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Abstract. We study translation planes constructed by André net replacement on jj · · · j-
planes and derivation on jj · · · j-planes. Then, we get to the conclusion that the family of
non-André jj · · · j-planes is new, and thus so are their replaced and derived planes.

We also study a new way to construct translation planes by putting together two ‘halves’
of planes that belong to two different jj · · · j-planes. We show examples of planes of small
order constructed this way.

Finally, we prove that using regular hyperbolic covers, jj · · · j-planes induce partitions of
Segre varieties by Veronesians (sometimes called flat flocks)
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1 Introduction

In [30] the author constructed and studied a family of translation planes that
generalize the j-planes of Johnson, Pomareda and Wilke. These generalized j-
planes are constructed from a field of matrices F ∼= GF (q) whenever the set

S = {y = xf(M)M ; M ∈ F} ∪ {x = 0}

defines a spread. Where

f : Mn(q)→Mn(q)

is such that

(1) f(MN) = f(M)f(N), for all M,N ∈ F ∗,

(2) f(M)q−1 = Id for all M ∈ F ∗

In the same article it is shown that all generalized j-planes are isomorphic
to jj · · · j-planes, these planes are generalized j-planes with

f(M) = diag(1, det(M)j2 , det(M)j3 , . . . , det(M)jn)
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2 O. Vega

where j2, j3, . . . , jn are elements of {0, 1, 2, . . . , q − 2}
It is easy to see that these planes admit a homology group of order (qn −

1)/(q−1), thus their study is important as their existence would give an example
of a non-André plane admitting such a group. The following results (which
we will use later in this article) show how a homology group like this could
determine the structure of a plane that admits it as a collineation group.

1 Theorem. [Johnson–Pomareda [19]] Let π be a translation plane of order
qn and kernel containing GF (q). Assume that the plane admits a cyclic homology
group of order (qn − 1)/(q − 1). Then one of the following must occur:

(i) The axis and the coaxis of the group are both invariant or

(ii) The plane is André.

2 Theorem. [Ostrom [26]] Let π be a translation plane of order qn that
admits a cyclic affine homology group H of order (qn − 1)/(q − 1). Then any
component orbit union the axis and coaxis of the group is a Desarguesian partial
spread.

3 Remark. In the study of jj · · · j-planes, and the planes we will construct
later in this article we will need a list of known planes of orders qn for n > 2.
This list has been collected from [4].

(1) Desarguesian.

(2) André.

(3) Nearfield.

(4) Generalized André.

(5) Semifield.

(6) Generalized Hall.

(7) Flag-transitive.

(8) SL(2, q) plane (a plane that admits SL(2, q) as a collineation group).

(9) Hiramine–Jha–Johnson [9].

(10) Symplectic (see, for example, [23], [3], [25] and [31]).

(11) Triangle transitive planes. See [29], for example.

(12) Culbert – Ebert planes of order q3 [6].

___________________________________________________________________
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(13) Cubic Figueroa planes [7].

(14) Johnson non-André hyper regulus replacement planes (see [13] and [14]).

(15) Derived algebraic lifted planes [17].

In [30] we showed that none of the planes listed above can be a (non-André)
jj · · · j-plane. Moreover, we studied what the transposed plane of a jj · · · j-plane
is.

4 Definition. Let S = {y = xM}∪{(x = 0)} be a spread. Then the spread
given by St = {y = xM t} ∪ {x = 0} is called the transposed spread of S. It is
known that, after a change of basis, the collineations of St look like

(x, y)→ (x, y)

[
Dt Bt

Ct At

]
,

where

(x, y)→ (x, y)

[
A C
B D

]
is a collineation of S.

5 Lemma. If Π be a j2j3 · · · jn-plane, then its transposed plane is also a
j2j3 · · · jn-plane.

Finally, we were able to get the full collineation group of a non-André jj · · · j-
plane.

6 Theorem. The linear part of the translation complement of a non-André
jj · · · j-plane Π is isomorphic to the direct product of G and the kernel homolo-
gies.

2 Replaced jj · · · j-planes
I this section we will study a way to construct new planes from already

known jj · · · j-planes. The process used to achieve this is called André nets
replacement. The reader is referred to [4] or [27] for more details on this process.
We start with a short summary of the material that will be necessary to follow
this section.

Every jj · · · j-plane of order qn admits a homology group of order (qn −
1)/(q − 1):

Hy =

{[
Δ−1 0
0 M

]
∈ G; det(M) = 1

}
.

