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Abstract. We discuss cohomogeneity one isometric actions on the exceptional compact
symmetric spaces E6/(SU(6)×SU(2)/Z2), E6/(Spin(10)×U(1)/Z4) and E6/F4. These sym-
metric spaces can be thought of as compact tubes, since the principal orbits of the considered
isometric actions coincide with tubular hypersurfaces around totally geodesic singular orbits.
We determine the radii of the tubes and the principal curvatures of the tubular hypersurfaces.
Moreover, we compute the volumes of the principal orbits and the volumes of the symmetric
spaces in terms of the maximal sectional curvature.
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1 Introduction

Take an isometric action λ : F ×N → N of a compact connected Lie group
F on a complete Riemannian manifold N . Then the orbits of F are compact
submanifolds of N . A closed connected submanifold Σ of N is called a section
of λ if Σ intersects orthogonally all the orbits of F , and it is well-known that
the sections are totally geodesic submanifolds of N . The isometric action λ is
called hyperpolar if λ admits flat sections. Concerning discussions of hyperpolar
actions on Riemannian manifolds, we refer to [4], [8] and [16].

A large class of hyperpolar actions on compact symmetric spaces has been
discovered by Hermann in [11] and [12]. He has pointed out that if (G,K) is
a Riemannian symmetric pair of compact type and F is another symmetric
subgroup of G, then the natural action of F on G/K is hyperpolar. In the
paper [9], Heintze, Palais, Terng and Thorbergsson gave some criterions for an
isometric action to be hyperpolar, and these imply that the cohomogeneity one
actions always admit flat sections. Then, the hyperpolar actions on irreducible
compact symmetric spaces have been classified by Kollross in [15].
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186 L. Verhóczki

The purpose of this paper is to discuss in detail cohomogeneity one isometric
actions on three compact symmetric spaces associated to the exceptional Lie
group E6 and to show that each of them has got a well-defined tubular structure
around a totally geodesic submanifold. A similar study of the non-exceptional
irreducible compact symmetric spaces was presented in [17]. In Section 2, we
summarize some basic results about cohomogeneity one actions on compact
symmetric spaces. In Section 3, by means of the root space decomposition of the
Lie algebra e6 we construct some commuting involutions of E6. These involutive
automorphisms yield the four symmetric subgroups of the Lie group E6.

In Sections 4 and 5, we study the isometric actions of the symmetric sub-
group F4 on the symmetric spaces E6/(SU(6)×SU(2)/Z2) and E6/(Spin(10)×
U(1)/Z4). We prove that the principal orbits of these actions coincide with the
tubular hypersurfaces around the totally geodesic orbits F4/(Sp(3)×Sp(1)/Z2)
and F4/Spin(9), respectively. This implies that the symmetric spaces above can
be thought of as compact tubes. We determine the radii of the tubes and the
principal curvatures of the principal orbits in terms of the maximal sectional
curvature. Since the principal curvatures of the tubular orbits can explicitly be
expressed, we compute the volumes of the principal orbits using some results
of the paper [6] by Gray and Vanhecke. Hence, we obtain a simple method to
calculate the volumes of the ambient symmetric spaces. We mention that using
a quite different technique, Abe and Yokota also determined the volumes of
these compact symmetric spaces in [1] and [2].

In Section 6, similar results are obtained for the isometric action of the Lie
group (SU(6) × SU(2))/Z2 on the symmetric space E6/F4. The orbits of this
action are tubular surfaces around the totally geodesic orbit SU(6)/Sp(3).

Throughout this paper 〈 , 〉 denotes the Riemannian metric of the consid-
ered compact symmetric space N . The exponential map defined on the tangent
bundle TN will be denoted by Exp and the Riemannian curvature tensor by R.
κ will denote the maximal sectional curvature of N . We refer to [10] for basic
facts on Lie groups and symmetric spaces. Concerning submanifolds, the basic
concepts can be found in the books [7] and [14]. We always take the inherited
Riemannian metrics on the submanifolds. If M is a submanifold of N , then the
normal vector bundle of M will be denoted by ν(M). The restriction of Exp to
the normal bundle ν(M) will be denoted by ExpM .

2 Cohomogeneity one isometric actions on compact
symmetric spaces

In this section, we recall some basic results concerning cohomogeneity one
isometric actions on compact symmetric spaces. For details and proof we refer
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On compact symmetric spaces associated to the Lie Group E6 187

to [17].
Let (G,K) be a Riemannian symmetric pair of compact type, where the Lie

group G is simply connected. Then there is a unique involution σ of G such that
the subgroup K coincides with Gσ = { g ∈ G | σ(g) = g }. The tangent linear
map Teσ of σ at the identity element e is an involution of the Lie algebra g of G.
Hence, the ±1-eigenspaces of Teσ induce the Cartan decomposition g = k + p,
where k is the Lie algebra of K.

