Isomorphisms between spaces of multilinear mappings or homogeneous polynomials

Po Ling, Kuo ${ }^{\text {i }}$
Departamento Acadêmico de Matemática, Universidade Tecnológica Federal do Paraná Av. Sete de Setembro, 3165, CEP 80230-901, Curitiba, PR, Brazil
kuopoling@gmail.com

Received: 22/08/2008; accepted: 13/02/2009.

Abstract

Let E and F be Banach spaces. Our objective in this work is to find conditions under which, whenever the topological dual spaces E^{\prime} and F^{\prime} are isomorphic, the spaces of multilinear mappings (resp. homogeneous polynomials) on E and F are isomorphic as well. We also examine the corresponding problem for the spaces of multilinear mappings (resp. homogeneous polynomials) of a certain type, for instance of finite, nuclear, compact or weakly compact type.

Keywords: Banach space, Polynomials, Isomorphisms.
MSC 2000 classification: primary 46G20, secondary 46G25

Notation

Throughout the whole paper D, E, F and G always denote Banach spaces over the same field \mathbb{K}, where $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. \mathbb{N} denotes the set of all positive integers. $L\left({ }^{m} E ; G\right)$ denotes the vector space of all continuous m-linear mappings from E^{m} into $G . L\left({ }^{m} E ; G\right)$ is a Banach space under its natural norm. If $G=\mathbb{K}$, we write $L\left({ }^{m} E ; \mathbb{K}\right)=L\left({ }^{m} E\right)$. If $m=1$, we write $L\left({ }^{1} E ; G\right)=L(E ; G)$. If $m=1$ and $G=\mathbb{K}$, we write $L(E)=E^{\prime}$, the topological dual of E. The mapping

$$
I_{m}: L\left({ }^{m+n} E ; G\right) \rightarrow L\left({ }^{m} E ; L\left({ }^{n} E ; G\right)\right)
$$

defined by $I_{m} A(x)(y)=A(x, y)$ for all $A \in L\left(^{m+n} E ; G\right), x \in E^{m}, y \in E^{n}$, is an isometric isomorphism. Likewise the mapping

$$
T^{t}: A \in L\left({ }^{m} E ; L\left({ }^{n} F ; G\right)\right) \rightarrow A^{t} \in L\left({ }^{n} F ; L\left({ }^{m} E ; G\right)\right)
$$

defined by $A^{t}(y)(x)=A(x)(y)$ for all $A \in L\left({ }^{m} E ; L\left({ }^{n} F ; G\right)\right), x \in E^{m}, y \in F^{n}$, is an isometric isomorphism. Let $L^{s}\left({ }^{m} E ; G\right)$ denote the subspace of all $A \in$ $L\left({ }^{m} E ; G\right)$ which are symmetric. Let $\mathcal{P}\left({ }^{m} E ; G\right)$ denote the vector space of all continuous m - homogeneous polynomials from E into G. If $G=\mathbb{K}$, we write

[^0]$\mathcal{P}\left({ }^{m} E ; \mathbb{K}\right)=\mathcal{P}\left({ }^{m} E\right)$. For each $A \in L\left({ }^{m} E ; G\right)$ let $\widehat{A} \in \mathcal{P}\left({ }^{m} E ; G\right)$ be defined by $\widehat{A}(x)=A x^{m}$ for every $x \in E$. The mapping $A \rightarrow \widehat{A}$ induces a topological isomorphism between $L^{s}\left({ }^{m} E ; G\right)$ and $\mathcal{P}\left({ }^{m} E ; G\right)$.

1 Definition. A mapping $A \in L\left({ }^{m} E ; G\right)$ is said to be of finite type if there exist $c_{1}, \ldots, c_{n} \in G, \varphi_{1 i}, \ldots, \varphi_{m i} \in E^{\prime}, 1 \leq i \leq n$ such that A can be written in the form: $A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{n} \varphi_{1 i}\left(x_{1}\right) \cdots \varphi_{m i}\left(x_{m}\right) c_{i}$ for all $\left(x_{1}, \ldots, x_{m}\right) \in E^{m}$.

2 Definition. A polynomial $P \in \mathcal{P}\left({ }^{m} E ; G\right)$ is said to be of finite type, if there exist $c_{1}, \ldots, c_{n} \in G, \varphi_{1}, \ldots, \varphi_{n} \in E^{\prime}$ such that P can be written of the form: $P(x)=\sum_{i=1}^{n} \varphi_{i}(x)^{m} c_{i}$ for all $x \in E$.

3 Definition. A mapping $A \in L\left({ }^{m} E ; G\right)$ is said to be nuclear, if there exist sequence $\left(\varphi_{j i}\right)_{i \in \mathbb{N}}$ in $E^{\prime}, 1 \leq j \leq m$ and $\left(c_{i}\right)_{i \in \mathbb{N}}$ in G with $\sum_{i=1}^{\infty}\left\|\varphi_{1 i}\right\| \ldots$ $\left\|\varphi_{m i}\right\|\left\|c_{i}\right\|<\infty$ such that $A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{\infty} \varphi_{1 i}\left(x_{1}\right) \cdots \varphi_{m i}\left(x_{m}\right) c_{i}$ for all $\left(x_{1}, \ldots, x_{m}\right) \in E^{m}$.

4 Definition. A polynomial $P \in \mathcal{P}\left({ }^{m} E ; G\right)$ is said to be nuclear, if there exist sequences $\left(\varphi_{i}\right)_{i \in \mathbb{N}}$ in E^{\prime}, and $\left(c_{i}\right)_{i \in \mathbb{N}}$ in G with $\sum_{i=1}^{\infty}\left\|\varphi_{i}\right\|^{m}\left\|c_{i}\right\|<\infty$ such that $P(x)=\sum_{i=1}^{\infty} \varphi_{i}(x)^{m} c_{i}$ for all $x \in E$.

Let $L_{f}\left({ }^{m} E ; G\right)$ denote the space of all $A \in L\left({ }^{m} E ; G\right)$ which are of finite type. Let $\mathcal{P}_{f}\left({ }^{m} E ; G\right)$ denote the space of all $P \in \mathcal{P}\left({ }^{m} E ; G\right)$ which are of finite type. Let $L_{N}\left({ }^{m} E ; G\right)$ denote the space of all $A \in L\left({ }^{m} E ; G\right)$ which are nuclear endowed with the nuclear norm $\|A\|_{N}=\inf \sum_{i=1}^{\infty}\left\|\varphi_{1 i}\right\| \cdots\left\|\varphi_{m i}\right\|\left\|c_{i}\right\|$, where the infimum is taken over all sequences $\left(\varphi_{j i}\right)_{i \in \mathbb{N}}$ and $\left(c_{i}\right)_{i \in \mathbb{N}}$ which satisfy the definition. When $G=\mathbb{K}$, we write $L_{\Theta}\left({ }^{m} E, \mathbb{K}\right)=L_{\Theta}\left({ }^{m} E\right)$, where $\Theta=f$ or N. Let $\mathcal{P}_{N}\left({ }^{m} E ; G\right)$ denote the space of all $P \in \mathcal{P}\left({ }^{m} E ; G\right)$ which are nuclear, endowed with the nuclear norm $\|P\|_{N}=\inf \sum_{i=1}^{\infty}\left\|\varphi_{i}\right\|^{m}\left\|c_{i}\right\|$, where the infimum is taken over all sequences $\left(\varphi_{i}\right)_{i \in \mathbb{N}}$ and $\left(c_{i}\right)_{i \in \mathbb{N}}$ which satisfy the definition. When $G=\mathbb{K}$, we write $\mathcal{P}_{\Theta}\left({ }^{m} E, \mathbb{K}\right)=\mathcal{P}_{\Theta}\left({ }^{m} E\right)$, where $\Theta=f$ or N. Let us recall that $A \in L\left({ }^{m} E ; G\right)$ is a compact (resp. weakly compact) mapping if $A\left(B_{E^{m}}\right)$ is relatively compact in G (resp. for the weak topology), where $B_{E^{m}}$ denotes the closed unit ball of E^{m}. Let $L_{K}\left({ }^{m} E ; G\right)$ (resp. $L_{W K}\left({ }^{m} E ; G\right)$) denote the space of all $A \in L\left({ }^{m} E ; G\right)$ which are compact (resp. weakly compact). Recall that $P \in \mathcal{P}\left({ }^{m} E ; G\right)$ is a compact (resp. weakly compact) polynomial if $P\left(B_{E}\right)$ is relatively compact in G (resp. for the weak topology), where B_{E} denotes the closed unit ball of E. Let $\mathcal{P}_{K}\left({ }^{m} E ; G\right)$ (resp. $\mathcal{P}_{W K}\left({ }^{m} E ; G\right)$) denote the space of all compact (resp. weakly compact) homogeneous polynomials from E into G. We observe that in the case where $G=\mathbb{K}$, all the continuous homogeneous polynomials are compact (resp. weakly compact). For background information on multilinear mappings and homogeneous polynomials we refer to the books [7] and [12].

1 Isomorphisms between spaces of multilinear mappings or homogeneous polynomials

In this work, we use the Nicodemi sequences defined in [8] to prove all the theorems. We recall the definition of the Nicodemi sequences.

5 Definition. [8] Given a continuous linear operator $R_{1}: L(E ; G) \longrightarrow$ $L(F ; G)$, let $R_{m}: L\left({ }^{m} E ; G\right) \longrightarrow L\left({ }^{m} F ; G\right)$ be inductively defined by $R_{m+1} A=$ $I_{m}^{-1}\left[R_{m} \circ\left(R_{1} \circ I_{m}(A)\right)^{t}\right]^{t}$ for all $A \in L\left(^{m+1} E ; G\right)$ and $m \in \mathbb{N}$.

6 Example. [8, Example 1.2] Let $T_{1}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$ be the natural embedding and let $T_{m}: L\left({ }^{m} E\right) \rightarrow L\left({ }^{m} E^{\prime \prime}\right)$ be the Nicodemi sequence of operators beginning with T_{1}. This sequence is precisely the sequence of operators constructed by Aron and Berner in [1, Proposition 2.1].

7 Definition. [8, Proposition 4.1] Given $R_{1} \in L\left(E^{\prime} ; F^{\prime}\right)$, let $\widetilde{R_{1}} \in$ $L\left(L\left(E ; G^{\prime}\right), L\left(F ; G^{\prime}\right)\right)$ be defined by $R_{1} A(y)(z)=R_{1}\left(\delta_{z} \circ A\right)(y)$ for all $A \in$ $L\left(E ; G^{\prime}\right), y \in F$ and $z \in G$, where $\delta_{z}: G^{\prime} \rightarrow \mathbb{K}$ is defined by $\delta_{z}\left(z^{\prime}\right)=z^{\prime}(z)$ for all $z^{\prime} \in G^{\prime}$. If $\left(R_{m}\right)$ and $\left(\widetilde{R_{m}}\right)$ are the corresponding Nicodemi sequences, then $\widetilde{R_{m}} A(y)(z)=R_{m}\left(\delta_{z} \circ A\right)(y)$ for all $A \in L\left({ }^{m} E ; G^{\prime}\right), y \in F^{m}$ and $z \in G$.

