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1 Introduction

A curve C : I → RN is called a C∞-special Frenet curve in RN if it is a
smooth and regular curve with well-defined Frenet frames {t, n1, · · · , nN−1} and
non-zero curvatures (i.e., curvatures never vanish at any point of curves) along
the curve. On the other hand, in literature, a C∞-special Frenet curve in R3 is
called a Bertrand curve if there exists a distinct curve C̄(s) = C(s)+r(s) ·n1(s),
where n1 is well-defined along C, such that the 1-normal lines of C(s) and C̄(s)
are equal for all s ∈ I. Furthermore, C̄ is called the Bertrand mate of C.

Bertrand curves in R3 have many interesting geometric properties (e.g., see
p.26 in [1] for more details). These types of curves have also been applied in
computer-aided geometric design (CAGD) (e.g., see [5], [7]). In [3] Hayden has
suggested to extend the definition of Bertrand curves in R3 to those in RN or
Riemannian manifolds. However, Pears in [6] showed that a Bertrand curve in
RN must belong to a three-dimensional subspace in RN , since its curvatures
of higher order must be identically equal to zero, i.e., kj = 0 for all j ≥ 3.
This implies that a Bertrand curve in RN can’t be a C∞-special Frenet curve
in RN . Notice that a C∞-special Frenet curve in RN can not be confined in
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a lower dimensional subspace of RN because all of its curvatures are nonzero.
Thus the classical definition of Bertrand curves is not suitable for C∞-special
Frenet curves in RN . This phenomenon motivates us to extend the notion of
Bertrand curves to C∞-special Frenet curves in RN when N ≥ 4. To the au-
thors’ knowledge, [4] is the only article extending the notion of Bertrand curves
to Euclidean spaces of higher dimensions. The reader is referred to [4] for ex-
plicit examples of the so-called (1, 3)-Bertrand curves in R4 (which is a type of
generalized Bertrand curves).

In this article, we generalize the definition of classical Bertrand curves in R3

and (1, 3)-Bertrand curves in R4 (see [4]) by defining the so-called generalized
Bertrand curves for the class of C∞-special Frenet curves in RN , where N ≥ 4
(see Definition 1). Our main result gives a necessary condition for existence of
the generalized Bertrand curve in RN . We found that only a particular type of
generalized Bertrand curves exists in RN .

1 Definition (The Generalized Bertrand Curves). Assume C : I → RN is
a C∞-special Frenet curve. Let ip ∈ {1, 2, . . . , N −1}, where p ∈ {1, . . . ,m} and
m ∈ {1, 2, . . . , N − 1}. Denote by nip the ip-th unit normal vector field of the
curve C. Then, the curve C is called a (i1, . . . , im)-Bertrand curve if there exists
a distinct C∞-special Frenet curve,

C̄(s) = C(s) +
m∑
p=1

αip(s) · nip(s), (1)

such that the Frenet (i1, . . . , im)-normal planes at C(s) and C̄(s) coincide for
all s ∈ I.

For our convenience, we call a (i1, . . . , im)-Bertrand curve the generalized
Bertrand curves, and we always let 1 ≤ i1 < i2, < . . . . . . < im ≤ N − 1.

2 Theorem. If a C∞-special Frenet curve in RN is a generalized Bertrand
curve, then it must be the type of (1, i2, . . . , im)-Bertrand curve.

3 Remark. The generalized Bertrand curves still keep certain geometric
properties. For example, by a straightforward computation, one can verify that
the distance between a generalized Bertrand curve and its mate (offset) along
the curve remains constant. For geometric properties of (1, 3)-Bertrand curves
in R4, the reader is referred to [4]. For generalized Bertrand curves in RN , we
leave the discussion to our future work.

2 Proofs

We will argue by contradiction. Namely, we assume that the C∞-special
Frenet curve C in RN is a (i1, . . . , im)-Bertrand curve with i1 ≥ 2, then a
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contradiction would happen.

