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1 Introduction

A curve C : I — RN is called a C™-special Frenet curve in RN if it is a
smooth and regular curve with well-defined Frenet frames {¢,n,--- ,ny_1} and
non-zero curvatures (i.e., curvatures never vanish at any point of curves) along
the curve. On the other hand, in literature, a C'*-special Frenet curve in R? is
called a Bertrand curve if there exists a distinct curve C(s) = C(s)+7(s) n1(s),
where n; is well-defined along C, such that the 1-normal lines of C(s) and C(s)
are equal for all s € I. Furthermore, C is called the Bertrand mate of C.

Bertrand curves in R? have many interesting geometric properties (e.g., see
p.26 in [1] for more details). These types of curves have also been applied in
computer-aided geometric design (CAGD) (e.g., see [5], [7]). In [3] Hayden has
suggested to extend the definition of Bertrand curves in R? to those in RY or
Riemannian manifolds. However, Pears in [6] showed that a Bertrand curve in
RY must belong to a three-dimensional subspace in RN, since its curvatures
of higher order must be identically equal to zero, i.e., k; = 0 for all j > 3.
This implies that a Bertrand curve in RY can’t be a C*-special Frenet curve
in RN. Notice that a C®-special Frenet curve in RN can not be confined in
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a lower dimensional subspace of RY because all of its curvatures are nonzero.
Thus the classical definition of Bertrand curves is not suitable for C'*°-special
Frenet curves in RY. This phenomenon motivates us to extend the notion of
Bertrand curves to C-special Frenet curves in RN when N > 4. To the au-
thors” knowledge, [4] is the only article extending the notion of Bertrand curves
to Euclidean spaces of higher dimensions. The reader is referred to [4] for ex-
plicit examples of the so-called (1,3)-Bertrand curves in R* (which is a type of
generalized Bertrand curves).

In this article, we generalize the definition of classical Bertrand curves in R?
and (1,3)-Bertrand curves in R* (see [4]) by defining the so-called generalized
Bertrand curves for the class of C*-special Frenet curves in RY, where N > 4
(see Definition 1). Our main result gives a necessary condition for existence of
the generalized Bertrand curve in RV, We found that only a particular type of
generalized Bertrand curves exists in RY.

1 Definition (The Generalized Bertrand Curves). Assume C' : I — R is
a C*-special Frenet curve. Let i, € {1,2,..., N —1}, where p € {1,...,m} and
m € {1,2,...,N — 1}. Denote by n;, the i,-th unit normal vector field of the
curve C. Then, the curve C is called a (i1, . .., ip)-Bertrand curve if there exists
a distinct C'*°-special Frenet curve,

C’(s) =C(s)+ iaip(s) . nip(s), (1)

p=1

such that the Frenet (i1,...,4;)-normal planes at C(s) and C(s) coincide for
all s e I.

For our convenience, we call a (i1, ...,%,)-Bertrand curve the generalized
Bertrand curves, and we always let 1 <71 <o, < ...... <y <N -—1.

2 Theorem. If a C*®-special Frenet curve in RY is a generalized Bertrand
curve, then it must be the type of (1,ia,...,im)-Bertrand curve.

3 Remark. The generalized Bertrand curves still keep certain geometric
properties. For example, by a straightforward computation, one can verify that
the distance between a generalized Bertrand curve and its mate (offset) along
the curve remains constant. For geometric properties of (1,3)-Bertrand curves
in R, the reader is referred to [4]. For generalized Bertrand curves in RY, we
leave the discussion to our future work.

2 Proofs

We will argue by contradiction. Namely, we assume that the C'*°-special
Frenet curve C' in RY is a (iy,...,%y)-Bertrand curve with i; > 2, then a
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contradiction would happen.
Denote by 5 = ¢(s) the arc-length parameter of C. Let

KJZ(S) = —ki(s)djfl + ki+1(8)5;»+1, (2)

where 0% is the Kronecker’s delta and k; are higher curvatures of RV if i €
{1,...,N — 1}; otherwise k; = 0 (see [2]). Then the Frenet equations can be

written as
N-1

nj(s) = > Kji(s)n;(s), (3)

=0

where no(s) = t(s) and ¢ € {0,..., N — 1}. By differentiating (1) with respect
to s, we obtain

¢(s) - mo(s) =C"(s)

m N—1 m
=no(s) + Y _ af (s) mi, () + D D Ky, () - i, (s) - m(s)
p=1 =0 p=1 4)

N—-1
=" Bils)n(s),
j=0

where ng and 7y denote the unit tangent vectors of C' and C respectively. Since

by assumption the normal plane spanned by n;,(s),...,n,, (s) coincides with
the one spanned by n;, (), ..., n;, (s), there exists a matrix 7'(s) € O(m) such
that

(R (8), -+ g, (8))E = T(8) (04 (8), ..., mi,, (8))F,

for all s € I. In other words,
m
ﬁiq (S) = ZTQP(S)nip (8)7 (5)
p=1

where Ty, is the (g, p)-th entry of the matrix 7. Thus by (4) and (5), we have

m N-1
0 =(¢/(s) - o (s), i, (8)) = D Tap()(Y_ Bi(s) - (), i (5)
p=1 j=0
(6)

