On the Generalized Bertrand Curves in Euclidean N-spaces

Yung-Ming Cheng
Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan
mscofing@gmail.com
Chun-Chi Lin ${ }^{\text {i }}$
Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan
chunlin@math.ntnu.edu.tw

Received: 23/09/2008; accepted: 12/02/2009.

Abstract

In this article, we give a necessary condition for a C^{∞}-special Frenet curve in \mathbb{R}^{N} being a generalized Bertrand curve.

Keywords: generalized Bertrand curves
MSC 2000 classification: 53A04

1 Introduction

A curve $C: I \rightarrow \mathbb{R}^{N}$ is called a C^{∞}-special Frenet curve in \mathbb{R}^{N} if it is a smooth and regular curve with well-defined Frenet frames $\left\{t, n_{1}, \cdots, n_{N-1}\right\}$ and non-zero curvatures (i.e., curvatures never vanish at any point of curves) along the curve. On the other hand, in literature, a C^{∞}-special Frenet curve in \mathbb{R}^{3} is called a Bertrand curve if there exists a distinct curve $\bar{C}(s)=C(s)+r(s) \cdot n_{1}(s)$, where n_{1} is well-defined along C, such that the 1-normal lines of $C(s)$ and $\bar{C}(s)$ are equal for all $s \in I$. Furthermore, \bar{C} is called the Bertrand mate of C.

Bertrand curves in \mathbb{R}^{3} have many interesting geometric properties (e.g., see p. 26 in [1] for more details). These types of curves have also been applied in computer-aided geometric design (CAGD) (e.g., see [5], [7]). In [3] Hayden has suggested to extend the definition of Bertrand curves in \mathbb{R}^{3} to those in \mathbb{R}^{N} or Riemannian manifolds. However, Pears in [6] showed that a Bertrand curve in \mathbb{R}^{N} must belong to a three-dimensional subspace in \mathbb{R}^{N}, since its curvatures of higher order must be identically equal to zero, i.e., $k_{j}=0$ for all $j \geq 3$. This implies that a Bertrand curve in \mathbb{R}^{N} can't be a C^{∞}-special Frenet curve in \mathbb{R}^{N}. Notice that a C^{∞}-special Frenet curve in \mathbb{R}^{N} can not be confined in

[^0]a lower dimensional subspace of \mathbb{R}^{N} because all of its curvatures are nonzero. Thus the classical definition of Bertrand curves is not suitable for C^{∞}-special Frenet curves in \mathbb{R}^{N}. This phenomenon motivates us to extend the notion of Bertrand curves to C^{∞}-special Frenet curves in \mathbb{R}^{N} when $N \geq 4$. To the authors' knowledge, [4] is the only article extending the notion of Bertrand curves to Euclidean spaces of higher dimensions. The reader is referred to [4] for explicit examples of the so-called $(1,3)$-Bertrand curves in \mathbb{R}^{4} (which is a type of generalized Bertrand curves).

In this article, we generalize the definition of classical Bertrand curves in \mathbb{R}^{3} and $(1,3)$-Bertrand curves in \mathbb{R}^{4} (see [4]) by defining the so-called generalized Bertrand curves for the class of C^{∞}-special Frenet curves in \mathbb{R}^{N}, where $N \geq 4$ (see Definition 1). Our main result gives a necessary condition for existence of the generalized Bertrand curve in \mathbb{R}^{N}. We found that only a particular type of generalized Bertrand curves exists in \mathbb{R}^{N}.

1 Definition (The Generalized Bertrand Curves). Assume $C: I \rightarrow \mathbb{R}^{N}$ is a C^{∞}-special Frenet curve. Let $i_{p} \in\{1,2, \ldots, N-1\}$, where $p \in\{1, \ldots, m\}$ and $m \in\{1,2, \ldots, N-1\}$. Denote by $n_{i_{p}}$ the i_{p}-th unit normal vector field of the curve C. Then, the curve C is called a $\left(i_{1}, \ldots, i_{m}\right)$-Bertrand curve if there exists a distinct C^{∞}-special Frenet curve,

$$
\begin{equation*}
\bar{C}(s)=C(s)+\sum_{p=1}^{m} \alpha_{i_{p}}(s) \cdot n_{i_{p}}(s) \tag{1}
\end{equation*}
$$

such that the Frenet $\left(i_{1}, \ldots, i_{m}\right)$-normal planes at $C(s)$ and $\bar{C}(s)$ coincide for all $s \in I$.