8 Example. Let $T_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} E^{\prime \prime}\right)$ be the Nicodemi sequence of operators beginning with the natural embedding $T_{1}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$, and let $\widetilde{T_{m}}: L\left({ }^{m} E ; G^{\prime}\right) \longrightarrow L\left({ }^{m} E^{\prime \prime} ; G^{\prime}\right)$ be the corresponding sequence for vectorvalued multilinear mappings (See [8, Proposition 4.1]). We observe that as G^{\prime} is a \mathcal{C}_{1}-space, the sequence $\widetilde{T_{m}}: L\left({ }^{m} E ; G^{\prime}\right) \longrightarrow L\left({ }^{m} E^{\prime \prime} ; G^{\prime}\right) \subset L\left({ }^{m} E^{\prime \prime} ; G^{\prime \prime \prime}\right)$ coincides with the sequence of operators constructed by Aron and Berner in $[1$, Proposition 2.1].

The next theorem shows the relationship between an arbitrary Nicodemi sequence of scalar-valued mappings and the Nicodemi sequence beginning with the natural embedding $E^{\prime} \hookrightarrow E^{\prime \prime \prime}$.

9 Theorem. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be a Nicodemi sequence, let $T_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} E^{\prime \prime}\right)$ be the Nicodemi sequence beginning with the natural embedding $T_{1}=J_{E^{\prime}}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$, and let $J_{F}: F \hookrightarrow F^{\prime \prime}$ be the natural embedding. Then

$$
R_{m} A\left(y_{1}, \ldots, y_{m}\right)=T_{m} A\left(R_{1}^{\prime}\left(J_{F} y_{1}\right), \ldots, R_{1}^{\prime}\left(J_{F} y_{m}\right)\right)
$$

for all $A \in L\left({ }^{m} E\right)$, and $y_{1}, \ldots, y_{m} \in F$, where R_{1}^{\prime} is the transpose of R_{1}.
Proof. We will prove this theorem by induction on m. If $A \in L(E)=E^{\prime}$, we have

$$
R_{1} A(y)=\left\langle J_{F} y, R_{1} A\right\rangle=\left\langle R_{1}^{\prime}\left(J_{F} y\right), A\right\rangle=\left\langle T_{1} A, R_{1}^{\prime}\left(J_{F} y\right)\right\rangle=T_{1} A\left(R_{1}^{\prime}\left(J_{F} y\right)\right)
$$

for all $y \in F$. Now let us assume that the identity in Theorem 9 is true for $m-$ linear forms. Let $A \in L\left({ }^{m+1} E\right)$. We will prove that

$$
\begin{equation*}
T_{m+1} A\left(z_{1}, \ldots, z_{m}, R_{1}^{\prime}\left(J_{F} y\right)\right)=T_{m}\left[\left(R_{1} \circ I_{m} A\right)^{t}(y)\right]\left(z_{1}, \ldots, z_{m}\right) \tag{1}
\end{equation*}
$$

for all $z_{1}, \ldots, z_{m} \in E^{\prime \prime}$ and $y \in F$. From the definition of Nicodemi sequences, it follows that

$$
\begin{equation*}
T_{m+1} A\left(z_{1}, \ldots, z_{m}, R_{1}^{\prime}\left(J_{F} y\right)\right)=T_{m}\left[\left(T_{1} \circ I_{m} A\right)^{t}\left(R_{1}^{\prime}\left(J_{F} y\right)\right)\right]\left(z_{1}, \ldots, z_{m}\right) \tag{2}
\end{equation*}
$$

Therefore, to get (1) comparing with (2), it is enough to prove that

$$
\left(R_{1} \circ I_{m} A\right)^{t}(y)=\left(T_{1} \circ I_{m} A\right)^{t}\left(R_{1}^{\prime}\left(J_{F} y\right)\right)
$$

In fact,

$$
\begin{aligned}
\left(T_{1} \circ I_{m} A\right)^{t}\left(R_{1}^{\prime}\left(J_{F} y\right)\right)\left(x_{1}, \ldots, x_{m}\right) & =T_{1}\left[I_{m} A\left(x_{1}, \ldots, x_{m}\right)\right]\left(R_{1}^{\prime}\left(J_{F} y\right)\right) \\
& =\left\langle R_{1}^{\prime}\left(J_{F} y\right), I_{m} A\left(x_{1}, \ldots, x_{m}\right)\right\rangle \\
& =\left\langle J_{F} y, R_{1}\left[I_{m} A\left(x_{1}, \ldots, x_{m}\right)\right]\right\rangle \\
& =\left\langle R_{1}\left[I_{m} A\left(x_{1}, \ldots, x_{m}\right)\right], y\right\rangle \\
& =R_{1}\left[I_{m} A\left(x_{1}, \ldots, x_{m}\right)\right](y) \\
& =\left(R_{1} \circ I_{m} A\right)^{t}(y)\left(x_{1}, \ldots, x_{m}\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{m} \in E$. Thus by the induction hypothesis and (1) it follows that for all $y_{1}, \ldots, y_{m+1} \in F$

$$
\begin{aligned}
R_{m+1} A\left(y_{1}, \ldots, y_{m+1}\right) & =R_{m}\left[\left(R_{1} \circ I_{m} A\right)^{t}\left(y_{m+1}\right)\right]\left(y_{1}, \ldots, y_{m}\right) \\
& =T_{m}\left[\left(R_{1} \circ I_{m} A\right)^{t}\left(y_{m+1}\right)\right]\left(R_{1}^{\prime}\left(J_{F} y_{1}\right), \ldots, R_{1}^{\prime}\left(J_{F} y_{m}\right)\right) \\
& =T_{m+1} A\left(R_{1}^{\prime}\left(J_{F} y_{1}\right), \ldots, R_{1}^{\prime}\left(J_{F} y_{m}\right), R_{1}^{\prime}\left(J_{F} y_{m+1}\right)\right)
\end{aligned}
$$

QED
We next extend Theorem 9 to the case of a Nicodemi sequence of vectorvalued mappings. Let us recall that each Nicodemi sequence $\left(R_{m}\right)$ for scalarvalued mappings yields a Nicodemi sequence $\left(\widetilde{R_{m}}\right)$ for vector - valued mappings.

10 Theorem. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be a Nicodemi sequence, and let $T_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} E^{\prime \prime}\right)$ be the Nicodemi sequence beginning with the natural embedding $T_{1}=J_{E^{\prime}}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$. Let

$$
\widetilde{R_{m}}: L\left({ }^{m} E ; G^{\prime}\right) \rightarrow L\left({ }^{m} F ; G^{\prime}\right)
$$

and

$$
\widetilde{T_{m}}: L\left({ }^{m} E ; G^{\prime}\right) \rightarrow L\left({ }^{m} E^{\prime \prime} ; G^{\prime}\right)
$$

be the corresponding Nicodemi sequences for vector-valued multilinear mappings. Then

$$
\widetilde{R_{m}} A\left(y_{1}, \ldots, y_{m}\right)=\widetilde{T_{m}} A\left(R_{1}^{\prime}\left(J_{F} y_{1}\right), \ldots, R_{1}^{\prime}\left(J_{F} y_{m}\right)\right)
$$

for all $A \in L\left({ }^{m} E ; G^{\prime}\right)$, and $y_{1}, \ldots, y_{m} \in F$, where R_{1}^{\prime} is the transpose of R_{1}.
Proof. We will prove this theorem by induction on m. If $A \in L\left(E ; G^{\prime}\right)$, it follows that

$$
\begin{aligned}
\widetilde{R_{1}} A(y)(z) & =R_{1}\left(\delta_{z} \circ A\right)(y) \\
& =\left\langle J_{F} y, R_{1}\left(\delta_{z} \circ A\right)\right\rangle \\
& =\left\langle R_{1}^{\prime}\left(J_{F} y\right),\left(\delta_{z} \circ A\right)\right\rangle \\
& =\left\langle T_{1}\left(\delta_{z} \circ A\right), R_{1}^{\prime}\left(J_{F} y\right)\right\rangle \\
& =\widetilde{T}_{1} A\left(R_{1}^{\prime}\left(J_{F} y\right)\right)(z)
\end{aligned}
$$

for all $y \in F$ and $z \in G$. Now let us assume that the identity is true for $m-$ linear forms. Let $A \in L\left({ }^{m+1} E ; G^{\prime}\right)$. We prove initially that

$$
\begin{equation*}
\left.\widetilde{T_{m+1}} A\left(z_{1}, \ldots, z_{m}, R_{1}^{\prime}\left(J_{F} y\right)\right)=\widetilde{T_{m}}\left[\widetilde{R_{1}} \circ I_{m} A\right)^{t}(y)\right]\left(z_{1}, \ldots, z_{m}\right) \tag{3}
\end{equation*}
$$

for all $z_{1}, \ldots, z_{m} \in E^{\prime \prime}$ and $y \in F$. From the definition of Nicodemi sequences, it follows that

$$
\begin{equation*}
\widetilde{T_{m+1}} A\left(z_{1}, \ldots, z_{m}, R_{1}^{\prime}\left(J_{F} y\right)\right)=\widetilde{T_{m}}\left[\left(\widetilde{T_{1}} \circ I_{m} A\right)^{t}\left(R_{1}^{\prime}\left(J_{F} y\right)\right)\right]\left(z_{1}, \ldots, z_{m}\right) . \tag{4}
\end{equation*}
$$

Therefore, to get (3) comparing with (4), it is enough to prove that

$$
\left(\widetilde{R_{1}} \circ I_{m} A\right)^{t}(y)=\left(\widetilde{T_{1}} \circ I_{m} A\right)^{t}\left(R_{1}^{\prime}\left(J_{F} y\right)\right) .
$$