The orbits of lines of Hy define q−1 André nets on the plane. They all share
the lines y = 0 and x = 0 and partition the rest of the lines.
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For v ∈ GF (q)∗, the nets are:

Nv = {y = xSvM ; Sv = ΔLL and det(L) = v, M ∈ F ∗ ∩ SL(n, q)} .

The idea is to replace these nets by other sets of lines to create more trans-
lation planes. It was shown by Pomareda [28] that for any André net of this
order there are exactly n− 1 different replacements. In our case, they are:

N (k)
v =

{
y = (xq

k

)SvM ; Sv = ΔLL and det(L) = v, M ∈ F ∗ ∩ SL(n, q)
}

for k = 1, 2, . . . , n− 1.

It follows that, in order to know the replacements for Nv, we need to find
a representation for the function x �→ xq

k
for k = 1, 2, . . . , n − 1. We do this

by identifying the elements of GF (qn) (the x’s) with the elements of F (the
matrices).

So, let F = GF (q)(β), and let Mq be the matrix that represents x→ xq in

the basis {1, β, . . . , βn−1}. Clearly Mk
q represents x→ xq

k
for every k. Then the

replacements for N1 are:

N
(k)
1 =

{
y = xMk

q M ; M ∈ F ∗ and det(M) = 1
}
,

for k = 1, 2, . . . , n− 1.

In order to obtain the replacements for the other q− 2 nets we change basis

via γ =

[
S−1
v 0
0 Id

]
to transform Nv into N1. Then we replace N1 and go back

via γ−1. The replacements for Nv are:

N (k)
v =

{
y = xSvM

k
q M ; M ∈ F ∗ and det(M) = 1

}
,

where Sv = ΔLL is an arbitrary, but fixed.

7 Notation. We enumerate the nets of a given jj · · · j-plane Π by saying
that N1 is the first net, Nα is the second and Nαk−1 is the kth net of Π, where
GF (q)∗ =< α >.

We use this enumeration to label the planes π that have been obtained via
the net replacement of the nets; we will write π = [n1, n2, . . . , nq−1] to mean
that the ith net has been replaced by using x→ xq

ni . In particular, [0, 0, . . . , 0]
is the jj · · · j-plane we started with.

8 Notation. In this section we will always consider non-Desarguesian jj · · ·
· · · j-planes listed in remark 3.
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9 Remark. Every replaced jj · · · j-plane inherits the ((∞), y = 0)-homology
group of order (qn− 1)/(q− 1) from its associated jj · · · j-plane. Also, it is easy
to see that, just like jj · · · j-planes, replaced jj · · · j-planes have kernel GF (q)
and spreads in PG(2n− 1, q).

It is possible that a replaced jj · · · j-plane is also a jj · · · j-plane. In order
for this to happen, the plane must, at least, admit a cyclic group of order q− 1
that commutes with Hy and thus it permutes the André nets. In [30] we showed
that in a jj · · · j-plane this group induces a ((0),∞)-homology group of order
q − 1 called Hx. Moreover, in [30] we proved that an André jj · · · j-plane is a
nearfield plane by usingHx. As it is fairly easy to construct André planes that
are not jj · · · j-planes, then we are only allowed to say that there might be
André replaced jj · · · j-planes that are not nearfield.

10 Lemma. Let π1 = [n1, n2, . . . , nq−1] and π2 = [m1,m2, . . . ,mq−1] be two
planes obtained by net replacement from the same jj · · · j-plane Π. If there is a
k, 1 ≤ k ≤ q − 1, such that ni ≡ mi+k mod n for every i, then the planes are
isomorphic.

Proof. Let G be the group of order qn − 1 that is associated to Π. Note
that the subgroup of order q− 1 of G acts transitively on the nets of Π. This is
the group that induces the isomorphism between π1 and π2. QED

11 Corollary. Let π1 = [n1, n2, . . . , nq−1] and π2 = [m1,m2, . . . ,mq−1] be
two planes obtained by net replacement from the same jj · · · j-plane Π.

If, for a fixed k and every i, ni ≡ mi+k mod n, then the planes are isomor-
phic.

Proof. It is clear that Φ :=

[
M−1

q 0

0 Id

]
maps Nv into N

(1)
v and, in general,

N
(k)
v into N

(k+1)
v for every v ∈ GF (q)∗. It follows that Φ induces an isomorphism

between π1 and π2. QED

12 Remark. Using Φ we can always work with planes of the form [0, n2, . . .
. . . , nq−1]. Thus, in the search for new planes we do not need to replace all nets
in a jj · · · j-plane, it is enough to replace all but the first net.