For our convenience, we call a $\left(i_{1}, \ldots, i_{m}\right)$-Bertrand curve the generalized Bertrand curves, and we always let $1 \leq i_{1}<i_{2},<\ldots \ldots<i_{m} \leq N-1$.

2 Theorem. If a C^{∞}-special Frenet curve in \mathbb{R}^{N} is a generalized Bertrand curve, then it must be the type of $\left(1, i_{2}, \ldots, i_{m}\right)$-Bertrand curve.

3 Remark. The generalized Bertrand curves still keep certain geometric properties. For example, by a straightforward computation, one can verify that the distance between a generalized Bertrand curve and its mate (offset) along the curve remains constant. For geometric properties of $(1,3)$-Bertrand curves in \mathbb{R}^{4}, the reader is referred to [4]. For generalized Bertrand curves in \mathbb{R}^{N}, we leave the discussion to our future work.

2 Proofs

We will argue by contradiction. Namely, we assume that the C^{∞}-special Frenet curve C in \mathbb{R}^{N} is a $\left(i_{1}, \ldots, i_{m}\right)$-Bertrand curve with $i_{1} \geq 2$, then a
contradiction would happen.
Denote by $\bar{s}=\varphi(s)$ the arc-length parameter of \bar{C}. Let

$$
\begin{equation*}
K_{j, i}(s)=-k_{i}(s) \delta_{j}^{i-1}+k_{i+1}(s) \delta_{j}^{i+1} \tag{2}
\end{equation*}
$$

where δ_{j}^{i} is the Kronecker's delta and k_{i} are higher curvatures of \mathbb{R}^{N} if $i \in$ $\{1, \ldots, N-1\}$; otherwise $k_{i}=0$ (see [2]). Then the Frenet equations can be written as

$$
\begin{equation*}
n_{i}^{\prime}(s)=\sum_{j=0}^{N-1} K_{j, i}(s) n_{j}(s), \tag{3}
\end{equation*}
$$

where $n_{0}(s)=t(s)$ and $i \in\{0, \ldots, N-1\}$. By differentiating (1) with respect to s, we obtain

$$
\begin{align*}
\varphi^{\prime}(s) \cdot \bar{n}_{0}(s) & =\bar{C}^{\prime}(s) \\
& =n_{0}(s)+\sum_{p=1}^{m} \alpha_{i_{p}}^{\prime}(s) \cdot n_{i_{p}}(s)+\sum_{j=0}^{N-1} \sum_{p=1}^{m} K_{j, i_{p}}(s) \cdot \alpha_{i_{p}}(s) \cdot n_{j}(s) \tag{4}\\
& =\sum_{j=0}^{N-1} \beta_{j}(s) n_{j}(s),
\end{align*}
$$

where n_{0} and \bar{n}_{0} denote the unit tangent vectors of C and \bar{C} respectively. Since by assumption the normal plane spanned by $\bar{n}_{i_{1}}(s), \ldots, \bar{n}_{i_{m}}(s)$ coincides with the one spanned by $n_{i_{1}}(s), \ldots, n_{i_{m}}(s)$, there exists a matrix $T(s) \in O(m)$ such that

$$
\left(\bar{n}_{i_{1}}(s), \ldots, \bar{n}_{i_{m}}(s)\right)^{t}=T(s)\left(n_{i_{1}}(s), \ldots, n_{i_{m}}(s)\right)^{t}
$$

for all $s \in I$. In other words,

$$
\begin{equation*}
\bar{n}_{i_{q}}(s)=\sum_{p=1}^{m} T_{q p}(s) n_{i_{p}}(s), \tag{5}
\end{equation*}
$$

where $T_{q p}$ is the (q, p)-th entry of the matrix T. Thus by (4) and (5), we have

$$
\begin{align*}
0 & =\left\langle\varphi^{\prime}(s) \cdot \bar{n}_{0}(s), \bar{n}_{i_{q}}(s)\right\rangle=\sum_{p=1}^{m} T_{q p}(s)\left\langle\sum_{j=0}^{N-1} \beta_{j}(s) \cdot n_{j}(s), n_{i_{p}}(s)\right\rangle \tag{6}\\
& =\sum_{p=1}^{m} T_{q p}(s) \beta_{i_{p}}(s),
\end{align*}
$$