In fact,

$$
\begin{aligned}
\left(\widetilde{T_{1}} \circ I_{m} A\right)^{t}\left(R_{1}^{\prime}\left(J_{F} y\right)\right)\left(x_{1}, \ldots, x_{m}\right)(z) & =\widetilde{T_{1}}\left[I_{m} A\left(x_{1}, \ldots, x_{m}\right)\right]\left(R_{1}^{\prime}\left(J_{F} y\right)\right)(z) \\
& =T_{1}\left[\delta_{z} \circ I_{m} A\left(x_{1}, \ldots, x_{m}\right)\right]\left(R_{1}^{\prime}\left(J_{F} y\right)\right) \\
& =\left\langle R_{1}^{\prime}\left(J_{F} y\right), \delta_{z} \circ I_{m} A\left(x_{1}, \ldots, x_{m}\right)\right\rangle \\
& =\left\langle J_{F} y, R_{1}\left[\delta_{z} \circ I_{m} A\left(x_{1}, \ldots, x_{m}\right)\right]\right\rangle \\
& =\left\langle R_{1}\left[\delta_{z} \circ I_{m} A\left(x_{1}, \ldots, x_{m}\right)\right], y\right\rangle \\
& =R_{1}\left[\delta_{z} \circ I_{m} A\left(x_{1}, \ldots, x_{m}\right)\right](y) \\
& =\left(\widetilde{R_{1}} \circ I_{m} A\right)^{t}(y)\left(x_{1}, \ldots, x_{m}\right)(z)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{m} \in E$ and $z \in G$. Thus, from the induction hypothesis and (3), it follows that for all $y_{1}, \ldots, y_{m+1} \in F$

$$
\begin{aligned}
\widetilde{R_{m+1}} A\left(y_{1}, \ldots, y_{m+1}\right) & =\widetilde{R_{m}}\left[\left(\widetilde{R_{1}} \circ I_{m} A\right)^{t}\left(y_{m+1}\right)\right]\left(y_{1}, \ldots, y_{m}\right) \\
& =\widetilde{T_{m}}\left[\left(\widetilde{R_{1}} \circ I_{m} A\right)^{t}\left(y_{m+1}\right)\right]\left(R_{1}^{\prime}\left(J_{F} y_{1}\right), \ldots, R_{1}^{\prime}\left(J_{F} y_{m}\right)\right) \\
& =\widetilde{T_{m+1}} A\left(R_{1}^{\prime}\left(J_{F} y_{1}\right), \ldots, R_{1}^{\prime}\left(J_{F} y_{m}\right), R_{1}^{\prime}\left(J_{F} y_{m+1}\right)\right) .
\end{aligned}
$$

Recall that a Banach space E is said to be Arens - regular if all linear operator $E \longrightarrow E^{\prime}$ are weakly compact, and symmetrically Arens - regular if this is so for all symmetric linear operators. An operator $T: E \rightarrow E^{\prime}$ is said to be symmetric if $T x(y)=T y(x)$ for all $x, y \in E$ (see [3] and [9]). Let us recall that if E is symmetrically Arens - regular, then $T_{m} A \in L^{s}\left({ }^{m} E^{\prime \prime}\right)$ for all $A \in L^{s}\left({ }^{m} E\right)$, where $\left(T_{m}\right)$ is the Nicodemi sequence beginning with the natural embedding $T_{1}=J_{E^{\prime}}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$ (see [2, Theorem 8.3]). Now, we are ready to study the theorems of preservation of symmetric multilinear mappings.

11 Theorem. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be a Nicodemi sequence and let $T_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} E^{\prime \prime}\right)$ be the Nicodemi sequence beginning with the natural embedding $T_{1}=J_{E^{\prime}}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$. If $T_{m} A$ is symmetric, then $R_{m} A$ is also symmetric. In particular, if E is symmetrically Arens - regular, then $R_{m} A \in$ $L^{s}\left({ }^{m} F\right)$ for all $A \in L^{s}\left({ }^{m} E\right)$.

Proof. By Theorem 9 we have that

$$
R_{m} A\left(y_{1}, \ldots, y_{m}\right)=T_{m} A\left(R_{1}^{\prime}\left(J_{F} y_{1}\right), \ldots, R_{1}^{\prime}\left(J_{F} y_{m}\right)\right)
$$

Thus, if $T_{m} A$ is symmetric, then $R_{m} A$ is also symmetric. Now if E is symmetrically Arens - regular, we have that the Aron - Berner extension $T_{m} A$ is symmetric for all $A \in L^{s}\left({ }^{m} E\right)$ (See [2, Proposition 8.3]). We conclude that $R_{m} A \in L^{s}\left({ }^{m} F\right)$ for all $A \in L^{s}\left({ }^{m} E\right)$.

QED
12 Theorem. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be a Nicodemi sequence and let $\widetilde{R_{m}}: L\left({ }^{m} E ; G^{\prime}\right) \longrightarrow L\left({ }^{m} F ; G^{\prime}\right)$ be the corresponding Nicodemi sequence for vector-valued multilinear mappings. If E is symmetrically Arens - regular, then $\widetilde{R_{m}} A \in L^{s}\left({ }^{m} F ; G^{\prime}\right)$ for all $A \in L^{s}\left({ }^{m} E ; G^{\prime}\right)$.

Proof. By [8, Proposition 4.1], we have that

$$
\begin{equation*}
\widetilde{R_{m}} A(y)(z)=R_{m}\left(\delta_{z} \circ A\right)(y) \tag{5}
\end{equation*}
$$

for all $A \in L\left({ }^{m} E, G^{\prime}\right), y \in F^{m}$ and $z \in G$. The identity (5) and Theorem 11 imply that if A is symmetric, then $\widetilde{R_{m}} A$ is also symmetric.

In Theorem 13 we will denote $J_{F}(y)$ by y for all $y \in F$ and $J_{E}(x)$ by x for all $x \in E$.

13 Theorem. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be a Nicodemi sequence, let $T_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} E^{\prime \prime}\right)$ be the Nicodemi sequence beginning with the natural embedding $T_{1}=J_{E^{\prime}}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$, and let $Q_{m}: L\left({ }^{m} F\right) \longrightarrow L\left({ }^{m} F^{\prime \prime}\right)$ be the Nicodemi sequence beginning with the natural embedding $Q_{1}=J_{F^{\prime}}: F^{\prime} \hookrightarrow F^{\prime \prime \prime}$. If $T_{m} A$ is symmetric, then

$$
Q_{m} \circ R_{m} A\left(w_{1}, \ldots, w_{m}\right)=T_{m} A\left(R_{1}^{\prime} w_{1}, \ldots, R_{1}^{\prime} w_{m}\right)
$$

for all $A \in L\left({ }^{m} E\right), w_{j} \in F^{\prime \prime}, j=1, \ldots, m$, and $m \in \mathbb{N}$.
Proof. We will prove by induction on $k \in \mathbb{N}$ that

$$
\begin{aligned}
& Q_{m} \circ R_{m} A\left(w_{1}, \ldots, w_{k}, y_{k+1}, \ldots, y_{m}\right)= \\
& \quad T_{m} A\left(R_{1}^{\prime}\left(w_{1}\right), \ldots, R_{1}^{\prime}\left(w_{k}\right), R_{1}^{\prime}\left(y_{k+1}\right), \ldots, R_{1}^{\prime}\left(y_{m}\right)\right)
\end{aligned}
$$

for all $y_{j} \in F$ and $w_{j} \in F^{\prime \prime}$. Recall that (i) $Q_{m} B$ and $T_{m} A$ are weak ${ }^{\star}$ continuous in its first variable for all $B \in L\left({ }^{m} F\right)$ and $A \in L\left({ }^{m} E\right)$ by [8, Proposition 5.1]; (ii) elements of $F^{\prime \prime}$ and of $J_{F}(F)$ commute in variables of $Q_{m} B$ by [8, Lemma 3.4]; (iii) R_{1}^{\prime} is $\sigma\left(F^{\prime \prime}, F^{\prime}\right)-\sigma\left(E^{\prime \prime}, E^{\prime}\right)$ continuous; (iv) by [8, Proposition 2.1], we have that $T_{m} A\left(x_{1}, \ldots, x_{m}\right)=A\left(x_{1}, \ldots, x_{m}\right)$ for all $A \in L\left({ }^{m} E\right)$ and $x_{1}, \ldots, x_{m} \in E$; and $Q_{m} B\left(y_{1}, \ldots, y_{m}\right)=B\left(y_{1}, \ldots, y_{m}\right)$ for all $B \in L\left({ }^{m} F\right)$ and $y_{1}, \ldots, y_{m} \in F$. If $k=1$, by Goldstine's theorem, there is a net $\left(y_{\alpha}\right) \subset F$ such that $y_{\alpha} \longrightarrow w_{1}$ for the topology $\sigma\left(F^{\prime \prime}, F^{\prime}\right)$. Then by Theorem 9

$$
\begin{aligned}
Q_{m} \circ R_{m} A\left(w_{1}, y_{2} \ldots, y_{m}\right) & =Q_{m}\left(R_{m} A\right)\left(w_{1}, y_{2} \ldots, y_{m}\right) \\
& =\lim _{\alpha} Q_{m}\left(R_{m} A\right)\left(y_{\alpha}, y_{2} \ldots, y_{m}\right) \\
& =\lim _{\alpha}\left(R_{m} A\right)\left(y_{\alpha}, y_{2} \ldots, y_{m}\right) \\
& =\lim _{\alpha} T_{m} A\left(R_{1}^{\prime} y_{\alpha}, R_{1}^{\prime} y_{2}, \ldots, R_{1}^{\prime} y_{m}\right) \\
& =T_{m} A\left(R_{1}^{\prime} w_{1}, R_{1}^{\prime} y_{2}, \ldots, R_{1}^{\prime} y_{m}\right) .
\end{aligned}
$$

Now assuming that the identity holds for k, we will prove that the identity holds for $k+1$. By the induction hypothesis and $T_{m} A$ being symmetric, it follows that

$$
\begin{aligned}
Q_{m} \circ R_{m} A\left(w_{1}, \ldots, w_{k+1}\right. & \left., y_{k+2}, \ldots, y_{m}\right) \\
& =Q_{m}\left(R_{m} A\right)\left(w_{1}, \ldots, w_{k+1}, y_{k+2}, \ldots, y_{m}\right) \\
& =\lim _{\alpha} Q_{m}\left(R_{m} A\right)\left(y_{\alpha}, w_{2}, \ldots, w_{k+1}, y_{k+2}, \ldots, y_{m}\right) \\
& =\lim _{\alpha} Q_{m}\left(R_{m} A\right)\left(w_{2}, \ldots, w_{k+1}, y_{\alpha}, y_{k+2}, \ldots, y_{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{\alpha} T_{m} A\left(R_{1}^{\prime} w_{2}, \ldots, R_{1}^{\prime} w_{k+1}, R_{1}^{\prime} y_{\alpha}, R_{1}^{\prime} y_{k+2}, \ldots, R_{1}^{\prime} y_{m}\right) \\
& =\lim _{\alpha} T_{m} A\left(R_{1}^{\prime} y_{\alpha}, R_{1}^{\prime} w_{2}, \ldots, R_{1}^{\prime} w_{k+1}, R_{1}^{\prime} y_{k+2}, \ldots, R_{1}^{\prime} y_{m}\right) \\
& =T_{m} A\left(R_{1}^{\prime} w_{1}, \ldots, R_{1}^{\prime} w_{k+1}, R_{1}^{\prime} y_{k+2}, \ldots, R_{1}^{\prime} y_{m}\right) .
\end{aligned}
$$

Next we will prove that each isomorphism between E^{\prime} and F^{\prime} induces an isomorphism between $L\left({ }^{m} E ; G^{\prime}\right)$ and $L\left({ }^{m} F ; G^{\prime}\right)$ for all $m \in \mathbb{N}$. If E and F are symmetrically Arens - regular, then each isomorphism between E^{\prime} and F^{\prime} induces an isomorphism between $\mathcal{P}\left({ }^{m} E ; G^{\prime}\right)$ and $\mathcal{P}\left({ }^{m} F ; G^{\prime}\right)$ for all $m \in \mathbb{N}$.

