corresponding Nicodemi sequence for vector-

valued multilinear mappings. Then
̂̃
RmP ∈ PΘ(

mF ;G′) for all P ∈ PΘ(
mE;G′)

where Θ = f or N .

Proof. We will only write the proof in the case Θ = N . In the case
Θ = f , the proof is similar. Given Â ∈ PN (mE;G′), there exist sequences
(ϕi)i∈N in E′, and (ci)i∈N in G′ with

∑∞
i=1 ‖ϕi‖m‖ci‖ < ∞ such that Â(x) =∑∞

i=1 ϕi(x)
mci for all x ∈ E, where A ∈ Ls(mE;G′). We observe that if B =∑∞

i=1 ϕi ⊗ · · · ⊗ ϕi︸ ︷︷ ︸
m−times

⊗ci, then B ∈ LN (mE;G′) ∩ Ls(mE;G′) and B̂ = Â. Then

A = B from the injectivity of the canonical isomorphism Ls(mE;G′) −→
P(mE;G′). Thus, we get that A ∈ LN (mE;G′) and by (16)

R̃mA =
∞∑
i=1

R1ϕi ⊗ · · · ⊗R1ϕi︸ ︷︷ ︸
m−times

⊗ci.

Since
̂̃
RmÂ =

̂̃
RmA, it follows that

̂̃
RmP =

n∑
i=1

(R1ϕi)
m ⊗ ci (18)
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and then
̂̃
RmP ∈ PN (mF ;G′). QED

We remark that if E is a closed subspace of F , then Aron and Berner [1,
Theorem 2.1] proved that the restriction mapping

PN (mF ;G) −→ PN (mE;G)

is surjective for each m ∈ N, but even in the case of the natural embedding
JE : E ↪→ E′′, they did not study the problem of existence of a linear extension
operator

Tm : PN (mE) −→ PN (mE′′)

for each m ∈ N. Next we will see that each isomorphism between E′ and F ′

induces an isomorphism between LΘ(
mE;G′) and LΘ(

mF ;G′) for each m ∈ N
and induces also an isomorphism between PΘ(

mE;G′) and PΘ(
mF ;G′) for each

m ∈ N, where Θ = f or N .

29 Theorem. If E′ and F ′ are isomorphic, then LΘ(
mE) and LΘ(

mF ) are
isomorphic, for all m ∈ N, where Θ = f or N .

Proof. We will only write the proof in the case Θ = N . In the case Θ = f ,
the proof is similar. We use the notations from the proof of Theorem 17 By
Theorem 23 we have that Rm(LN (mE)) ⊂ LN (mF ). As in the proof of Theorem
23 we can prove that Sm(RmA) =

∑∞
i=1 S1(R1ϕ1i)⊗· · ·⊗S1(R1ϕmi)⊗ ci. Since

S1 ◦R1 is the identity, we have that Sm(RmA) =
∑∞

i=1 ϕ1i⊗ · · · ⊗ϕmi⊗ ci = A
for all A ∈ LN (mE). On the other hand, in a similar way, we can get that
Sm(LN (mF )) ⊂ LN (mE) and Rm(SmB) = B for all B ∈ LN (mF ). We conclude
that LN (mE) and LN (mF ) are isomorphic for all m ∈ N. QED

30 Theorem. If E′ and F ′ are isomorphic, then LΘ(
mE;G′) and

LΘ(
mF ;G′) are isomorphic for all m ∈ N, where Θ = f or N .

Proof. We will only write the proof in the case Θ = N . In the case
Θ = f , the proof is similar. We use the notations from the proof of Theo-
rem 19. By Theorem 24 we have that R̃m(LN (mE;G′)) ⊂ LN (mF ;G′) and

S̃m(LN (mF ;G′)) ⊂ LN (mE;G′). As in the proof of Theorem 24 we can prove

that S̃m(R̃mA) =
∑∞

i=1 S1(R1ϕ1i) ⊗ · · · ⊗ S1(R1ϕmi) ⊗ ci. Since S1 ◦ R1 is

the identity, we have that S̃m(R̃mA) =
∑∞

i=1 ϕ1i ⊗ · · · ⊗ ϕmi ⊗ ci = A for
all A ∈ LN (mE;G′). On the other hand, in a similar way, we can get that

R̃m(S̃mB) = B for all B ∈ LN (mF ;G′). We conclude that LN (mE;G′) and
LN (mF ;G′) are isomorphic for all m ∈ N. QED