for each fixed $q \in\{1,2, \ldots, m\}$. Since $\operatorname{det} T(s)= \pm 1 \neq 0$, it follows from (4) and (6) that

$$
\begin{equation*}
0=\beta_{i_{q}}(s)=\alpha_{i_{q}}^{\prime}(s)+\sum_{p=1}^{m} K_{i_{q}, i_{p}}(s) \cdot \alpha_{i_{p}}(s) \tag{7}
\end{equation*}
$$

for each $q \in\{1,2, \ldots, m\}$. By (4),

$$
\begin{align*}
& \bar{n}_{0}(s)=\frac{1}{\varphi^{\prime}(s)} n_{0}(s)+\sum_{p=1}^{m} \frac{1}{\varphi^{\prime}(s)} \alpha_{i_{p}}^{\prime}(s) \cdot n_{i_{p}}(s) \\
&+\sum_{j=0}^{N-1} \sum_{p=1}^{m} \frac{1}{\varphi^{\prime}(s)} K_{j, i_{p}}(s) \cdot \alpha_{i_{p}}(s) \cdot n_{j}(s) \tag{8}
\end{align*}
$$

By differentiating (8) with respect to s, we obtain

$$
\begin{align*}
\varphi^{\prime}(s) & \cdot \bar{k}_{1}(s) \cdot \bar{n}_{1}(s) \\
= & \left(\frac{1}{\varphi^{\prime}(s)}\right)^{\prime} n_{0}(s)+\frac{1}{\varphi^{\prime}(s)} k_{1}(s) n_{1}(s)+\sum_{p=1}^{m}\left(\frac{1}{\varphi^{\prime}(s)} \alpha_{i_{p}}^{\prime}(s)\right)^{\prime} n_{i_{p}}(s) \\
& +\sum_{j=1}^{N-1}\left(\sum_{p=1}^{m} \frac{1}{\varphi^{\prime}(s)} K_{j, i_{p}}(s) \cdot \alpha_{i_{p}}^{\prime}(s)\right) \cdot n_{j}(s) \\
& +\sum_{j=1}^{N-1}\left(\sum_{p=1}^{m} \frac{1}{\varphi^{\prime}(s)} K_{j, i_{p}}(s) \cdot \alpha_{i_{p}}(s)\right)^{\prime} \cdot n_{j}(s) \\
& +\sum_{j=0}^{N-1}\left(\sum_{p=1}^{m} \frac{1}{\varphi^{\prime}(s)}\left[K_{j-1, i_{p}}(s) \cdot k_{j}(s)-K_{j+1, i_{p}}(s) \cdot k_{j+1}(s)\right] \cdot \alpha_{i_{p}}(s)\right) \cdot n_{j}(s) \\
= & \sum_{j=0}^{N-1} \gamma_{j}(s) \cdot n_{j}(s) \tag{9}
\end{align*}
$$

where $k_{N}=0$. By (9), (5) and assuming $i_{q} \geq 2$ for all $q \in\{1,2, \ldots, m\}$, we have

$$
\begin{equation*}
0=\left\langle\varphi^{\prime}(s) \bar{k}_{1}(\varphi(s)) \bar{n}_{1}(\varphi(s)), \bar{n}_{i_{q}}(\varphi(s))\right\rangle=\sum_{p=1}^{m} T_{q p}(s) \gamma_{i_{p}}(s) \tag{10}
\end{equation*}
$$

Since $\operatorname{det} T(s)= \pm 1 \neq 0$, it follows from (9) and (10) that

$$
\begin{align*}
0= & \gamma_{i_{q}}(s) \\
= & \left(\frac{1}{\varphi^{\prime}(s)} \alpha_{i_{q}}^{\prime}(s)\right)^{\prime}+\sum_{p=1}^{m} \frac{1}{\varphi^{\prime}(s)} K_{i_{q}, i_{p}}(s) \alpha_{i_{p}}^{\prime}(s) \\
& +\sum_{p=1}^{m}\left(\frac{1}{\varphi^{\prime}(s)} K_{i_{q}, i_{p}}(s) \alpha_{i_{p}}(s)\right)^{\prime} \tag{11}\\
& +\sum_{p=1}^{m} \frac{1}{\varphi^{\prime}(s)}\left(K_{-1+i_{q}, i_{p}}(s) k_{i_{q}}-K_{1+i_{q}, i_{p}}(s) k_{1+i_{q}}\right) \alpha_{i_{p}}(s),
\end{align*}
$$