Denote by s̄ = ϕ(s) the arc-length parameter of C̄. Let

Kj,i(s) = −ki(s)δi−1
j + ki+1(s)δ

i+1
j , (2)

where δij is the Kronecker’s delta and ki are higher curvatures of RN if i ∈
{1, . . . , N − 1}; otherwise ki = 0 (see [2]). Then the Frenet equations can be
written as

n′
i(s) =

N−1∑
j=0

Kj,i(s)nj(s), (3)

where n0(s) = t(s) and i ∈ {0, . . . , N − 1}. By differentiating (1) with respect
to s, we obtain

ϕ′(s) · n̄0(s) =C̄ ′(s)

=n0(s) +
m∑
p=1

α′
ip(s) · nip(s) +

N−1∑
j=0

m∑
p=1

Kj,ip(s) · αip(s) · nj(s)

=

N−1∑
j=0

βj(s)nj(s),

(4)

where n0 and n̄0 denote the unit tangent vectors of C and C̄ respectively. Since
by assumption the normal plane spanned by n̄i1(s), . . . , n̄im(s) coincides with
the one spanned by ni1(s), . . . , nim(s), there exists a matrix T (s) ∈ O(m) such
that

(n̄i1(s), . . . , n̄im(s))
t = T (s)(ni1(s), . . . , nim(s))

t,

for all s ∈ I. In other words,

n̄iq(s) =

m∑
p=1

Tqp(s)nip(s), (5)

where Tqp is the (q, p)-th entry of the matrix T . Thus by (4) and (5), we have

0 =〈ϕ′(s) · n̄0(s), n̄iq(s)〉 =
m∑
p=1

Tqp(s)〈
N−1∑
j=0

βj(s) · nj(s), nip(s)〉

=

m∑
p=1

Tqp(s)βip(s),

(6)
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for each fixed q ∈ {1, 2, . . . ,m}. Since detT (s) = ±1 �= 0, it follows from (4)
and (6) that

0 = βiq(s) = α′
iq(s) +

m∑
p=1

Kiq ,ip(s) · αip(s), (7)

for each q ∈ {1, 2, . . . ,m}. By (4),

n̄0(s) =
1

ϕ′(s)
n0(s) +

m∑
p=1

1

ϕ′(s)
α′
ip(s) · nip(s)

+
N−1∑
j=0

m∑
p=1

1

ϕ′(s)
Kj,ip(s) · αip(s) · nj(s). (8)

By differentiating (8) with respect to s, we obtain

ϕ′(s) · k̄1(s) · n̄1(s)

=

(
1

ϕ′(s)

)′

n0(s) +
1

ϕ′(s)
k1(s)n1(s) +

m∑
p=1

(
1

ϕ′(s)
α′
ip(s)

)′

nip(s)

+
N−1∑
j=1

⎛⎝ m∑
p=1

1

ϕ′(s)
Kj,ip(s) · α′

ip(s)

⎞⎠ · nj(s)

+
N−1∑
j=1

⎛⎝ m∑
p=1

1

ϕ′(s)
Kj,ip(s) · αip(s)

⎞⎠′

· nj(s)

+
N−1∑
j=0

⎛⎝ m∑
p=1

1

ϕ′(s)
[Kj−1,ip(s) · kj(s)−Kj+1,ip(s) · kj+1(s)] · αip(s)

⎞⎠ · nj(s)

=

N−1∑
j=0

γj(s) · nj(s),

(9)

where kN = 0. By (9), (5) and assuming iq ≥ 2 for all q ∈ {1, 2, . . . ,m}, we have

0 = 〈ϕ′(s)k̄1(ϕ(s))n̄1(ϕ(s)), n̄iq(ϕ(s))〉 =
m∑
p=1

Tqp(s)γip(s). (10)
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Since detT (s) = ±1 �= 0, it follows from (9) and (10) that

0 =γiq(s)

=
( 1

ϕ′(s)
α′
iq(s)

)′
+

m∑
p=1

1

ϕ′(s)
Kiq ,ip(s)α

′
ip(s)

+
m∑
p=1

( 1

ϕ′(s)
Kiq ,ip(s)αip(s)

)′
+

m∑
p=1

1

ϕ′(s)