Given a continuous linear operator

$$
R_{m}: L\left({ }^{m} E ; G\right) \longrightarrow L\left({ }^{m} F ; G\right)
$$

we define

$$
U_{m}: A \in L\left({ }^{n} D ; L\left({ }^{m} E ; G\right)\right) \longrightarrow R_{m} \circ A \in L\left({ }^{n} D ; L\left({ }^{m} F ; G\right)\right)
$$

We observe that if R_{m} is an isomorphism then U_{m} is also an isomorphism, whose inverse

$$
U_{m}^{-1}: L\left({ }^{n} D ; L\left({ }^{m} F ; G\right)\right) \longrightarrow L\left({ }^{n} D ; L\left({ }^{m} E ; G\right)\right)
$$

is defined by $U_{m}^{-1}(B)=R_{m}^{-1} \circ B$ for all $B \in L\left({ }^{n} D ; L\left({ }^{m} F ; G\right)\right)$ where R_{m}^{-1} is the inverse of R_{m}. Thus, with the previous notations, it is possible to rewrite the definition of the Nicodemi operators in the following way:

14 Lemma. Given an operator

$$
R_{m}: L\left({ }^{m} E ; G\right) \longrightarrow L\left({ }^{m} F ; G\right)
$$

the operator

$$
R_{m+1}: L\left({ }^{m+1} E ; G\right) \longrightarrow L\left({ }^{m+1} F ; G\right)
$$

is given by

$$
R_{m+1}(A)=I_{m}^{-1}\left[R_{m} \circ\left(R_{1} \circ I_{m}(A)\right)^{t}\right]^{t}=I_{m}^{-1} \circ T^{t} \circ U_{m} \circ T^{t} \circ U_{1} \circ I_{m}(A)
$$

for all $A \in L\left({ }^{m+1} E ; G\right)$.
The following theorem was obtained in [4]. But we will need our proof in the proof of the subsequent theorem.

15 Theorem. If E^{\prime} and F^{\prime} are isomorphic, then $L\left({ }^{m} E\right)$ and $L\left({ }^{m} F\right)$ are isomorphic for all $m \in \mathbb{N}$.

Proof. Since E^{\prime} and F^{\prime} are isomorphic, there exists an isomorphism R_{1} : $E^{\prime} \longrightarrow F^{\prime}$. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be the Nicodemi sequence beginning with R_{1}. We will prove by induction on $m \in \mathbb{N}$ that R_{m} is an isomorphism between $L\left({ }^{m} E\right)$ and $L\left({ }^{m} F\right)$ for all $m \in \mathbb{N}$. By hypothesis $R_{1}: E^{\prime} \longrightarrow F^{\prime}$ is an isomorphism. Assuming that R_{1} and R_{m} are isomorphisms, we show that R_{m+1} is also an isomorphism. In fact, by Lemma 1 it is possible to rewrite

$$
R_{m+1}=I_{m}^{-1} \circ T^{t} \circ U_{m} \circ T^{t} \circ U_{1} \circ I_{m}
$$

Since R_{1} and R_{m} are isomorphisms, we have that U_{1} and U_{m} are also isomorphisms. Thus R_{m+1} is an isomorphism between $L\left({ }^{m+1} E\right)$ and $L\left({ }^{m+1} F\right)$ being a composite of isomorphisms. Therefore $L\left({ }^{m} E\right)$ and $L\left({ }^{m} F\right)$ are isomorphic for all $m \in \mathbb{N}$.

16 Theorem. If E^{\prime} and F^{\prime} are isomorphic, then $L\left({ }^{m} E ; G^{\prime}\right)$ and $L\left({ }^{m} F ; G^{\prime}\right)$ are isomorphic for all $m \in \mathbb{N}$.

Proof. Since E^{\prime} and F^{\prime} are isomorphic, there exists an isomorphism R_{1} : $E^{\prime} \longrightarrow F^{\prime}$. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be the Nicodemi sequence beginning with R_{1}. Let

$$
\widetilde{R_{m}}: L\left({ }^{m} E, G^{\prime}\right) \longrightarrow L\left({ }^{m} F, G^{\prime}\right)
$$

be the corresponding Nicodemi sequence for vector-valued multilinear mappings. We observe that

$$
\begin{equation*}
\left(\delta_{z} \circ \widetilde{R_{m}} A\right)=R_{m}\left(\delta_{z} \circ A\right) \tag{6}
\end{equation*}
$$

for all $z \in G$ and $A \in L\left({ }^{m} E ; G^{\prime}\right)$. In fact, by [8, Proposition 4.1],

$$
\left(\delta_{z} \circ \widetilde{R_{m}} A\right)(y)=\widetilde{R_{m}} A(y)(z)=R_{m}\left(\delta_{z} \circ A\right)(y)
$$

for all $y \in F^{m}$. It follows from the proof of Theorem 15 that R_{m} is an isomorphism for all $m \in \mathbb{N}$. Let $S_{m}: L\left({ }^{m} F\right) \longrightarrow L\left({ }^{m} E\right)$ denote the inverse of R_{m} for all $m \in \mathbb{N}$. We define

$$
\widetilde{S_{m}}: L\left({ }^{m} F ; G^{\prime}\right) \longrightarrow L\left({ }^{m} E ; G^{\prime}\right)
$$

by $\widetilde{S_{m}} B(x)(z)=S_{m}\left(\delta_{z} \circ B\right)(x)$ for all $B \in L\left({ }^{m} F ; G^{\prime}\right), x \in E^{m}, z \in G$ and $m \in \mathbb{N}$. Thus $\widetilde{S_{m}}$ is linear and continuous. We will show that $\widetilde{R_{m}}$ is an isomorphism
between $L\left({ }^{m} E ; G^{\prime}\right)$ and $L\left({ }^{m} F ; G^{\prime}\right)$ for all $m \in \mathbb{N}$. In fact, we have that by (6)

$$
\begin{aligned}
\widetilde{S_{m}} \circ \widetilde{R_{m}} A(x)(z) & =\widetilde{S_{m}}\left(\widetilde{R_{m}} A\right)(x)(z) \\
& =S_{m}\left(\delta_{z} \circ \widetilde{R_{m}} A\right)(x) \\
& =S_{m}\left(R_{m}\left(\delta_{z} \circ A\right)\right)(x) \\
& =\left[S_{m} \circ R_{m}\left(\delta_{z} \circ A\right)\right](x) \\
& =\left(\delta_{z} \circ A\right)(x) \\
& =A(x)(z)
\end{aligned}
$$

for all $A \in L\left({ }^{m} E, G^{\prime}\right), x \in E^{m}$ and $z \in G$. In a similar way, we can get that $\left(\widetilde{R_{m}} \circ \widetilde{S_{m}}\right) B=B$ for all $B \in L\left({ }^{m} F ; G^{\prime}\right)$.

QED
17 Theorem. If E and F are symmetrically Arens - regular, and E^{\prime} and F^{\prime} are isomorphic, then $L^{s}\left({ }^{m} E\right)$ and $L^{s}\left({ }^{m} F\right)$ are isomorphic for all $m \in \mathbb{N}$.

Proof. We write $J_{E}(x)=x$ for all $x \in E$. Recall that by $[8$, Proposition 2.1] $T_{m} A\left(x_{1}, \ldots, x_{m}\right)=A\left(x_{1}, \ldots, x_{m}\right)$ for all $A \in L\left({ }^{m} E\right)$ and $x_{1}, \ldots, x_{m} \in E$. Since E^{\prime} and F^{\prime} are isomorphic, there exists an isomorphism $R_{1}: E^{\prime} \longrightarrow F^{\prime}$. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be the Nicodemi sequence beginning with R_{1}. Let $S_{1}=R_{1}^{-1}: F^{\prime} \longrightarrow E^{\prime}$ be the inverse of R_{1} and let $S_{m}: L\left({ }^{m} F\right) \longrightarrow L\left({ }^{m} E\right)$ be the Nicodemi sequence beginning with S_{1}. Since F is symmetrically Arens - regular, we have by Theorem 11 that $S_{m}\left(L^{s}\left({ }^{m} F\right)\right) \subset L^{s}\left({ }^{m} E\right)$. By Theorem 9 we have that $S_{m} B\left(x_{1}, \ldots, x_{m}\right)=Q_{m} B\left(S_{1}^{\prime} x_{1}, \ldots, S_{1}^{\prime} x_{m}\right)$ for all $B \in L\left({ }^{m} F\right)$, and $x_{1}, \ldots, x_{m} \in E$, where S_{1}^{\prime} is the transpose of S_{1}. In particular, we have that

$$
\begin{equation*}
S_{m}\left(R_{m} A\right)\left(x_{1}, \ldots, x_{m}\right)=Q_{m}\left(R_{m} A\right)\left(S_{1}^{\prime} x_{1}, \ldots, S_{1}^{\prime} x_{m}\right) \tag{7}
\end{equation*}
$$

for all $A \in L\left({ }^{m} E\right)$. On the other hand, since E is symmetrically Arens - regular, it follows from Theorem 11 that $R_{m}\left(L^{s}\left({ }^{m} E\right)\right) \subset L^{s}\left({ }^{m} F\right)$. Moreover, by Theorem 13 we have that

$$
\begin{equation*}
Q_{m}\left(R_{m} A\right)\left(S_{1}^{\prime} x_{1}, \ldots, S_{1}^{\prime} x_{m}\right)=T_{m} A\left(R_{1}^{\prime}\left(S_{1}^{\prime} x_{1}\right), \ldots, R_{1}^{\prime}\left(S_{1}^{\prime} x_{m}\right)\right), \tag{8}
\end{equation*}
$$

for all $A \in L^{s}\left({ }^{m} E\right)$. Therefore we conclude by (7) and (8) that

$$
\begin{aligned}
S_{m}\left(R_{m} A\right)\left(x_{1}, \ldots, x_{m}\right) & =Q_{m}\left(R_{m} A\right)\left(S_{1}^{\prime} x_{1}, \ldots, S_{1}^{\prime} x_{m}\right) \\
& =T_{m} A\left(R_{1}^{\prime}\left(S_{1}^{\prime} x_{1}\right), \ldots, R_{1}^{\prime}\left(S_{1}^{\prime} x_{m}\right)\right) \\
& =T_{m} A\left(x_{1}, \ldots, x_{m}\right) \\
& =A\left(x_{1}, \ldots, x_{m}\right),
\end{aligned}
$$

for all $A \in L^{s}\left({ }^{m} E\right)$, that is

$$
\begin{equation*}
\left(S_{m} \circ R_{m}\right) A=A \tag{9}
\end{equation*}
$$

for all $A \in L^{s}\left({ }^{m} E\right)$. In an analogous way, we can prove that $\left(R_{m} \circ S_{m}\right) B=B$ for all $B \in L^{s}\left({ }^{m} F\right)$.

The following Corollary 18 was proven by Lassalle - Zalduendo in [11] and by F. Cabello Sánchez, J. Castillo and R. García in [4] by a different method.

18 Corollary. If E and F are symmetrically Arens - regular, and E^{\prime} and F^{\prime} are isomorphic, then $\mathcal{P}\left({ }^{m} E\right)$ and $\mathcal{P}\left({ }^{m} F\right)$ are isomorphic for all $m \in \mathbb{N}$.