for all $q \in\{1,2, \ldots, m\}$. Below we omit the arc-length parameter s of C without confusion. Denote by $A=\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{m}}\right)^{t}$, and let $B=\left(B_{l p}\right)$, and $R=\left(R_{l p}\right)$ to be

$$
\begin{align*}
& B_{l p}=K_{i_{l}, i_{p}} \tag{12}\\
& R_{l p}=K_{-1+i_{l}, i_{p}} k_{i_{l}}-K_{1+i_{l}, i_{p}} k_{1+i_{l}} \tag{13}
\end{align*}
$$

Then (7) and (11) can be written respectively as

$$
\begin{align*}
A^{\prime}+B A & =0 \tag{14}\\
\left(\frac{1}{\varphi^{\prime}} A^{\prime}\right)^{\prime}+\frac{1}{\varphi^{\prime}} B A^{\prime}+\left(\frac{1}{\varphi^{\prime}} B A\right)^{\prime}+\frac{1}{\varphi^{\prime}} R A & =0 \tag{15}
\end{align*}
$$

Substituting A^{\prime} by $-B A$ in (15), we can simplify (15) as

$$
\begin{equation*}
\left(R-B^{2}\right) A=0 \tag{16}
\end{equation*}
$$

4 Lemma. The $m \times m$ matrix $R-B^{2}$ is symmetric and can be written as

$$
\left(\begin{array}{cccccc}
D_{1}+F_{1} & N_{1} & 0 & \cdots & \cdots & 0 \\
N_{1} & D_{2}+F_{2} & N_{2} & \ddots & \ddots & \vdots \\
0 & N_{2} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & N_{m-2} & 0 \\
\vdots & \ddots & \ddots & N_{m-2} & D_{m-1}+F_{m-1} & N_{m-1} \\
0 & \cdots & \cdots & 0 & N_{m-1} & D_{m}+F_{m}
\end{array}\right)
$$

where

$$
\left\{\begin{array}{l}
D_{q}=K_{i_{q-1}, i_{q}}^{2}-k_{i_{q}}^{2}, \tag{17}\\
F_{q}=K_{i_{q}, i_{q+1}}^{2}-k_{1+i_{q}}^{2}, \\
N_{q}=K_{-1+i_{q+1}, i_{q}} k_{i_{q+1}},
\end{array}\right.
$$

and we let $K_{i_{p}, i_{q}}=0$, if i_{p} or i_{q} is not defined.

Proof. From (12), it is obvious that $B^{t}=-B$, thus B^{2} is symmetric. By applying (13), (12) and (2), it is easy to verify that the matrix R is symmetric and to compute all entries of $R-B^{2}$. We leave it to the reader.

We can decompose the matrix $R-B^{2}$ into a sum of matrices. Namely,

$$
\begin{aligned}
R-B^{2}= & \sum_{q=1}^{m+1} E_{q} \\
= & \left(\begin{array}{ccccc}
D_{1} & 0 & \cdots & \cdots & 0 \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & 0
\end{array}\right)+\left(\begin{array}{ccccc}
0 & \cdots & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 & 0 \\
0 & \cdots & \cdots & 0 & F_{m}
\end{array}\right) \\
& +\sum_{q=2}^{m}\left(\begin{array}{cccccc}
0 & \cdots & \cdots & \cdots & \cdots & 0 \\
\vdots & \vdots & \cdots & \cdots & \ddots & \vdots \\
\vdots & \vdots & F_{q-1} & N_{q-1} & \vdots & \vdots \\
\vdots & \vdots & N_{q-1} & D_{q} & \vdots & \vdots \\
\vdots & \ddots & \cdots & \cdots & \vdots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & 0
\end{array}\right)
\end{aligned}
$$

5 Lemma. For each fixed $q \in\{1, \ldots, m+1\}$ and $X=\left(x_{1}, \ldots, x_{m}\right)^{t}$,

$$
\begin{equation*}
\left\langle E_{q} X, X\right\rangle \leq 0 \tag{18}
\end{equation*}
$$

Proof. It is easy to verify (18) by using (17) and (2). We leave it to the reader.