Take the coset space N = G/K and the smooth action λ : G×G/K → G/K
defined by λ(g, hK) = ghK for g, h ∈ G. Select the point o = eK. We identify
the tangent space ToN of N at o with the subspace p in the usual way. As
well-known, the Killing form B of g is negative definite. Endow N = G/K with
the Riemannian metric 〈 , 〉 for which the above action λ is isometric and

〈v1, v2〉 = −c2 ·B(v1, v2) (1)

holds for v1, v2 ∈ p with a fixed positive number c. Then N = G/K presents a
simply connected compact symmetric space. Moreover, the Riemannian curva-
ture tensor R at o satisfies

R(v1, v2)v3 = −
[
[v1, v2], v3

]
(2)

for all v1, v2, v3 ∈ p, where [ , ] denotes the bracket operation in g.
Let � be an involutive automorphism of G different from σ such that � and

σ commute. Take the symmetric subgroup F = G� = { g ∈ G | �(g) = g }. Since
G is simply connected, F is a connected compact Lie group. We note that the
natural left action of F on N is called a Hermann action.

Consider now the other symmetric subgroup H = { g ∈ G | �σ(g) = g }
defined by the involution �σ and the isometric action of H on N . Then the
following statement is true.

1 Theorem. The orbits F (o) and H(o) are totally geodesic submanifolds of
N . If Σ is a maximal dimensional flat torus of the symmetric space H(o) and
Σ contains o, then Σ is a section of the isometric action λ : F ×N → N .

The above theorem implies that the rank of the symmetric space H(o) is
equal to the codimension of the principal orbits of F .

In what follows, we assume that H(o) is a symmetric space of rank one and
the codimension of the submanifold F (o) in N is greater than one. We discuss
the cohomogeneity one action λ : F ×N → N , where F (o) is a singular orbit.

Take the normal vector bundle ν(M) of the totally geodesic submanifold
M = F (o). Introduce the notation M t = {ExpM (w) | w∈ν(M), ‖w‖ = t } for
t ≥ 0 and call M t a tubular surface around M . For any g ∈ F , let λg denote
the isometry of N defined by λg(hK) = ghK for hK ∈ N . Applying geodesics
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188 L. Verhóczki

which emanate perpendicularly from M = F (o), we obtain that λg ◦ ExpM =
ExpM ◦Tλg is valid for all g∈F . Since H(o) is a symmetric space of rank one,
F acts transitively on the set of the unit vectors in ν(M). These facts imply
that the orbits of F are tubular surfaces around M .

Take the orthogonal complementary subspaces ToM and νoM in ToN . Notice
that νoM = ToH(o) holds. Let u be a fixed unit vector of the normal subspace
νoM and let γ : R→ N be the closed geodesic defined by γ(0) = o and γ̇(0) = u.
Then C = γ(R) intersects orthogonally all the orbits of F .

As well-known, the Jacobi operator Ru : ToN → ToN with respect to u is
defined by the relation Ru(v) = R(v, u)u for v ∈ ToN . Theorem 1 implies that
ToM and νoM are invariant subspaces of the self-adjoint endomorphism Ru.
Let a be the maximal eigenvalue of Ru on ToM and let h denote the arc length
of C. We need the number r = min { π/(2

√
a), h/2 }, and the open tubular

domain νr(M) = {w ∈ ν(M) | ‖w‖ < r } in ν(M). Then we can state the
following theorem, which verifies that the symmetric space N can be thought
of as a compact tube around M = F (o) with radius r.

2 Theorem. The restriction of the exponential map ExpM to νr(M) is a
diffeomorphism from νr(M) to the open domain ExpM (νr(M)) in N .

M r = F (γ(r)) is the other singular orbit of F , and ExpM (νr(M))∪M r = N
holds.

3 Remark. It is clear that the orbits of F are also obtained as tubular
surfaces around M r. This implies that M r is a minimal submanifold of N .

Consider the principal orbit M t = F (γ(t)) for some t, 0 < t < r. Let ζ
be the smooth unit normal vector field on M t for which ζ(γ(t)) = γ̇(t) holds.
Observe that ζ is invariant under the action of F . Then the shape operator
Aζ of M t with respect to ζ has constant eigenvalues, which are called principal
curvatures of the hypersurface M t in N .

We can express the principal curvatures of the principal orbits in explicit
form as follows. Take the eigenvalues ai (i = 1, . . . , s) of the Jacobi operator Ru

on the invariant subspace ToM with the multiplicities mi (i = 1, . . . , s). Then,
denote by χ the maximal sectional curvature of the compact symmetric space
H(o). Since the rank of H(o) equals one, the eigenvalues of Ru on the invariant
subspace νoM are b1 = χ, b2 = χ/4 and b3 = 0 provided that H(o) is not of
constant curvature. Hereafter, we denote by kj the multiplicity of the eigenvalue
bj of Ru|νoM for j ∈ {1, 2, 3}.