13 Lemma. Let π be a replaced jj · · · j-plane. Then π is an André plane if
and only if Π is an André plane.

Proof. Clearly, the replaced planes obtained from the André jj · · · j-plane
are also André.

Assume π is an André plane. Because of a result by Foulser [8], one of
the two symmetric homology groups of π that have been inherited from some
Desarguesian plane and the homology group Hy inherited from Π are the same.
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This implies that, by reversing one of the nets N
(k)
v for v ∈ GF (q)∗, we

obtain more André planes. In particular, Π is André. QED

14 Remark. Using the same type of argument used in the previous lemma,
one may show that replaced jj · · · j-planes are Desarguesian, if and only if, they
yield from a Desarguesian plane or an André plane.

Since we know what happens when we replace nets on an André plane, then
we will only have left to study replaced jj · · · j-planes that are non-André.

15 Lemma. A non-André replaced jj · · · j-plane that is not an SL(2, q)-
plane or a derived lifted plane cannot be isomorphic to any plane listed in remark
3.

Proof. This proof is essentially the same as the long series of lemmas and
remarks in [30] starting in remark 8 until corollary 8, as those proofs just needed
the existence of a homology group of size (qn − 1)/(q − 1) and that the plane
had kernel containing GF (q). Both of these hypothesis hold in replaced jj · · · j-
planes, thus the result follows. QED

16 Remark. As mentioned in definition 4, if one transposes all the matrices
in the spreadset of a translation plane π, then one obtains the spreadset of the
transposed plane of π. In lemma 5 we showed that a jj · · · j-plane is isomorphic
to its transposed plane, this result is not necessarily valid for replaced jj · · · j-
planes. However, it is easy to see, from definition 4, that the transposed of a
replaced jj · · · j-plane will admit a cyclic homology group of order (qn−1)/(q−1)
and will have kernel containing GF (q), thus the previous lemma also applies to
these planes.

We still need to learn more about the collineation group of a replaced jj · · · j-
plane to assure that it cannot be an SL(2, q)-plane or a derived lifted plane.

17 Lemma. The translation complement of a non-André replaced plane π
fixes the lines x = 0 and y = 0.

Proof. This is a corollary of theorem 1. QED

18 Theorem. Let π be a plane obtained by net replacement from the jj · · · j-
plane Π. Then, the linear part of the translation complement of π is the group
inherited from Π.

Proof. Recall that we are considering replaced planes with the net N1 left
unreplaced. Let Ψ be an element of the translation complement of π. Because
of the previous lemma we can assume that Ψ fixes x = 0 and y = 0.

By hypothesis Ψ fixes the net N1, then by using G′, the group induced in
π by G, we can assume that Ψ fixes y = x, and it follows that, as a block
matrix, Ψ = diag(A,A), where A is some invertible matrix. Since Ψ fixes N1,
the matrix A normalizes F , just as in the proof of theorem 7 in [30]. Then, by
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theorem 6, this element was already considered as induced by the collineation
group of Π. QED

19 Remark. If Ψ does not fix N1. Consider the homology group H =
Φ−1HyΦ. Since F and Φ−1FΦ are both fields of order qn, then either they are
the same or they share at most q

n
k elements, where k is the smallest prime

dividing n.

If the fields are not the same, then |H ∩ Hy| ≤ q
n
k and this implies that

the order of the homology group HHy is at least (qn − 1)2/(q− 1)2q
n
k , which is

larger than qn − 1. Contradiction.

Hence, Hy is normal in the translation complement of Π.

Since Ψ fixes x = 0 and y = 0, then we can represent it as Φ = diag(A,B),
where A,B ∈ GL(n, q). Moreover, the fact that Φ normalizes Hy implies that B
normalizes F , and thus B ∈ F . It follows that the image of some M ∈ N1 under
Φ is Φ(y = xM) = (y = xA−1MB), where MB ∈ F , and detMB = detB,
then A−1 = MqjΔB for some j.

If p divided the order of Φ, then Φi would have order p for some i. Since the
order of B divides qn− 1, then Φi = diag(P, Id) for some matrix P . However, it
is not hard to see that if Bi = Id, then P = Mqij , which cannot have order p.

20 Corollary. A non-André replaced jj · · · j-plane π cannot be an SL(2, q)-
plane or a lifted derived plane.

Proof. This follows immediately from the translation complement of π
containing no p elements. QED

21 Remark. The same argument used in remark 16 shows that the trans-
posed of a replaced jj · · · j-plane cannot be an SL(2,q) plane or a lifted derived
plane.