= Z Tp(5)Bi, (),
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for each fixed ¢ € {1,2,...,m}. Since det T(s) = +1 # 0, it follows from (4)
and (6) that
m

0=Bi,(s) = o, () + > _ Kipi,(s) - i, (s), (7)

p=1

for each g € {1,2,..., m}. By (4),

: ) no(s) + /( )k’l(S)m(S) + (@,ts)a;p(s)> ni, ()
p=1

N1
Jr1:1 ;‘p’(s)[(ﬂ”(é) az, (s) | - nj(s)

Nt ,

Notfmo
+ p I; o' (s) (Kj—1,(5) - kj(s) — Kjg14,(s) - kjea(s)] - i, (s) | - nj(s)
N-1

=" %i(s) (),

j=0

(9)

where ky = 0. By (9), (5) and assuming i, > 2 for all ¢ € {1,2,...,m}, we have

0 = (¢ (s)ka(($)m1((5)), i, (9(5))) = D Tap(8)7%i, (5)- (10)
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Since det T'(s) = £1 # 0, it follows from (9) and (10) that

0 =i, (s)
7(La/ (S))/ + i LK . (S)O/ (S)
- i gyt i
4)0’(5) q = (PI(S) q,'p p
m
L ' (11)
+ Z (99/(8) Kiqyip (S)Qip(s))
p=1
AN
+ Z o'(s) (K 1tig,ip (8)Kiy — Kiigi, (8)k14i, ) i, (5),
p=1
forall ¢ € {1,2,...,m}. Below we omit the arc-length parameter s of C' without

confusion. Denote by A = (..., q;, )", and let B = (By,), and R = (Ry,) to
be

By, =K, i, (12)
Ry =K 144,k — Kivigip ke, - (13)
Then (7) and (11) can be written respectively as
A+ BA =0, (14)
1 A 1 !/ 1 I 1
Substituting A’ by —BA in (15), we can simplify (15) as
(R—B»A=0. (16)
4 Lemma. The m x m matriz R — B? is symmetric and can be written as
D + Fy Ny 0 ‘.- S 0
Ny Dy +F, Ny :
0 Ny ’
: ’ Np—2 0
Nm—2 Dm—l + Fm—l Nm—l
0 0 Nm—l Dm + Fm
where ) )
Dy = Ki,,,l,iq - kiq7
_ K2 2
Fy=Ki i — Fiyip (17)

Nq = K71+iq+1,iqkiq+17

and we let K;, ;. =0, if i, orig is not defined.

polq
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PROOF. From (12), it is obvious that B! = —B, thus B? is symmetric. By
applying (13), (12) and (2), it is easy to verify that the matrix R is symmetric
and to compute all entries of R — B%. We leave it to the reader. QED

We can decompose the matrix R — B2 into a sum of matrices. Namely,

m+1
R-B*=> E,
q=1
D 0 - o 0 0 v or e 0
0 0 . . .
= +
: . . .o : . -0 0
0 -+ v o 0 0 - -+ 0 Fn
0 . . 0
m
+ . Fq—l Nq_1
q=2 Nq,1 Dq
0 -0 .- e o0

5 Lemma. For each fized g € {1,...,m+1} and X = (21,...,2m)"

(B,X,X) <0. (18)

PROOF. It is easy to verify (18) by using (17) and (2). We leave it to the
reader. QED

Observe that Lemma 5 and (16) imply
(EqA, A) =0,

for each fixed gq.

6 Lemma. (i) Assume g1 —iq > 3. Then, o;, =0 = oy,
(ii) Assume igi1 —iq = 2. Then, a;, = 0 if and only if oy, = 0.

(i4i) Assume igy1 —iq = 1. Then, a;,_, = 0= oy, implies i, , =0, where we
set iy = 0.
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PROOF. Case (i): ig1 — iq > 3. From
0= (Eg14, A) = —[(k1yi,0i,)* + (i cipin)?],
it follows that
kiyigai, = 0= ki, gy
Thus a;, =0 = a,,,-
Case (ii): ig4+1 — ig = 2. From
0= <Eq+1A’ A> = _(k1+iqa’iq - kiq+1aiq+1)27
it follows that
k1tigQiy = Kig oy Qg -
Thus «;, = 0 if and only if a;,, = 0.
Case (iii): ig41 —iqg = 1. By (7), we have
*a/ = KL

iq arig—1 Qg1 — Kig 1 Qigyy-

By assuming a;,_, = 0 = a;,, it follows that a;,,, = 0.

QED

PROOF OF THEOREM 2. By (E1A, A) = 0, we obtain k% a?] = 0. Hence,

o, = 0. Then, by applying Lemma 6 inductively, we obtain o, = -+ = o, =
This implies that C' coincides with C', which is a contradiction.

0.
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