31 Theorem. If E′ and F ′ are isomorphic, then PΘ(
mE) and PΘ(

mF ) are
isomorphic for all m ∈ N, where Θ = f or N .
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Proof. We will only write the proof in the case Θ = N . In the case
Θ = f , the proof is similar. We use the notations from the proof of Theorem 17.
By Theorem 27 we have that R̂m(PN (mE)) ⊂ PN (mF ) and Ŝm(PN (mF )) ⊂
PN (mE). As in the proof of Theorem 27 we can prove that Ŝm(R̂mP ) =∑∞

i=1(S1(R1ϕi))
m ⊗ ci. Since S1 ◦R1 is the identity, we have that Ŝm(R̂mP ) =∑∞

i=1(ϕi)
m ⊗ ci = P for all P ∈ PN (mE). On the other hand, in a similar way,

we can get that R̂m(ŜmQ) = Q for all Q ∈ PN (mF ). We conclude that PN (mE)
and PN (mF ) are isomorphic for all m ∈ N. QED

32 Theorem. If E′ and F ′ are isomorphic, then PΘ(
mE;G′) and

PΘ(
mF ;G′) are isomorphic for all m ∈ N, where Θ = f or N .

Proof. We will only write the proof in the case of Θ = N . In the case
of Θ = f the proof is similar. We use the notations from the proof of The-

orem 19. By Theorem 28 we have that
̂̃
Rm(PN (mE;G′)) ⊂ PN (mF ;G′) and̂̃

Sm(PN (mF ;G′)) ⊂ PN (mE;G′). As in the proof of Theorem 28 we can prove

that
̂̃
Sm(

̂̃
RmP ) =

∑∞
i=1(S1(R1ϕi))

m ⊗ ci. Since S1 ◦ R1 is the identity, we

have that
̂̃
Sm(

̂̃
RmP ) =

∑∞
i=1(ϕi)

m ⊗ ci = P for all P ∈ PN (mE;G′). On

the other hand, in a similar way, we can get that
̂̃
Rm(

̂̃
SmQ) = Q for all

Q ∈ PN (mF ;G′). We conclude that PN (mE;G′) and PN (mF ;G′) are isomor-
phic for all m ∈ N. QED

Let us notice that in Theorems 29, 30, 31 and 32 we do not need the Arens
regularity hypothesis.

3 Isomorphisms between spaces of compact or

weakly compact multilinear mappings or

homogeneous polynomials.

We first show that the operators R̃m from the Nicodemi sequence preserve
compact and weakly compact multilinear mappings.

33 Theorem. Let Rm : L(mE) −→ L(mF ) be a Nicodemi sequence and

let R̃m : L(mE;G′) −→ L(mF ;G′) be the corresponding Nicodemi sequence for

vector-valued multilinear mappings. Then R̃mA ∈ LΘ(
mF ;G′) for each A ∈

LΘ(
mE;G′), where Θ = K or WK.

Proof. Let Tm : L(mE) −→ L(mE′′) be the Nicodemi sequence beginning

with the natural embedding T1 : E
′ ↪→ E′′′ and T̃m : L(mE;G′) −→ L(mE′′;G′)

be the corresponding Nicodemi sequence for vector-valued multilinear mappings.
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This sequence coincides with the sequence of operators constructed by Aron-
Berner in [1, Proposition 2.1]. Therefore, by [1, Proposition 2.1], we get that

T̃mA ∈ LΘ(
mE′′;G′) for each A ∈ LΘ(

mE;G′), where Θ = K or WK. By
Theorem 10 we have that

R̃mA(y1, . . . , ym) = T̃mA(R′
1(JF y1), . . . , R

′
1(JF ym))

for all A ∈ L(mE;G′) and y1, . . . , ym ∈ F , where R′
1 is the transpose of R1.

If T̃mA ∈ LΘ(
mE′′;G′), it follows that R̃mA ∈ LΘ(

mF ;G′), where Θ = K or

WK. Therefore we conclude that R̃mA ∈ LΘ(
mF ;G′) for each A ∈ LΘ(

mE;G′),
where Θ = K or WK. QED

We next show that the operators
̂̃
Rm from the the Nicodemi sequence pre-

serve compact and weakly compact homogeneous polynomials.

34 Theorem. Let Rm : L(mE) −→ L(mF ) be a Nicodemi sequence, let

R̃m : L(mE;G′) −→ L(mF ;G′) be the corresponding Nicodemi sequence for

vector-valued multilinear mappings. Then
̂̃
RmP ∈ PΘ(

mF ;G′) for each P ∈
PΘ(

mE;G′), where Θ = K or WK.