An easy corollary of the previous results summarizes this section

22 Corollary. A non-André replaced jj · · · j-plane is new, it has kernel
GF (q) and spread in PG(2n−1, q). However, it might be isomorphic to a jj · · · j-
plane.

More new planes might be obtained by transposing replaced jj · · · j-planes.
Using the restriction given in lemma 10 and remark 12 we shortly survey the

non-André planes obtained by net replacement on the jj · · · j-planes of small
order listed in section 6 of [30], paper to which the reader is referred for more
information on the jj · · · j-planes used here.

Planes of order 43 were studied in detail in [22]. In short, the non-André
planes found (a 0, 1-plane and a 2, 2-plane) were constructed using the same
field F , an extension of GF (4) = GF (2)(α) using the polynomial p(x) = x3−α.
Moreover, in [22] we showed that.
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23 Lemma. Let Π be the (0, 1)-plane described above, and let π = [0, 2, 1].
Then π is isomorphic to the 2, 2-plane mentioned above.

This lemma allows us to restrict our study non-André jj-planes of order 43

to the family of planes obtained from the 0, 1-plane Π.

24 Remark. Using lemma 10 and corollary 11, we can reduce the number
of possible distinct isomorphism classes of replaced planes to 5; these are:

[0, 0, 0],

[0, 1, 1],

[0, 1, 2],

[0, 2, 1],

[0, 2, 2].

In this case, it is possible to learn what the transposed planes of replaced
jj-planes of order 43 are.

25 Lemma. Let π be a transposed replaced jj-plane. Then,

(1) [0, 1, 1]t ∼= [0, 2, 2],

(2) [0, 2, 2]t ∼= [0, 1, 1],

(3) [0, 1, 2]t ∼= [0, 2, 1],

(4) [0, 2, 1]t ∼= [0, 1, 2].

Note that the previous lemma says that replaced jj-planes of order 43 are
not self-transposed.

For order 44 we found two more non-André jjj-planes, for either one of
them, the replaced planes obtained after using lemma 10 and remark 12 are:

[0, 0, 1]

[0, 0, 2]

[0, 0, 3]

[0, 1, 2]

[0, 2, 1]

Thus we have at most 10 non-isomorphic planes of order 44

26 Remark. Not much is known about the replaced planes of jj · · · j-planes
of orders 73, 34, and 54 besides the fact that the study of these planes yields
dozens of new planes, even after obtaining several isomorphisms by using lemma
10 and remark 12. It is our intent to investigate these planes in the near future.
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3 Derived jj · · · j-planes
In this section we will study planes that can be obtained from jj · · · j-planes

or replaced jj · · · j-planes by the process of derivation, see [24] or [4] for more
information about this well-known process

A derivable net in a translation plane of order qn needs to be of size q
n
2 + 1

and has to be coordinatized by a field. Such a derivable net can be replaced by a
different type of subspaces than the ones used to replace André nets. The lines
of the (new) derived plane are the lines in Π that are not in the set to replace
plus a set of affine translation subplanes of Π, of order q

n
2 , that cover the lines

of the set to be replaced. These new line-sets are called Baer subplanes. Note
that an affine plane of order q

n
2 has qn points, just like a regular line of Π.

Any plane obtained by net derivation in a (possibly replaced) jj · · · j-plane
will be called ‘derived jj · · · j-plane’. We have found two different situations
that assure the existence of these nets in (possibly replaced) jj · · · j-planes.

27 Notation. For the rest of this section, let Π be a plane obtained by
replacing the derivable net D in the (possibly replaced) jj · · · j-plane Π0. The
derived net of D will be called D′.

A first case we will study is when the homology group Hy in a (possibly
replaced) jj · · · j-plane has a subgroup of size h − 1, where h2 = qn. These
conditions will be called hypothesis H1.

When hypothesis H1 holds, the orbits of lines under this group look, in some
basis, like { y = xm; m ∈ GF (h)∗ }. Since our plane has order h2, each of these
orbits union the lines x = 0 and y = 0 forms a derivable net (see, e.g., [11]).

28 Remark. Note that we can derive only one of these nets at a time as
once one of them is derived, the lines x = 0 and y = 0 are not there anymore
and thus all the other derivable nets are incomplete now. Also, note that each
of these nets is contained in exactly one hyper-regulus, thus we could, after the
derivation has been done, replace any of the other q − 2 hyper-reguli that do
not contain the derived net. Also, we could derive a plane that has already been
replaced.