19 Theorem. If E and F are symmetrically Arens - regular, and E^{\prime} and F^{\prime} are isomorphic, then $L^{s}\left({ }^{m} E ; G^{\prime}\right)$ and $L^{s}\left({ }^{m} F ; G^{\prime}\right)$ are isomorphic for all $m \in \mathbb{N}$.

Proof. Since E^{\prime} and F^{\prime} are isomorphic, there exists an isomorphism R_{1} : $E^{\prime} \longrightarrow F^{\prime}$. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be the Nicodemi sequence beginning with R_{1}. Let $S_{1}=R_{1}^{-1}: F^{\prime} \longrightarrow E^{\prime}$ be the inverse of R_{1}, and let $S_{m}: L\left({ }^{m} F\right) \longrightarrow$ $L\left({ }^{m} E\right)$ be the Nicodemi sequence beginning with S_{1}. Let $\widetilde{R_{m}}: L\left({ }^{m} E ; G^{\prime}\right) \longrightarrow$ $L\left({ }^{m} F ; G^{\prime}\right)$ and $\widetilde{S_{m}}: L\left({ }^{m} F ; G^{\prime}\right) \longrightarrow L\left({ }^{m} E ; G^{\prime}\right)$ be the corresponding Nicodemi sequence for vector-valued multilinear mappings. By Theorem 12 we have that

$$
\begin{equation*}
\widetilde{R_{m}}\left(L^{s}\left({ }^{m} E ; G^{\prime}\right)\right) \subset L^{s}\left({ }^{m} F ; G^{\prime}\right) . \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{S_{m}}\left(L^{s}\left({ }^{m} F ; G^{\prime}\right)\right) \subset L^{s}\left({ }^{m} E ; G^{\prime}\right) . \tag{11}
\end{equation*}
$$

It follows from the proof of Theorem 16 that $\widetilde{R_{m}}$ is an isomorphism between $L\left({ }^{m} E ; G^{\prime}\right)$ and $L\left({ }^{m} F ; G^{\prime}\right)$ such that $\widetilde{R_{m}}{ }^{-1}=\widetilde{S_{m}}$. By (10) and (11), we have that $\left.\widetilde{R_{m}}\right|_{L^{s}\left(m_{E} \in ; G^{\prime}\right)}$ is an isomorphism between $L^{s}\left({ }^{m} E ; G^{\prime}\right)$ and $L^{s}\left({ }^{m} F ; G^{\prime}\right)$. QED

The following Corollary 20 was proven for Carando - Lassalle in [5] by a different method.

20 Corollary. If E and F are symmetrically Arens - regular, and E^{\prime} and F^{\prime} are isomorphic, then $\mathcal{P}\left({ }^{m} E ; G^{\prime}\right)$ and $\mathcal{P}\left({ }^{m} F ; G^{\prime}\right)$ are isomorphic for all $m \in \mathbb{N}$.

2 Isomorphisms between spaces of nuclear multilinear mappings or homogeneous polynomials.

We will use the following notation:

$$
\left(\varphi_{1} \otimes \varphi_{2} \otimes c\right)\left(x_{1}, x_{2}\right)=\varphi_{1}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right) c
$$

for all $\varphi_{1}, \varphi_{2} \in E^{\prime}, c \in F$ and $x_{1}, x_{2} \in E$. The next lemma comes essentially from Aron and Berner [1].

21 Lemma. [1, Proposition 2.2] Let $T_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} E^{\prime \prime}\right)$ be the Nicodemi sequence beginning with the natural embedding $T_{1}=J_{E^{\prime}}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$. Let $A \in L_{f}\left({ }^{m} E\right)$ and let $c_{1}, \ldots, c_{n} \in \mathbb{K}, \varphi_{1 i}, \ldots, \varphi_{m i} \in E^{\prime}, 1 \leq i \leq n$ such that

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{n} \varphi_{1 i}\left(x_{1}\right) \cdots \varphi_{m i}\left(x_{m}\right) c_{i}
$$

for all $\left(x_{1}, \ldots, x_{m}\right) \in E^{m}$, then

$$
T_{m}(A)\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right)=\sum_{i=1}^{n}\left(T_{1} \varphi_{1 i}\right)\left(x_{1}^{\prime \prime}\right) \cdots\left(T_{1} \varphi_{m i}\right)\left(x_{m}^{\prime \prime}\right) c_{i}
$$

for all $\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right) \in\left(E^{\prime \prime}\right)^{m}$. In particular $T_{m}(A) \in L_{f}\left({ }^{m} E^{\prime \prime}\right)$.
22 Lemma. Let $T_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} E^{\prime \prime}\right)$ be the Nicodemi sequence beginning with the natural embedding $T_{1}=J_{E^{\prime}}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$. Let $A \in L_{N}\left({ }^{m} E\right)$ and let $\left(\varphi_{j i}\right)_{i \in \mathbb{N}}$ in $E^{\prime}, 1 \leq j \leq m$ and $\left(c_{i}\right)_{i \in \mathbb{N}}$ in \mathbb{K} with

$$
\sum_{i=1}^{\infty}\left\|\varphi_{1 i}\right\| \cdots\left\|\varphi_{m i}\right\|\left\|c_{i}\right\|<\infty
$$

such that

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{\infty} \varphi_{1 i}\left(x_{1}\right) \cdots \varphi_{m i}\left(x_{m}\right) c_{i}
$$

for all $\left(x_{1}, \ldots, x_{m}\right) \in E^{m}$. Then $T_{m}(A)$ has the following form:

$$
T_{m}(A)\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right)=\sum_{i=1}^{\infty}\left(T_{1} \varphi_{1 i}\right)\left(x_{1}^{\prime \prime}\right) \cdots\left(T_{1} \varphi_{m i}\right)\left(x_{m}^{\prime \prime}\right) c_{i}
$$

for all $\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right) \in\left(E^{\prime \prime}\right)^{m}$. In particular $T_{m}(A) \in L_{N}\left({ }^{m} E^{\prime \prime}\right)$.
Proof. Let $A_{n}=\sum_{i=1}^{n} \varphi_{1 i} \otimes \cdots \otimes \varphi_{m i} \otimes c_{i}$ for all $n \in \mathbb{N}$. Then $A_{n} \in L_{f}\left({ }^{m} E\right)$ and $A_{n} \rightarrow A$ for the nuclear norm, that is

$$
\begin{equation*}
\left\|A_{n}-A\right\|_{N} \longrightarrow 0 . \tag{12}
\end{equation*}
$$

By Lemma $21 T_{m} A_{n}$ has the following form: $T_{m} A_{n}=\sum_{i=1}^{n} T_{1} \varphi_{1 i} \otimes \cdots \otimes T_{1} \varphi_{m i} \otimes c_{i}$ for all $n \in \mathbb{N}$. It follows that $T_{m} A_{n} \longrightarrow \sum_{i=1}^{\infty} T_{1} \varphi_{1 i} \otimes \cdots \otimes T_{1} \varphi_{m i} \otimes c_{i}$ for the nuclear norm. In particular

$$
\begin{equation*}
T_{m} A_{n} \longrightarrow \sum_{i=1}^{\infty} T_{1} \varphi_{1 i} \otimes \cdots \otimes T_{1} \varphi_{m i} \otimes c_{i} \tag{13}
\end{equation*}
$$

pointwise. On the other hand, we have that

$$
\begin{equation*}
T_{m} A_{n} \rightarrow T_{m} A \tag{14}
\end{equation*}
$$

pointwise. Then by (12)

$$
\begin{aligned}
\left\|T_{m} A\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right)-T_{m} A_{n}\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right)\right\| & \\
& =\left\|\left(T_{m} A-T_{m} A_{n}\right)\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right)\right\| \\
& =\left\|T_{m}\left(A-A_{n}\right)\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right)\right\| \\
& \leq\left\|T_{m}\right\|\left\|A-A_{n}\right\|\left\|\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right)\right\| \\
& \leq\left\|T_{m}\right\|\left\|A-A_{n}\right\|_{N}\left\|\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right)\right\| \longrightarrow 0
\end{aligned}
$$

for all $x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime} \in E^{\prime \prime}$. By (13) and (14), we have that

$$
T_{m}(A)\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right)=\sum_{i=1}^{\infty}\left(T_{1} \varphi_{1 i}\right)\left(x_{1}^{\prime \prime}\right) \cdots\left(T_{1} \varphi_{m i}\right)\left(x_{m}^{\prime \prime}\right) c_{i}
$$

for all $x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime} \in E^{\prime \prime}$ and therefore $T_{m}(A) \in L_{N}\left({ }^{m} E^{\prime \prime}\right)$.
Next we will see that the operators from the Nicodemi sequence preserve multilinear mappings of finite type and nuclear multilinear mappings. We consider first the case of scalar-valued multilinear mappings.

23 Theorem. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be a Nicodemi sequence. Then $R_{m} A \in L_{\Theta}\left({ }^{m} F\right)$ for all $A \in L_{\Theta}\left({ }^{m} E\right)$, where $\Theta=f$ or N.

Proof. We will write the proof in detail in the case $\Theta=N$. In the case $\Theta=f$, the proof is similar. Given $A \in L_{N}\left({ }^{m} E\right)$, there exist sequences $\left(\varphi_{j i}\right)_{i \in \mathbb{N}}$ in $E^{\prime}, 1 \leq j \leq m$, and $\left(c_{i}\right)_{i \in \mathbb{N}}$ in \mathbb{K}, with $\sum_{i=1}^{\infty}\left\|\varphi_{1 i}\right\| \cdots\left\|\varphi_{m i}\right\|\left|c_{i}\right|<\infty$ such that $A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=1}^{\infty} \varphi_{1 i}\left(x_{1}\right) \cdots \varphi_{m i}\left(x_{m}\right) c_{i}$ for all $\left(x_{1}, \ldots, x_{m}\right) \in E^{m}$. Let $T_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} E^{\prime \prime}\right)$ be the Nicodemi sequence beginning with the natural embedding $T_{1}=J_{E^{\prime}}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$. By Theorem 9 we have that

$$
R_{m} A\left(y_{1}, \ldots, y_{m}\right)=T_{m} A\left(R_{1}^{\prime}\left(J_{F} y_{1}\right), \ldots, R_{1}^{\prime}\left(J_{F} y_{m}\right)\right)
$$

for all $A \in L\left({ }^{m} E\right)$, and $y_{1}, \ldots, y_{m} \in F$, where R_{1}^{\prime} is the transpose of R_{1} and by Lemma 22 we have that

$$
T_{m}(A)\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right)=\sum_{i=1}^{\infty}\left(T_{1} \varphi_{1 i}\right)\left(x_{1}^{\prime \prime}\right) \cdots\left(T_{1} \varphi_{m i}\right)\left(x_{m}^{\prime \prime}\right) c_{i}
$$

for all $\left(x_{1}^{\prime \prime}, \ldots, x_{m}^{\prime \prime}\right) \in\left(E^{\prime \prime}\right)^{m}$. Therefore