(
K−1+iq ,ip(s)kiq −K1+iq ,ip(s)k1+iq

)
αip(s),

(11)

for all q ∈ {1, 2, . . . ,m}. Below we omit the arc-length parameter s of C without
confusion. Denote by A = (αi1 , . . . , αim)

t, and let B = (Blp), and R = (Rlp) to
be

Blp =Kil,ip , (12)

Rlp =K−1+il,ipkil −K1+il,ipk1+il . (13)

Then (7) and (11) can be written respectively as

A′ +BA =0, (14)

(
1

ϕ′
A′)′ +

1

ϕ′
BA′ + (

1

ϕ′
BA)′ +

1

ϕ′
RA =0. (15)

Substituting A′ by −BA in (15), we can simplify (15) as

(R−B2)A = 0. (16)

4 Lemma. The m×m matrix R−B2 is symmetric and can be written as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 + F1 N1 0 · · · · · · 0

N1 D2 + F2 N2
. . .

. . .
...

0 N2
. . .

. . .
. . .

...
...

. . .
. . .

. . . Nm−2 0
...

. . .
. . . Nm−2 Dm−1 + Fm−1 Nm−1

0 · · · · · · 0 Nm−1 Dm + Fm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ⎧⎨⎩
Dq = K2

iq−1,iq
− k2iq ,

Fq = K2
iq ,iq+1

− k21+iq
,

Nq = K−1+iq+1,iqkiq+1 ,

(17)

and we let Kip,iq = 0, if ip or iq is not defined.
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Proof. From (12), it is obvious that Bt = −B, thus B2 is symmetric. By
applying (13), (12) and (2), it is easy to verify that the matrix R is symmetric
and to compute all entries of R−B2. We leave it to the reader. QED

We can decompose the matrix R−B2 into a sum of matrices. Namely,

R−B2 =
m+1∑
q=1

Eq

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

D1 0 · · · · · · 0

0 0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0 0

0 · · · · · · 0 Fm

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+

m∑
q=2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · · · · 0
...

... · · · · · · . . .
...

...
... Fq−1 Nq−1

...
...

...
... Nq−1 Dq

...
...

...
. . . · · · · · · ...

...
0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

5 Lemma. For each fixed q ∈ {1, . . . ,m+ 1} and X = (x1, . . . , xm)t,

〈EqX,X〉 ≤ 0. (18)

Proof. It is easy to verify (18) by using (17) and (2). We leave it to the
reader. QED

Observe that Lemma 5 and (16) imply

〈EqA,A〉 = 0,

for each fixed q.

6 Lemma. (i) Assume iq+1 − iq ≥ 3. Then, αiq = 0 = αiq+1.

(ii) Assume iq+1 − iq = 2. Then, αiq = 0 if and only if αiq+1 = 0.

(iii) Assume iq+1 − iq = 1. Then, αiq−1 = 0 = αiq implies αiq+1 = 0, where we
set αi0 = 0.
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Proof. Case (i): iq+1 − iq ≥ 3. From

0 = 〈Eq+1A,A〉 = −[(k1+iqαiq)
2 + (kiq+1αiq+1)

2],

it follows that
k1+iqαiq = 0 = kiq+1αiq+1 .

Thus αiq = 0 = αiq+1 .

Case (ii): iq+1 − iq = 2. From

0 = 〈Eq+1A,A〉 = −(k1+iqαiq − kiq+1αiq+1)
2,

it follows that
k1+iqαiq = kiq+1αiq+1 .

Thus αiq = 0 if and only if αiq+1 = 0.

Case (iii): iq+1 − iq = 1. By (7), we have

−α′
iq = Kiq ,iq−1αiq−1 − kiq+1αiq+1 .

By assuming αiq−1 = 0 = αiq , it follows that αiq+1 = 0.
QED

Proof of Theorem 2. By 〈E1A,A〉 = 0, we obtain k2i1α
2
i1

= 0. Hence,
αi1 = 0. Then, by applying Lemma 6 inductively, we obtain αi2 = · · · = αim = 0.
This implies that C̄ coincides with C, which is a contradiction. QED
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