In order to know all the planes obtained by derivation on (possibly replaced)
jj · · · j-planes that satisfy H1, it is enough to consider the case of planes that
have been derived after all the hyper-reguli replacements have been performed.

29 Theorem. Hypothesis H1 holds only in the following cases:

i. Π is a plane of order q2k where q = 2 or 3. In this case h = qk.

ii. Π is a plane of order 4n and n is odd. In this case h = 2n.
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Proof. Assume h − 1 divides qn−1
q−1 , then q − 1 divides qn−1

h−1 . Hence, since

h2 = qn, we get q − 1 divides h+ 1. Let us say that q = pα and h = pβ .

If 2β = nα, then β = kα+ r, with r < α or r = 0.

Assume pα − 1 divides pβ + 1. Then,

pβ + 1 = pβ − pr + pr + 1

= pr(pβ−r − 1) + pr + 1

= pr(pkα − 1) + pr + 1

It follows that pα − 1 divides pr + 1. Since r < α or r = 0 we take cases.

If r = 0 we get pα− 1 divides 2, which forces pα− 1 = 1, 2. Hence, pα = 2, 3,
α = 1 and β = k. This proves case i.

If 0 �= r < α, then pα − 1 divides pr + 1 only can happen if pα − 1 ≤ pr + 1.
This only can occur when pr(pα−r − 1) ≤ 2, then p = 2, r = 1 and α = 1, 2.
This gives us case ii. QED

30 Remark. The homology group of order h − 1 of Π0 becomes a Baer
group of order h − 1 in Π because the line (y = 0) (of Π0), which is fixed
pointwise by Hy, becomes a Baer subplane in Π.

A Baer group is a group that fixes a Baer subplane pointwise.

There is a second way for a (possibly replaced) jj · · · j-plane to have a deriv-
able net. We use a theorem by Jha and Johnson to prove the existence of these
second type of derivable nets.

31 Theorem. [Jha–Johnson [11]] Let π be a finite translation plane of order
q2 which admits a homology group H of order q + 1. If H is cyclic then any
H-orbit of components defines a derivable net.

32 Corollary. Let Π be a (possibly replaced) jj · · · j-plane of order qn. If
n = 2k, then the subgroup H of Hy of order qk + 1 defines qk − 1 disjoint
derivable nets on Π.

We will say these derivable nets are of ‘second type’.

In this case, we can derive up to qk − 1 nets at a time. Since these nets
partition the set of hyper-reguli, we could, after the derivation has been done,
replace any of the hyper-reguli that do not contain the derived nets.

Note that, in order to know all the planes obtained by derivation on (pos-
sibly replaced) jj · · · j-planes with derivable nets of second type, it is enough
to consider the case of planes that have been derived after all the hyper-reguli
replacements have been performed.

Finally, since the derivable nets of second type do not contain the axis and
coaxis of Hy, then, when the order of the plane is q2k, it is possible to derive
(possibly replaced) jj · · · j-planes using derivable nets of both types. Also, the
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homology group of order qk + 1 used to obtain the derivable nets is inherited
by the new plane as a homology group, not as a Baer group as in the previous
case.

33 Remark. Each derivable net of a jj · · · j-plane has been defined using
a suitable cyclic homology group, this group is inherited by the derived plane.
That is, the homology group is a collineation group of the new plane.

In some cases, the inherited group is the full collineation group of a derived
plane. We will now see that some derived jj · · · j-planes have this property. This
will depend on the order of the plane.

34 Theorem. [Johnson–Ostrom [18]] Let Π0 be a translation plane of order
> 16. Let D be a derivable net and let K be the kernel of Π0. Let Π be the plane
obtained by deriving D.

If the Baer subplanes of D incident with the zero vector are not all K-
subspaces, then the full group of Π is the inherited group.

35 Corollary. Let Π be a plane of order qn, with n odd, obtained by deriva-
tion on Π0. Then, the collineation group of Π is inherited from Π0. Thus, the
collineation group of Π is given by the stabilizer of D in Π0.

Proof. If n is odd, then the order of the plane is 4n and the order of the
Baer subplanes that cover D is 2n. As n is odd, the kernel of Π cannot be GF (4),
thus it must be GF (2). The result follows from the previous theorem. QED

What follows is a sequence of results describing the structure of derived
jj · · · j-planes of order qn for n odd. These results can also be generalized to
any derived jj · · · j-plane satisfying the hypothesis of theorem 2.

36 Lemma. Let Π be a non-André plane of order qn, with n odd, obtained
by derivation on Π0, a (possibly replaced) non-André jj · · · j-plane. Then, Π is
neither one of the planes listed in remark 3.