$$
\begin{aligned}
R_{m} A\left(y_{1}, \ldots, y_{m}\right) & =T_{m} A\left(R_{1}^{\prime}\left(J_{F} y_{1}\right), \ldots, R_{1}^{\prime}\left(J_{F} y_{m}\right)\right) \\
& =\sum_{i=1}^{\infty}\left(T_{1} \varphi_{1 i}\right)\left(R_{1}^{\prime} J_{F} y_{1}\right) \cdots\left(T_{1} \varphi_{m i}\right)\left(R_{1}^{\prime} J_{F} y_{m}\right) c_{i} \\
& =\sum_{i=1}^{\infty} R_{1} \varphi_{1 i}\left(y_{1}\right) \cdots R_{1} \varphi_{m i}\left(y_{m}\right) c_{i}
\end{aligned}
$$

for all $y_{1}, \ldots, y_{m} \in F$ because $<T_{1} \varphi, R_{1}^{\prime}\left(J_{F} y\right)>=<J_{E^{\prime}} \varphi, R_{1}^{\prime}\left(J_{F} y\right)>=$ $<R_{1}^{\prime}\left(J_{F} y\right), \varphi>=<J_{F} y, R_{1} \varphi>=<R_{1} \varphi, y>$, for all $\varphi \in E^{\prime}$ and all $y \in F$. Therefore

$$
\begin{equation*}
R_{m} A=\sum_{i=1}^{\infty} R_{1} \varphi_{1 i} \otimes \cdots \otimes R_{1} \varphi_{m i} \otimes c_{i} \tag{15}
\end{equation*}
$$

and then $R_{m} A \in L_{N}\left({ }^{m} F\right)$.
QED
The next theorem considers the case of vector-valued multilinear mappings.
24 Theorem. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be a Nicodemi sequence and let $\widetilde{R_{m}}: L\left({ }^{m} E ; G^{\prime}\right) \longrightarrow L\left({ }^{m} F ; G^{\prime}\right)$ be the corresponding sequence for vector-valued multilinear mappings. Then $\widetilde{R_{m}} A \in L_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ for all $A \in L_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$ where $\Theta=f$ or N.

Proof. We will only write the proof in the case $\Theta=N$. In the case $\Theta=f$, the proof is similar. Given $A \in L_{N}\left({ }^{m} E ; G^{\prime}\right)$ there exist sequences $\left(\varphi_{j i}\right)_{i \in \mathbb{N}}$ in $E^{\prime}, 1 \leq j \leq m$, and $\left(c_{i}\right)_{i \in \mathbb{N}}$ in G^{\prime}, with $\sum_{i=1}^{\infty}\left\|\varphi_{1 i}\right\| \cdots\left\|\varphi_{m i}\right\|\left\|c_{i}\right\|<\infty$ such that $A=\sum_{i=1}^{\infty} \varphi_{1 i} \otimes \cdots \otimes \varphi_{m i} \otimes c_{i}$. Then $\delta_{z} \circ A=\sum_{i=1}^{\infty} \varphi_{1 i} \otimes \cdots \otimes \varphi_{m i} \otimes c_{i}(z)$ for all $z \in G$, and clearly $\delta_{z} \circ A \in L_{N}\left({ }^{m} E\right)$. We have by (15) that

$$
R_{m}\left(\delta_{z} \circ A\right)=\sum_{i=1}^{\infty} R_{1} \varphi_{1 i} \otimes \cdots \otimes R_{1} \varphi_{m i} \otimes c_{i}(z)
$$

for all $z \in G$. Then

$$
\begin{aligned}
\widetilde{R_{m}} A\left(y_{1}, \ldots, y_{m}\right)(z) & =R_{m}\left(\delta_{z} \circ A\right)\left(y_{1}, \ldots, y_{m}\right) \\
& =\sum_{i=1}^{\infty} R_{1} \varphi_{1 i}\left(y_{1}\right) \cdots R_{1} \varphi_{m i}\left(y_{m}\right) c_{i}(z)
\end{aligned}
$$

for all $z \in G$ and $y_{1}, \ldots, y_{m} \in F$. We conclude that

$$
\begin{equation*}
\widetilde{R_{m}} A=\sum_{i=1}^{\infty} R_{1} \varphi_{1 i} \otimes \cdots \otimes R_{1} \varphi_{m i} \otimes c_{i} \tag{16}
\end{equation*}
$$

and then $\widetilde{R_{m}} A \in L_{N}\left({ }^{m} F ; G^{\prime}\right)$.

25 Definition. Given a Nicodemi sequence $R_{m}: L\left({ }^{m} E ; G\right) \longrightarrow L\left({ }^{m} F ; G\right)$, we define

$$
\widehat{R}_{m}: \mathcal{P}\left({ }^{m} E ; G\right) \longrightarrow \mathcal{P}\left({ }^{m} F ; G\right)
$$

by $\widehat{R}_{m} \widehat{A}=\widehat{R_{m} A}$ por every symmetric $A \in L\left({ }^{m} E ; G\right)$.
26 Lemma. Let $T_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} E^{\prime \prime}\right)$ be the Nicodemi sequence beginning with the natural embedding $T_{1}=J_{E^{\prime}}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$. Let $P \in \mathcal{P}_{N}\left({ }^{m} E\right)$ and let $c_{1}, \ldots, c_{n} \in \mathbb{K}, \varphi_{1}, \ldots, \varphi_{m} \in E^{\prime}$ such that

$$
P=\sum_{i=1}^{\infty} \varphi_{i}^{m} \otimes c_{i}
$$

Then

$$
\widehat{T}_{m}(P)=\sum_{i=1}^{\infty}\left(T_{1} \varphi_{i}\right)^{m} \otimes c_{i}
$$

In particular $\widehat{T}_{m}(P) \in \mathcal{P}_{N}\left({ }^{m} E^{\prime \prime}\right)$.
The proof of Lemma 26 is similar to the proof of Lemma 22 and is omitted. Next we will see that the operators from the Nicodemi sequence preserve homogeneous polynomials of finite type and nuclear homogeneous polynomials. We consider first the case of scalar-valued homogeneous polynomials.

27 Theorem. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be a Nicodemi sequence. Then $\widehat{R}_{m} P \in \mathcal{P}_{\Theta}\left({ }^{m} F\right)$ for all $P \in \mathcal{P}_{\Theta}\left({ }^{m} E\right)$ where $\Theta=f$ or N.

Proof. We will only write the proof in the case $\Theta=N$. In the case $\Theta=f$, the proof is similar. Given $P \in \mathcal{P}_{N}\left({ }^{m} E\right)$, there exist $\left(c_{i}\right)_{i \in \mathbb{N}} \in \mathbb{K},\left(\varphi_{i}\right)_{i \in \mathbb{N}} \in E^{\prime}$ such that P can be written in the form: $P(x)=\sum_{i=1}^{\infty} \varphi_{i}(x)^{m} c_{i}$ for all $x \in E$. Let $T_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} E^{\prime \prime}\right)$ be the Nicodemi sequence beginning with the natural embedding $T_{1}=J_{E^{\prime}}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$. By Theorem 9 we have that

$$
R_{m} A\left(y_{1}, \ldots, y_{m}\right)=T_{m} A\left(R_{1}^{\prime}\left(J_{F} y_{1}\right), \ldots, R_{1}^{\prime}\left(J_{F} y_{m}\right)\right)
$$

for all $A \in L\left({ }^{m} E\right)$, and $y_{1}, \ldots, y_{m} \in F$, where R_{1}^{\prime} is the transpose of R_{1} and by Lemma 26 we have that $\widehat{T}_{m}(P)$ has the following form:

$$
\widehat{T}_{m}(P)\left(x^{\prime \prime}\right)=\sum_{i=1}^{\infty}\left(T_{1} \varphi_{i}\right)\left(x^{\prime \prime}\right)^{m} c_{i}
$$

for all $x^{\prime \prime} \in E^{\prime \prime}$. Therefore, A being the m-linear mapping associated with P, it
follows that

$$
\begin{aligned}
\widehat{R}_{m} P(y) & =R_{m} A(\underbrace{y, \ldots, y}_{m-\text { times }}) \\
& =T_{m} A(\underbrace{R_{1}^{\prime}\left(J_{F} y\right), \ldots, R_{1}^{\prime}\left(J_{F} y\right)}_{m-\text { times }}) \\
& =\widehat{T}_{m} P\left(R_{1}^{\prime}\left(J_{F} y\right)\right) \\
& =\sum_{i=1}^{\infty}\left(T_{1} \varphi_{i}\right)\left(R_{1}^{\prime}\left(J_{F} y\right)\right)^{m} c_{i} \\
& \left.=\sum_{i=1}^{\infty}\left(R_{1} \varphi_{i} y\right)\right)^{m} c_{i}
\end{aligned}
$$

for all $y \in F$. Therefore,

$$
\begin{equation*}
\widehat{R}_{m} P=\sum_{i=1}^{\infty}\left(R_{1} \varphi_{i}\right)^{m} \otimes c_{i} \tag{17}
\end{equation*}
$$

and then $\widehat{R}_{m} P \in \mathcal{P}_{N}\left({ }^{m} F\right)$.
QED
The next theorem consider the case of vector-valued homogeneous polynomials.

28 Theorem. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be a Nicodemi sequence, let $\widetilde{R_{m}}$: $L\left({ }^{m} E ; G^{\prime}\right) \longrightarrow L\left({ }^{m} F ; G^{\prime}\right)$ be the corresponding Nicodemi sequence for vectorvalued multilinear mappings. Then $\widehat{\widetilde{R}}_{m} P \in \mathcal{P}_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ for all $P \in \mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$ where $\Theta=f$ or N.