Proof. Let (Tm) and (T̃m) be the sequences from the proof of Theorem

33. The sequence (T̃m) coincides with the sequence of operators constructed by

Aron-Berner in [1, Proposition 2.1]. Then the sequence
̂̃
Tm : P(mE;G′) −→

P(mE′′;G′) defined by
̂̃
TmÂ =

̂̃
TmA for each A ∈ Ls(mE;G′) coincides with

the sequence of operators constructed by Aron-Berner in [1, Corollary 2.2].

Therefore
̂̃
TmP ∈ PΘ(

mE′′;G′) for each P ∈ PΘ(
mE;G′), where Θ = K or

WK. By Theorem 10 we have that

̂̃
RmP (y) =

̂̃
TmP (R′

1(JF y))

for all P ∈ P(mE;G′), and y ∈ F , where R′
1 is the transpose of R1. It follows

that
̂̃
RmP ∈ PΘ(

mF ;G′) for each
̂̃
TmP ∈ PΘ(

mE′′;G′), where Θ = K or WK.

We conclude that
̂̃
RmP ∈ PΘ(

mF ;G′) for each P ∈ PΘ(
mE;G′), where Θ = K

or WK. QED

Let Ls
Θ(

mE;G) = Ls(mE;G) ∩ LΘ(
mE;G), where Θ = K or WK. We next

show that if E and F are symmetrically Arens - regular, then each isomor-
phism between E′ and F ′ induces an isomorphism between PΘ(

mE;G′) and
PΘ(

mF ;G′) for each m ∈ N, where Θ = K or WK.

35 Theorem. If E and F are symmetrically Arens - regular, and E′ and F ′

are isomorphic, then Ls
Θ(

mE;G′) and Ls
Θ(

mF ;G′) are isomorphic for all m ∈ N,
where Θ = K or WK.
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Proof. We use the notations from the proof of Theorem 19. By Theorems
12 and 33 we have that, for Θ = K or WK

R̃m(Ls
Θ(

mE;G′)) ⊂ Ls
Θ(

mF ;G′).

and

S̃m(Ls
Θ(

mF ;G′)) ⊂ Ls
Θ(

mE;G′).

By (9) we have that Sm ◦Rm|Ls(mE) is the identity mapping. Using (6), we have
that

S̃m ◦ R̃mA(x)(z) =S̃m(R̃mA)(x)(z)

=Sm(δz ◦ R̃mA)(x)

=Sm(Rm(δz ◦A))(x)
=[Sm ◦Rm(δz ◦A)](x)
=(δz ◦A)(x)
=A(x)(z)

for all A ∈ Ls
K(mE;G′), x ∈ Em and z ∈ G, that is

(S̃m ◦ R̃m)A = A

for all A ∈ Ls
Θ(

mE;G′). In a similar way, we can prove that

(R̃m ◦ S̃m)B = B

for all B ∈ Ls
Θ(

mF ;G′). Therefore, we get that Ls
Θ(

mE;G′) and Ls
Θ(

mF ;G′) are
isomorphic, where Θ = K or WK. QED

36 Theorem. If E and F are symmetrically Arens - regular, and E′ and F ′

are isomorphic, then PΘ(
mE;G′) and PΘ(

mF ;G′) are isomorphic for all m ∈ N,
where Θ = K or WK.

Proof. We use the notations from the proof of Theorem 32. By Theorem
34 we have that, for Θ = K or WK,

̂̃
Rm(PΘ(

mE;G′)) ⊂ PΘ(
mF ;G′).

and ̂̃
Sm(PΘ(

mF ;G′)) ⊂ PΘ(
mE;G′).
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By (10) and (11) we have that for each Â ∈ PΘ(
mE;G′)

(
̂̃
Sm ◦ ̂̃Rm)(Â) =

̂̃
Sm(

̂̃
RmÂ)

=
̂̃
Sm(

̂̃
RmA)

=
̂

S̃m(R̃mA)

=Â

That is,

(
̂̃
Sm ◦ ̂̃Rm)Â = Â

for all Â ∈ PΘ(
mE;G′). Similarly we can prove that

(
̂̃
Rm ◦ ̂̃Sm)B̂ = B̂

for all B̂ ∈ PΘ(
mF ;G′). Thus we conclude that PΘ(

mE;G′) and PΘ(
mF ;G′)

are isomorphic for all m ∈ N, where Θ = K or WK. QED
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[3] R. Aron, P. Galindo, D. Garćıa, M. Maestre: Regularity and algebras of analytic
functions in infinite dimensions, Trans. Amer. Math. Soc. 348 (1996), 543–559.

[4] F. Cabello Sánchez, J. Castillo, R. Garćıa: Polynomials on dual-isomorphic
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