Proof. Since the collineation group of Π is inherited from Π0, it has to
stabilize the derivable net. It follows that Π cannot be Desarguesian, André,
triangle transitive or flag transitive (and thus nor Figueroa, see [5]). Similarly,
in a semifield plane, there is an orbit of size qn in �∞ (given by an elation group),
thus a derived jj · · · j-plane cannot be a semifield plane. For a similar reason,
as generalized André, planes admit symmetric homology groups, Π cannot be
one of these planes.

The orbits on �∞ in a Hiramine–Jha–Johnson plane are inconsistent with a
derived jj · · · j-plane. Also, a nearfield plane of order qn, with n > 3 must be
André. Thus, Π is not nearfield.

As Johnson non-André hyper-regulus replacement planes have a collineation
group induced from the plane they were constructed from, but related to a net
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of size (qn− 1)/(q− 1), not of size qn/2 +1 as derived planes, then these planes
cannot be derived jj · · · j-planes.

As the collineation group of a jj · · · j-plane has no p elements, then neither
does a derived jj · · · j-plane, it follows that derived jj · · · j-planes cannot be
derived lifted planes or SL(2, q)-planes. A similar argument rules out Culbert–
Ebert planes (see [30] to see why these planes are not jj · · · j-planes).

Finally, in [21] it was shown that the derivation of a symplectic plane pro-
duces a set-transpose plane (which is a plane with spread S such that St = S).
Also, a set-transpose plane admitting a homology group H with axis y = 0 and
coaxis x = 0 then it must also admit a homology group with axis x = 0 and
coaxis y = 0 that is isomorphic to H. Thus, if a derived jj · · · j-plane is sym-
plectic, then there is a set-transpose jj · · · j-plane, which forces two symmetric
homology groups of order (qn−1)/(q−1), forcing this plane to be André. QED

37 Remark. We note from Johnson [15] that the sequences of construction
processes ‘transpose—derive’ and ‘derive—transpose’ produce the same plane.
Hence, the transposes of two derived planes are isomorphic if and only if the
transposes of the two corresponding planes from which the indicated planes
are derived are isomorphic. Hence, no additional planes are obtained from the
transpose of a derived plane.

Finally, note that a derived jj · · · j-plane Π of order qn, with n odd, cannot
be isomorphic to a (possibly replaced) jj · · · j-plane because the derived plane
does not have an orbit of size qn − 1 in �∞.

Thus, putting together the results in the first two sections in tis article and
the results in [30] we have shown.

38 Theorem. The family of non-André planes of order qn, formed by
jj · · · j-planes, derived jj · · · j-plane, and replaced jj · · · j-plane is new.

39 Remark. If a derivable net of a plane Π can be sent to another derivable
net of Π by some collineation Φ, then the corresponding derived planes are
isomorphic. It is easy to see that the converse holds as well.

We close this section giving some information about certain derived jj · · · j-
planes of small order. These planes arise from the examples discussed in section
6 in [30].

The study of derived jj-planes of order 43 (see [22] for more details) yields
exactly 9 non-isomorphic derived jj-planes of order 43.

Also, these planes are new, their full collineation groups are inherited from
the plane they were derived from, this follows from the fact that the kernel of a
derived jj-plane of order 43 is isomorphic to GF (2), not GF (4).

Planes of order 73 admit derivable nets of both types. On the contrary,
planes of order 44 and 54 admit derivable nets of second type only.
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The myriad of planes obtained by derivation will be studied in a future
article.

4 One-half j-planes

In this section we will discuss a construction method that might produce
unknown planes. The idea is to take two distinct jj · · · j-planes constructed
over the same field and then collect close to half of the lines in the first plane
with close to half of the lines in the second plane to create a new plane.

Firstly, consider two jj-planes of order 43 constructed over the same field F
(just like the ones found and discussed in [22]). So, let D be the Desarguesian
plane with spread the field F . We partition this spread into nets using the
determinant of its matrices, that is

F = N1 ∪Nα ∪Nα2

where
Nθ = {M ∈ F ; det(M) = θ}

We now consider a j1, k1-plane Π and a j2, k2-plane π. They can be repre-
sented as