Proof. We will only write the proof in the case $\Theta=N$. In the case $\Theta=f$, the proof is similar. Given $\widehat{A} \in \mathcal{P}_{N}\left({ }^{m} E ; G^{\prime}\right)$, there exist sequences $\left(\varphi_{i}\right)_{i \in \mathbb{N}}$ in E^{\prime}, and $\left(c_{i}\right)_{i \in \mathbb{N}}$ in G^{\prime} with $\sum_{i=1}^{\infty}\left\|\varphi_{i}\right\|^{m}\left\|c_{i}\right\|<\infty$ such that $\widehat{A}(x)=$ $\sum_{i=1}^{\infty} \varphi_{i}(x)^{m} c_{i}$ for all $x \in E$, where $A \in L^{s}\left({ }^{m} E ; G^{\prime}\right)$. We observe that if $B=$ $\sum_{i=1}^{\infty} \underbrace{\varphi_{i} \otimes \cdots \otimes \varphi_{i}}_{m \text {-times }} \otimes c_{i}$, then $B \in L_{N}\left({ }^{m} E ; G^{\prime}\right) \cap L^{s}\left({ }^{m} E ; G^{\prime}\right)$ and $\widehat{B}=\widehat{A}$. Then $A=B$ from the injectivity of the canonical isomorphism $L^{s}\left({ }^{m} E ; G^{\prime}\right) \longrightarrow$ $\mathcal{P}\left({ }^{m} E ; G^{\prime}\right)$. Thus, we get that $A \in L_{N}\left({ }^{m} E ; G^{\prime}\right)$ and by (16)

$$
\widetilde{R_{m}} A=\sum_{i=1}^{\infty} \underbrace{R_{1} \varphi_{i} \otimes \cdots \otimes R_{1} \varphi_{i}}_{m-\text { times }} \otimes c_{i}
$$

Since $\widehat{\widetilde{R}}_{m} \widehat{A}=\widehat{R_{m} A}$, it follows that

$$
\begin{equation*}
\widehat{\widetilde{R}}_{m} P=\sum_{i=1}^{n}\left(R_{1} \varphi_{i}\right)^{m} \otimes c_{i} \tag{18}
\end{equation*}
$$

and then $\widehat{\widetilde{R}}_{m} P \in \mathcal{P}_{N}\left({ }^{m} F ; G^{\prime}\right)$.
QED
We remark that if E is a closed subspace of F, then Aron and Berner [1, Theorem 2.1] proved that the restriction mapping

$$
\mathcal{P}_{N}\left({ }^{m} F ; G\right) \longrightarrow \mathcal{P}_{N}\left({ }^{m} E ; G\right)
$$

is surjective for each $m \in \mathbb{N}$, but even in the case of the natural embedding $J_{E}: E \hookrightarrow E^{\prime \prime}$, they did not study the problem of existence of a linear extension operator

$$
T_{m}: \mathcal{P}_{N}\left({ }^{m} E\right) \longrightarrow \mathcal{P}_{N}\left({ }^{m} E^{\prime \prime}\right)
$$

for each $m \in \mathbb{N}$. Next we will see that each isomorphism between E^{\prime} and F^{\prime} induces an isomorphism between $L_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$ and $L_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ for each $m \in \mathbb{N}$ and induces also an isomorphism between $\mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$ and $\mathcal{P}_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ for each $m \in \mathbb{N}$, where $\Theta=f$ or N.

29 Theorem. If E^{\prime} and F^{\prime} are isomorphic, then $L_{\Theta}\left({ }^{m} E\right)$ and $L_{\Theta}\left({ }^{m} F\right)$ are isomorphic, for all $m \in \mathbb{N}$, where $\Theta=f$ or N.

Proof. We will only write the proof in the case $\Theta=N$. In the case $\Theta=f$, the proof is similar. We use the notations from the proof of Theorem 17 By Theorem 23 we have that $R_{m}\left(L_{N}\left({ }^{m} E\right)\right) \subset L_{N}\left({ }^{m} F\right)$. As in the proof of Theorem 23 we can prove that $S_{m}\left(R_{m} A\right)=\sum_{i=1}^{\infty} S_{1}\left(R_{1} \varphi_{1 i}\right) \otimes \cdots \otimes S_{1}\left(R_{1} \varphi_{m i}\right) \otimes c_{i}$. Since $S_{1} \circ R_{1}$ is the identity, we have that $S_{m}\left(R_{m} A\right)=\sum_{i=1}^{\infty} \varphi_{1 i} \otimes \cdots \otimes \varphi_{m i} \otimes c_{i}=A$ for all $A \in L_{N}\left({ }^{m} E\right)$. On the other hand, in a similar way, we can get that $S_{m}\left(L_{N}\left({ }^{m} F\right)\right) \subset L_{N}\left({ }^{m} E\right)$ and $R_{m}\left(S_{m} B\right)=B$ for all $B \in L_{N}\left({ }^{m} F\right)$. We conclude that $L_{N}\left({ }^{m} E\right)$ and $L_{N}\left({ }^{m} F\right)$ are isomorphic for all $m \in \mathbb{N}$.

QED
30 Theorem. If E^{\prime} and F^{\prime} are isomorphic, then $L_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$ and $L_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ are isomorphic for all $m \in \mathbb{N}$, where $\Theta=f$ or N.

Proof. We will only write the proof in the case $\Theta=N$. In the case $\Theta=f$, the proof is similar. We use the notations from the proof of Theorem 19. By Theorem 24 we have that $\widetilde{R_{m}}\left(L_{N}\left({ }^{m} E ; G^{\prime}\right)\right) \subset L_{N}\left({ }^{m} F ; G^{\prime}\right)$ and $\widetilde{S_{m}}\left(L_{N}\left({ }^{m} F ; G^{\prime}\right)\right) \subset L_{N}\left({ }^{m} E ; G^{\prime}\right)$. As in the proof of Theorem 24 we can prove that $\widetilde{S_{m}}\left(\widetilde{R_{m}} A\right)=\sum_{i=1}^{\infty} S_{1}\left(R_{1} \varphi_{1 i}\right) \otimes \cdots \otimes S_{1}\left(R_{1} \varphi_{m i}\right) \otimes c_{i}$. Since $S_{1} \circ R_{1}$ is the identity, we have that $\widetilde{S_{m}}\left(\widetilde{R_{m}} A\right)=\sum_{i=1}^{\infty} \varphi_{1 i} \otimes \cdots \otimes \varphi_{m i} \otimes c_{i}=A$ for all $A \in L_{N}\left({ }^{m} E ; G^{\prime}\right)$. On the other hand, in a similar way, we can get that $\widetilde{R_{m}}\left(\widetilde{S_{m}} B\right)=B$ for all $B \in L_{N}\left({ }^{m} F ; G^{\prime}\right)$. We conclude that $L_{N}\left({ }^{m} E ; G^{\prime}\right)$ and $L_{N}\left({ }^{m} F ; G^{\prime}\right)$ are isomorphic for all $m \in \mathbb{N}$.

31 Theorem. If E^{\prime} and F^{\prime} are isomorphic, then $\mathcal{P}_{\Theta}\left({ }^{m} E\right)$ and $\mathcal{P}_{\Theta}\left({ }^{m} F\right)$ are isomorphic for all $m \in \mathbb{N}$, where $\Theta=f$ or N.

Proof. We will only write the proof in the case $\Theta=N$. In the case $\Theta=f$, the proof is similar. We use the notations from the proof of Theorem 17. By Theorem 27 we have that $\widehat{R}_{m}\left(\mathcal{P}_{N}\left({ }^{m} E\right)\right) \subset \mathcal{P}_{N}\left({ }^{m} F\right)$ and $\widehat{S}_{m}\left(\mathcal{P}_{N}\left({ }^{m} F\right)\right) \subset$ $\mathcal{P}_{N}\left({ }^{m} E\right)$. As in the proof of Theorem 27 we can prove that $\widehat{S}_{m}\left(\widehat{R}_{m} P\right)=$ $\sum_{i=1}^{\infty}\left(S_{1}\left(R_{1} \varphi_{i}\right)\right)^{m} \otimes c_{i}$. Since $S_{1} \circ R_{1}$ is the identity, we have that $\widehat{S}_{m}\left(\widehat{R}_{m} P\right)=$ $\sum_{i=1}^{\infty}\left(\varphi_{i}\right)^{m} \otimes c_{i}=P$ for all $P \in \mathcal{P}_{N}\left({ }^{m} E\right)$. On the other hand, in a similar way, we can get that $\widehat{R}_{m}\left(\widehat{S}_{m} Q\right)=Q$ for all $Q \in \mathcal{P}_{N}\left({ }^{m} F\right)$. We conclude that $\mathcal{P}_{N}\left({ }^{m} E\right)$ and $\mathcal{P}_{N}\left({ }^{m} F\right)$ are isomorphic for all $m \in \mathbb{N}$.

32 Theorem. If E^{\prime} and F^{\prime} are isomorphic, then $\mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$ and $\mathcal{P}_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ are isomorphic for all $m \in \mathbb{N}$, where $\Theta=f$ or N.

Proof. We will only write the proof in the case of $\Theta=N$. In the case of $\Theta=f$ the proof is similar. We use the notations from the proof of Theorem 19. By Theorem 28 we have that $\widehat{\widetilde{R}}_{m}\left(\mathcal{P}_{N}\left({ }^{m} E ; G^{\prime}\right)\right) \subset \mathcal{P}_{N}\left({ }^{m} F ; G^{\prime}\right)$ and $\widehat{\widetilde{S}}_{m}\left(\mathcal{P}_{N}\left({ }^{m} F ; G^{\prime}\right)\right) \subset \mathcal{P}_{N}\left({ }^{m} E ; G^{\prime}\right)$. As in the proof of Theorem 28 we can prove that $\widehat{\widetilde{S}}_{m}\left(\widehat{\widetilde{R}}_{m} P\right)=\sum_{i=1}^{\infty}\left(S_{1}\left(R_{1} \varphi_{i}\right)\right)^{m} \otimes c_{i}$. Since $S_{1} \circ R_{1}$ is the identity, we have that $\widehat{\widetilde{S}}_{m}\left(\widehat{\widetilde{R}}_{m} P\right)=\sum_{i=1}^{\infty}\left(\varphi_{i}\right)^{m} \otimes c_{i}=P$ for all $P \in \mathcal{P}_{N}\left({ }^{m} E ; G^{\prime}\right)$. On the other hand, in a similar way, we can get that $\widehat{\widetilde{R}}_{m}\left(\widehat{\widetilde{S}}_{m} Q\right)=Q$ for all $Q \in \mathcal{P}_{N}\left({ }^{m} F ; G^{\prime}\right)$. We conclude that $\mathcal{P}_{N}\left({ }^{m} E ; G^{\prime}\right)$ and $\mathcal{P}_{N}\left({ }^{m} F ; G^{\prime}\right)$ are isomorphic for all $m \in \mathbb{N}$.

Let us notice that in Theorems 29, 30, 31 and 32 we do not need the Arens regularity hypothesis.

3 Isomorphisms between spaces of compact or weakly compact multilinear mappings or homogeneous polynomials.

We first show that the operators $\widetilde{R_{m}}$ from the Nicodemi sequence preserve compact and weakly compact multilinear mappings.

33 Theorem. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be a Nicodemi sequence and let $\widetilde{R_{m}}: L\left({ }^{m} E ; G^{\prime}\right) \longrightarrow L\left({ }^{m} F ; G^{\prime}\right)$ be the corresponding Nicodemi sequence for vector-valued multilinear mappings. Then $\widetilde{R_{m}} A \in L_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ for each $A \in$ $L_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$, where $\Theta=K$ or $W K$.

Proof. Let $T_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} E^{\prime \prime}\right)$ be the Nicodemi sequence beginning with the natural embedding $T_{1}: E^{\prime} \hookrightarrow E^{\prime \prime \prime}$ and $\widetilde{T_{m}}: L\left({ }^{m} E ; G^{\prime}\right) \longrightarrow L\left({ }^{m} E^{\prime \prime} ; G^{\prime}\right)$ be the corresponding Nicodemi sequence for vector-valued multilinear mappings.