QED
Observe that Lemma 5 and (16) imply

$$
\left\langle E_{q} A, A\right\rangle=0
$$

for each fixed q.
6 Lemma. (i) Assume $i_{q+1}-i_{q} \geq 3$. Then, $\alpha_{i_{q}}=0=\alpha_{i_{q+1}}$.
(ii) Assume $i_{q+1}-i_{q}=2$. Then, $\alpha_{i_{q}}=0$ if and only if $\alpha_{i_{q+1}}=0$.
(iii) Assume $i_{q+1}-i_{q}=1$. Then, $\alpha_{i_{q-1}}=0=\alpha_{i_{q}}$ implies $\alpha_{i_{q+1}}=0$, where we set $\alpha_{i_{0}}=0$.

Proof. Case (i): $i_{q+1}-i_{q} \geq 3$. From

$$
0=\left\langle E_{q+1} A, A\right\rangle=-\left[\left(k_{1+i_{q}} \alpha_{i_{q}}\right)^{2}+\left(k_{i_{q+1}} \alpha_{i_{q+1}}\right)^{2}\right]
$$

it follows that

$$
k_{1+i_{q}} \alpha_{i_{q}}=0=k_{i_{q+1}} \alpha_{i_{q+1}}
$$

Thus $\alpha_{i_{q}}=0=\alpha_{i_{q+1}}$.
Case (ii): $i_{q+1}-i_{q}=2$. From

$$
0=\left\langle E_{q+1} A, A\right\rangle=-\left(k_{1+i_{q}} \alpha_{i_{q}}-k_{i_{q+1}} \alpha_{i_{q+1}}\right)^{2}
$$

it follows that

$$
k_{1+i_{q}} \alpha_{i_{q}}=k_{i_{q+1}} \alpha_{i_{q+1}} .
$$

Thus $\alpha_{i_{q}}=0$ if and only if $\alpha_{i_{q+1}}=0$.
Case (iii): $i_{q+1}-i_{q}=1$. By (7), we have

$$
-\alpha_{i_{q}}^{\prime}=K_{i_{q}, i_{q-1}} \alpha_{i_{q-1}}-k_{i_{q+1}} \alpha_{i_{q+1}}
$$

By assuming $\alpha_{i_{q-1}}=0=\alpha_{i_{q}}$, it follows that $\alpha_{i_{q+1}}=0$.
Proof of Theorem 2. By $\left\langle E_{1} A, A\right\rangle=0$, we obtain $k_{i_{1}}^{2} \alpha_{i_{1}}^{2}=0$. Hence, $\alpha_{i_{1}}=0$. Then, by applying Lemma 6 inductively, we obtain $\alpha_{i_{2}}=\cdots=\alpha_{i_{m}}=0$. This implies that \bar{C} coincides with C, which is a contradiction.

Acknowledgements. The authors would like to thank Prof. Yen-Chi Lin in our department for helpful suggestion.

References

[1] M. P. Do Carmo: Differential geometry of curves and surfaces, Translated from the Portuguese. Prentice-Hall, Inc., Englewood Cliffs, N. J., (1976).
[2] H. Gluck: Higher curvatures of curves in euclidean space, Amer. Math. Monthly, 73 (1966), 699-704.
[3] H. A. Hayden: Deformations of a curve in a Riemannian n-space, which displace certain vectors parallelly at each point, Proc. London Math. Soc., no. 232 (1932), 321-336.
[4] H. Matsuda, S. Yorozu: Notes on Bertrand curves, Yokohama Math. J., no. 1-2 50 (2003), 41-58.
[5] S. G. Papaioannou, D. Kiritsis: An application of Bertrand curves and surface to $C A D / C A M$, Computer-Aided Design, no. 817 (1985), 348-352.
[6] L. R. Pears: Bertrand curves in Riemannian space, J. London Math. Soc., 10 (1935), 180-183.
[7] B. Ravani, T. S. Ku: Bertrand offsets of ruled and developable surfaces, Computer-Aided Design, no. 223 (1991), 145-152.

[^0]: ${ }^{\text {i }}$ This work was partially supported by the Grant NSC $95-2115-\mathrm{M}-003-002$.