Π = N1 ∪
⎡⎣1 αj1

αk1

⎤⎦Nα ∪
⎡⎣1 α2j1

α2k1

⎤⎦Nα2

and

π = N1 ∪
⎡⎣1 αj2

αk2

⎤⎦Nα ∪
⎡⎣1 α2j2

α2k2

⎤⎦Nα2

Now consider the set

S = N1 ∪
⎡⎣1 αj1

αk1

⎤⎦Nα ∪
⎡⎣1 α2j2

α2k2

⎤⎦Nα2

which is formed by the common net N1 and one net from each plane Π and π.
Since the net N1 belongs to both Π and π then S will define a plane iff

det

⎛⎝⎡⎣1 αj1

αk1

⎤⎦M −
⎡⎣1 α2j2

α2k2

⎤⎦N

⎞⎠ �= 0

for all M,N ∈ F with det(M) = α and det(N) = α2.
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But this can be re-written as

det

⎛⎝Id−
⎡⎣1 α2j2−j1

α2k2−k1

⎤⎦NM−1

⎞⎠ �= 0

for all M,N ∈ F with det(M) = α and det(N) = α2.
Since det(NM−1) = α, then the determinant above would be non-zero if

there were a j, k-plane constructed over the same field F , with j = 2j2− j1 and
k = 2k2 − k1.

Now consider the j, k-planes of order 43 with (j, k) = (0, 1), (1, 0), (1, 2), (2, 1)
(2, 2) and (0, 0) (a Desarguesian plane). Then the following table (computed mod
3, as we are dealing with exponents in a field of order 4)

(j1, k1) (j2, k2) (2j2 − j1, 2k2 − k1)

(0, 1) (1, 0) (2, 2)
(0, 1) (2, 2) (1, 0)
(1, 0) (2, 2) (0, 1)
(1, 2) (2, 1) (0, 0)

yields four one-half planes.
So, we have constructed a few planes, but they are not new as the matrix

M4, needed to replace André nets (see section 2) is

M4 =

⎡⎣1 α
α2

⎤⎦
Thus, all planes found here are replaced jj · · · j-planes.
We now consider j, 0, j-planes of order 54 (these examples have been dis-

cussed in [30]) with field F given by an extension of GF (5) by a root α of
p(x) = x4 − 2x2 − 2 or q(x) = x4 − x2 − 3. In any case, F is partitioned into
nets as

F = N1 ∪N2 ∪N4 ∪N3

where the subindices indicate the determinant of the matrices in that net.
So, the putative one-half j-plane is formed from a j, 0, j-plane Π and the

k, 0, k-plane π

S = N1 ∪

⎡⎢⎢⎣
1

2k

1
2k

⎤⎥⎥⎦N2 ∪

⎡⎢⎢⎣
1

4j

1
4j

⎤⎥⎥⎦N4 ∪

⎡⎢⎢⎣
1

3k

1
3k

⎤⎥⎥⎦N3
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Analyzing this set as we did with the planes of order 43 we get that S
determines a plane if there is a r, 0, r-plane, with r = 3j + 2k (modulo 4). But,
since there are j, 0, j-planes for j = 0, 1, 2, 3 (see [30]), then all the candidates
to be one-half j-planes actually are translation planes.

Note that the partition into nets is completely irrelevant for this construc-
tion, as any partition into nets from a j, 0, j-plane Π and a k, 0, k-plane π will
need the existence of an r, 0, r-plane (r = αj + βk mod 4 for some α, β) to cre-
ate a new plane. Hence, as above, since there are j, 0, j-planes of order 54 for
j = 0, 1, 2, 3, then we always obtain a translation plane.

Whether or not there are one-half j-planes of any order is a question that is
related to the existence of jj · · · j-planes of any order, which is an open problem.

5 Flat flocks

We finish this article by mentioning one of the odd connections of jj · · · j-
planes. These planes are related to a generalization of certain partitions of Segre
varieties by Veroneseans. The idea of connecting these apparently completely
different ideas comes from a theorem by Johnson.

40 Theorem. [Johnson [16]] The set of translation planes of order q2 with
spread in PG(3, q) that admit cyclic affine homology groups of order q + 1 is
equivalent to the set of flocks of a quadratic cone.

Again, when n = 2, since every flock of a quadratic cone gives at least
one translation plane with the required homology group, there are tremendous
varieties of such translation planes. In particular ‘j-planes’ of order q2 admit a
cyclic collineation group of order q2 − 1, of which there is an affine homology
subgroup of order q + 1. Hence, in particular, j-planes correspond to flocks of
quadratic cones.

Hence, as jj · · · j-planes and replaced jj · · · j-planes of order qn that admit
an affine homology group of order (qn − 1)/(q − 1), for n > 2, then we will try
to connect them with some type of partition that reminds of a flock.