This sequence coincides with the sequence of operators constructed by AronBerner in [1, Proposition 2.1]. Therefore, by [1, Proposition 2.1], we get that $\widetilde{T_{m}} A \in L_{\Theta}\left({ }^{m} E^{\prime \prime} ; G^{\prime}\right)$ for each $A \in L_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$, where $\Theta=K$ or $W K$. By Theorem 10 we have that

$$
\widetilde{R_{m}} A\left(y_{1}, \ldots, y_{m}\right)=\widetilde{T_{m}} A\left(R_{1}^{\prime}\left(J_{F} y_{1}\right), \ldots, R_{1}^{\prime}\left(J_{F} y_{m}\right)\right)
$$

for all $A \in L\left({ }^{m} E ; G^{\prime}\right)$ and $y_{1}, \ldots, y_{m} \in F$, where R_{1}^{\prime} is the transpose of R_{1}. If $\widetilde{T_{m}} A \in L_{\Theta}\left({ }^{m} E^{\prime \prime} ; G^{\prime}\right)$, it follows that $\widetilde{R_{m}} A \in L_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$, where $\Theta=K$ or $W K$. Therefore we conclude that $\widetilde{R_{m}} A \in L_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ for each $A \in L_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$, where $\Theta=K$ or $W K$.

We next show that the operators $\widehat{\widetilde{R}}_{m}$ from the the Nicodemi sequence preserve compact and weakly compact homogeneous polynomials.

34 Theorem. Let $R_{m}: L\left({ }^{m} E\right) \longrightarrow L\left({ }^{m} F\right)$ be a Nicodemi sequence, let $\widetilde{R_{m}}: L\left({ }^{m} E ; G^{\prime}\right) \longrightarrow L\left({ }^{m} F ; G^{\prime}\right)$ be the corresponding Nicodemi sequence for vector-valued multilinear mappings. Then $\widehat{\widetilde{R}}_{m} P \in \mathcal{P}_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ for each $P \in$ $\mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$, where $\Theta=K$ or $W K$.

Proof. Let $\left(T_{m}\right)$ and $\left(\widetilde{T_{m}}\right)$ be the sequences from the proof of Theorem 33. The sequence $\left(\widetilde{T_{m}}\right)$ coincides with the sequence of operators constructed by Aron-Berner in [1, Proposition 2.1]. Then the sequence $\widehat{\widetilde{T}}_{m}: \mathcal{P}\left({ }^{m} E ; G^{\prime}\right) \longrightarrow$ $\mathcal{P}\left({ }^{m} E^{\prime \prime} ; G^{\prime}\right)$ defined by $\widehat{\widetilde{T}}_{m} \widehat{A}=\widehat{\widetilde{T}}_{m} A$ for each $A \in L^{s}\left({ }^{m} E ; G^{\prime}\right)$ coincides with the sequence of operators constructed by Aron-Berner in [1, Corollary 2.2]. Therefore $\widehat{\widetilde{T}}_{m} P \in \mathcal{P}_{\Theta}\left({ }^{m} E^{\prime \prime} ; G^{\prime}\right)$ for each $P \in \mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$, where $\Theta=K$ or $W K$. By Theorem 10 we have that

$$
\widehat{\widetilde{R}}_{m} P(y)=\widehat{\widetilde{T}}_{m} P\left(R_{1}^{\prime}\left(J_{F} y\right)\right)
$$

for all $P \in \mathcal{P}\left({ }^{m} E ; G^{\prime}\right)$, and $y \in F$, where R_{1}^{\prime} is the transpose of R_{1}. It follows that $\widehat{\widetilde{R}}_{m} P \in \mathcal{P}_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ for each $\widehat{\widetilde{T}}_{m} P \in \mathcal{P}_{\Theta}\left({ }^{m} E^{\prime \prime} ; G^{\prime}\right)$, where $\Theta=K$ or $W K$. We conclude that $\widehat{\widetilde{R}}_{m} P \in \mathcal{P}_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ for each $P \in \mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$, where $\Theta=K$ or $W K$.

Let $L_{\Theta}^{s}\left({ }^{m} E ; G\right)=L^{s}\left({ }^{m} E ; G\right) \cap L_{\Theta}\left({ }^{m} E ; G\right)$, where $\Theta=K$ or $W K$. We next show that if E and F are symmetrically Arens - regular, then each isomorphism between E^{\prime} and F^{\prime} induces an isomorphism between $\mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$ and $\mathcal{P}_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ for each $m \in \mathbb{N}$, where $\Theta=K$ or $W K$.

35 Theorem. If E and F are symmetrically Arens - regular, and E^{\prime} and F^{\prime} are isomorphic, then $L_{\Theta}^{s}\left({ }^{m} E ; G^{\prime}\right)$ and $L_{\Theta}^{s}\left({ }^{m} F ; G^{\prime}\right)$ are isomorphic for all $m \in \mathbb{N}$, where $\Theta=K$ or $W K$.

Proof. We use the notations from the proof of Theorem 19. By Theorems 12 and 33 we have that, for $\Theta=K$ or $W K$

$$
\widetilde{R_{m}}\left(L_{\Theta}^{s}\left({ }^{m} E ; G^{\prime}\right)\right) \subset L_{\Theta}^{s}\left({ }^{m} F ; G^{\prime}\right)
$$

and

$$
\widetilde{S_{m}}\left(L_{\Theta}^{s}\left({ }^{m} F ; G^{\prime}\right)\right) \subset L_{\Theta}^{s}\left({ }^{m} E ; G^{\prime}\right)
$$

By (9) we have that $\left.S_{m} \circ R_{m}\right|_{L^{s}\left(m^{m}\right)}$ is the identity mapping. Using (6), we have that

$$
\begin{aligned}
\widetilde{S_{m}} \circ \widetilde{R_{m}} A(x)(z) & =\widetilde{S_{m}}\left(\widetilde{R_{m}} A\right)(x)(z) \\
& =S_{m}\left(\delta_{z} \circ \widetilde{R_{m}} A\right)(x) \\
& =S_{m}\left(R_{m}\left(\delta_{z} \circ A\right)\right)(x) \\
& =\left[S_{m} \circ R_{m}\left(\delta_{z} \circ A\right)\right](x) \\
& =\left(\delta_{z} \circ A\right)(x) \\
& =A(x)(z)
\end{aligned}
$$

for all $A \in L_{K}^{s}\left({ }^{m} E ; G^{\prime}\right), x \in E^{m}$ and $z \in G$, that is

$$
\left(\widetilde{S_{m}} \circ \widetilde{R_{m}}\right) A=A
$$

for all $A \in L_{\Theta}^{s}\left({ }^{m} E ; G^{\prime}\right)$. In a similar way, we can prove that

$$
\left(\widetilde{R_{m}} \circ \widetilde{S_{m}}\right) B=B
$$

for all $B \in L_{\Theta}^{s}\left({ }^{m} F ; G^{\prime}\right)$. Therefore, we get that $L_{\Theta}^{s}\left({ }^{m} E ; G^{\prime}\right)$ and $L_{\Theta}^{s}\left({ }^{m} F ; G^{\prime}\right)$ are isomorphic, where $\Theta=K$ or $W K$.

36 Theorem. If E and F are symmetrically Arens - regular, and E^{\prime} and F^{\prime} are isomorphic, then $\mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$ and $\mathcal{P}_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ are isomorphic for all $m \in \mathbb{N}$, where $\Theta=K$ or $W K$.

Proof. We use the notations from the proof of Theorem 32. By Theorem 34 we have that, for $\Theta=K$ or $W K$,

$$
\widehat{\widetilde{R}}_{m}\left(\mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right)\right) \subset \mathcal{P}_{\Theta}\left({ }^{m} F ; G^{\prime}\right)
$$

and

$$
\widehat{\widetilde{S}}_{m}\left(\mathcal{P}_{\Theta}\left({ }^{m} F ; G^{\prime}\right)\right) \subset \mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right) .
$$

By (10) and (11) we have that for each $\widehat{A} \in \mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$

$$
\begin{aligned}
\left(\widehat{\widetilde{S}}_{m} \circ \widehat{\widetilde{R}}_{m}\right)(\widehat{A}) & =\widehat{\widetilde{S}}_{m}\left(\widehat{\widetilde{R}}_{m} \widehat{A}\right) \\
& =\widehat{\widetilde{S}}_{m}\left(\widehat{\widetilde{R}}_{m} A\right) \\
& =\widetilde{S}_{m}\left(\widetilde{R}_{m} A\right) \\
& =\widehat{A}
\end{aligned}
$$

That is,

$$
\left(\widehat{\widetilde{S}}_{m} \circ \widehat{\widetilde{R}}_{m}\right) \widehat{A}=\widehat{A}
$$

for all $\widehat{A} \in \mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$. Similarly we can prove that

$$
\left(\widehat{\widetilde{R}}_{m} \circ \widehat{\widetilde{S}}_{m}\right) \widehat{B}=\widehat{B}
$$

for all $\widehat{B} \in \mathcal{P}_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$. Thus we conclude that $\mathcal{P}_{\Theta}\left({ }^{m} E ; G^{\prime}\right)$ and $\mathcal{P}_{\Theta}\left({ }^{m} F ; G^{\prime}\right)$ are isomorphic for all $m \in \mathbb{N}$, where $\Theta=K$ or $W K$.

Acknowledgements. This article is based on the doctoral thesis of the author at UNICAMP, written under the supervision of Professor Jorge Mujica.

References

[1] R. Aron, P. Berner: A Hahn - Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), 3-24.
[2] R. Aron, B. Cole, T. Gamelin: Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51-93.
[3] R. Aron, P. Galindo, D. García, M. Maestre: Regularity and algebras of analytic functions in infinite dimensions, Trans. Amer. Math. Soc. 348 (1996), 543-559.
[4] F. Cabello Sánchez, J. Castillo, R. García: Polynomials on dual-isomorphic spaces, Ark. Mat. 38 (2000), 37-44.
[5] D. Carando, S. Lassalle: E^{\prime} and its relation with vector - valued functions on E, Ark. Mat. 42 (2004), 283-300.
[6] J. C. Díaz, S. Dineen: Polynomials on stable spaces, Ark. Mat. 36 (1998), 87-96.
[7] S. Dineen : Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, (1999).
[8] P. Galindo, D. García, M. Maestre, J. Mujica: Extension of multilinear mappings on Banach spaces, Studia Math. 108 (1994), 55-76.
[9] G. Godefroy, B. Iochum: Arens-regularity on Banach algebras and geometry of Banach spaces, J. Funct. Anal. 80 (1988), 47-59.
[10] C. Gupta: Malgrange Theorem for Nuclearly Entire Functions of Bounded Type on a Banach Space, Notas de Matemática 37, Instituto de Matemtica Pura e Aplicada, Rio de Janeiro, (1968).
[11] S. Lassalle, I. Zalduendo: To what extent does the dual Banach space E^{\prime} determine the polynomials over E ?, Ark. Mat. 38 (2000), 343-354.
[12] J. Mujica: Complex Analysis in Banach Spaces North-Holland, Amsterdam, (1986).
[13] O. Nicodemi: Homomorphisms of algebras of germs of holomorphic functions, in: Functional Analysis, Holomorphy and Approximation Theory: S. Machado (ed.), Lecture Notes in Math., Springer, Berlin, 843 (1981), 534-546.

[^0]: ${ }^{\mathrm{i}}$ This work had financial support from $\mathrm{CNPq}($ Brazil).