Recently, Bader, Cossidente and Lunardon [1, 2] have generalized the idea
of a flock of a hyperbolic quadric of PG(3, q) to flat flocks of the Segre variety
Sn,n. They also provided an equivalence between flat flocks and the class of
translation planes that admit an (A,B)-regular spread.

The following two definitions may be found in [10, Chapter 25].

41 Definition. Consider two projective spaces PG(n1,K) and PG(n2,K)
with ni ≥ 1.

Let η be a bijection between {0, 1, . . . , n1}×{0, 1, . . . , n2} and {0, 1, . . . ,m},
with m+ 1 = (n1 + 1)(n2 + 1).
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Then the Segre variety of the 2 given projective spaces is the variety Sn1,n2

given by{
(x0, x1, . . . , xm); xη(i1,i2) = x

(1)
i1

x
(2)
i2

with (x
(i)
0 , x

(i)
1 , . . . , x(i)ni

) ∈ PG(ni,K)
}

of PG(m,K).

42 Definition. The Veronesean variety of all quadrics of PG(n,K), n ≥ 1,
is the variety Vn given by{
(x20, x

2
1, . . . , x

2
n, x0x1, . . . , x0xn, x1x2, . . . , xn−1xn); (x0, x1, . . . , xn) ∈ PG(n,K)

}
of PG(N,K) with N = n(n+ 3)/2.

43 Definition. A flock of Sn,n is a partition of it into caps of size (qn −
1)/(q − 1).

If the caps are Veronesean varieties obtained as sections of Sn,n by linear
subspaces of the projective space PG(n2+2n, q) in which Sn,n resides, then the
flock is called a flat flock.

The flat flock is linear if all the subspaces of its Veronesean members share
an n-dimensional subspace of PG(n2 + 2n, q).

44 Remark. The smallest Segre variety Sn,n is Q+(3, q) = S1,1 and the
smallest Veronesean variety is V1, an oval in PG(2, q). This explains why flat
flocks can be considered as a generalization of flocks of hyperbolic quadrics in
PG(3, q).

45 Definition. Let A and B be members of a spread S of PG(2n + 1, q).
We say S is (A,B)-regular if for every component C ∈ S \ (A,B), the regulus
generated by {A,B,C} is contained in S.

46 Theorem. [Bader, Cossidente, Lunardon [2]] Flat flocks of Sn,n and
(A,B)-regular spreads in PG(2n+ 1, q) are equivalent. Moreover, the Veronese
varieties correspond to GF (q)-reguli.

47 Definition. Let R be a net of degree q + 1 corresponding to a partial
spread in PG(2n+ 1,K), where K ∼= GF (q).

i. If R contains a Desarguesian subplane of order q, R is said to be a “rational
net”. The associated partial spread is called a “rational partial spread”.

ii. If R is a rational net that may be embedded in a Desarguesian affine plane,
the partial spread is called a “rational Desarguesian net”. The associated
partial spread is called a “rational Desarguesian partial spread”.

A ‘hyperbolic cover of order q’ of a spread S in PG(2n + 1,K) is a set of
(qn+1 − 1)/(q − 1) rational Desarguesian partial spreads each of degree q + 1
that share two components of S and whose union is S.
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If the rational Desarguesian partial spreads are all K-reguli, we call the
hyperbolic cover a ‘regulus hyperbolic cover’.

48 Theorem. [Jha–Johnson [12]] Flat flocks of Sn,n are equivalent to trans-
lation planes of order qn+1 that admit a regulus hyperbolic cover.

Some examples of flat flocks may be found in [2], [12] and [13]. These flat
flocks are related to planes that are Desarguesian, semifield, regular nearfield
N(n+ 1, q) or André.

49 Corollary. Every jj · · · j-plane of order qn induces a flat flock. Also,
when q − 1 divides n, every replaced jj · · · j-plane induces a flat flock.

Proof. The homology group Hx (of order q − 1) induces a regulus hyper-
bolic cover of the plane.

Since replaced jj · · · j-planes that are not jj · · · j-planes do not admit the
homology group Hx, then we use that q − 1 divides n to get:

gcd(q − 1, (qn − 1)/(q − 1)) = gcd(q − 1, n) = q − 1

Thus, the homology subgroup of Hy of order q − 1 induces the desired regulus
hyperbolic cover of the plane. QED

50 Remark. Note that the non-André jj · · · j-planes induce new flat flocks.
The ones induced by André jj · · · j-planes have been studied in [2]. However,
there might be some kind of isomorphism between these new flocks and the ones
already studied.
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