4 Theorem. The constant principal curvatures of the principal orbit M t

are

μi(t) =
√
ai tan(

√
ai t) and μ̂j(t) = −

√
bj cot(

√
bj t) (3)

(i = 1, . . . , s; j = 1, 2) with the corresponding multiplicities.
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On compact symmetric spaces associated to the Lie Group E6 189

Finally, we present a formula concerning volumes of principal orbits of F .
For details and proof see the paper [6] and the book [7].

Denote by k the codimension of the submanifold M = F (o) in N and by
TrAγ̇(t) the trace of the shape operator Aγ̇(t) of the tubular hypersurface M t

with respect to γ̇(t). We need the smooth function ϑ : [0, r)→ R which satisfies
the differential equation

ϑ′(t)
ϑ(t)

= −k − 1

t
− TrAγ̇(t)

for t∈(0, r) and for which ϑ(0) = 1 is valid. By Theorem 4 we obtain that

ϑ(t) = 2k2 χ
1−k
2 t1−k · sink1(√χ t) · sink2(1

2

√
χ t) ·

s∏
i=1

cosmi(
√
ai t) (4)

holds, where k1 + k2 = k − 1. Recall that M = F (o) is a compact symmetric
space. Denote by Vol(M) the volume of M and by Vol(Sk−1) the volume of the
unit sphere Sk−1 of dimension k − 1. Then, using Lemma 3.12 in [7], we can
state the following theorem.

5 Theorem. The relation

Vol(M t) = Vol(M) ·Vol(Sk−1) · tk−1 ϑ(t) (5)

holds for the volumes of the principal orbits M t = F (γ(t)), 0 < t < r.

6 Remark. Theorem 5 implies that there is a principal orbit of F which
has the maximal volume. The mean curvature vector field of this tubular hy-
persurface vanishes, and therefore it is a minimal submanifold of N (for proof
see Theorem 1 in [13]).

3 Symmetric subgroups of the exceptional compact

Lie group E6

Let us consider the simply connected compact Lie group E6. We refer to [18]
for details about E6 and its symmetric subgroups. In this section, we construct
some commuting involutions of the Lie algebra e6 of E6 by using its root space
decomposition. Therefore we obtain some involutions of E6 which provide the
four symmetric subgroups of E6.

As usual, considering an elementX of e6, the endomorphism adX : e6 → e6 is
defined by adX(Y ) = [X,Y ] for Y ∈e6, where [ , ] denotes the bracket operation
in e6. We denote by B the Killing form of e6, which is negative definite.
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190 L. Verhóczki

Select a 6-dimensional Abelian subspace g0 of e6. Let β be a real-valued
linear form on the linear space g0. Take the subspace

gβ = { Y ∈e6 | (adX)2(Y ) = −β(X)2 Y for all X∈g0 }.

It is clear that gβ = g−β is valid. β is called a root if β �= 0 and gβ �= {0}
hold, and in this case gβ is said to be the root subspace corresponding to β.
Denote by Δ the set of the 72 roots with respect to g0. We refer to Chapter X
in [10] for details about the root system Δ. Select a basis α1, . . . , α6 of Δ the
Dynkin diagram of which is represented in Figure 1. Let Δ+ denote the set of

Figure 1. The Dynkin diagram of Δ with the coefficients of the highest root.

the positive roots with respect to the ordering defined by this basis. Then we
obtain the root space decomposition

e6 = g0 +
∑

β∈Δ+ gβ, (6)

which is orthogonal with respect to B. It is important to remark that the relation

[gβ, gδ] ⊂ gβ+δ + gβ−δ (7)

is valid for any β, δ∈g∗0, where g∗0 denotes the dual space of g0.

As usual, we associate to each root β ∈ Δ the vector Hβ ∈ g0 for which
B(Hβ , X) = β(X) holds for all X ∈ g0. Then gβ + RHβ is a subalgebra of e6
which is isomorphic to su(2).

Take the basis a1, . . . , a6 of g0 which is dual to the basis α1, . . . , α6 of g∗0.
Considering the parities of the integers β(a4), β ∈ Δ, we can divide Δ+ into
two disjoint subsets defined by

Δ+
K = {β ∈ Δ+ | β(a4) ∈ 2Z } and Δ+

P = {β ∈ Δ+ | β(a4) ∈ 2Z+ 1 }.

Consider now the complementary subspaces

k = g0 +
∑

β∈Δ+
K
gβ and p =

∑
β∈Δ+

P
gβ . (8)
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On compact symmetric spaces associated to the Lie Group E6 191

Using (7) and (8), we can show that k is a subalgebra of e6 and k is isomorphic to
su(6)+ su(2). In addition, the relations [k, p] ⊂ p and [p, p] ⊂ k are valid. Hence,
we find an involutive automorphism σ̂ of e6 defined by σ̂(Y + Z) = Y − Z for
Y ∈k and Z∈p. This induces an involution σ : E6 → E6, where σ ◦exp = exp ◦ σ̂
holds with the exponential map exp: e6 → E6. Then the subgroup K = (E6)σ
of the fixed elements of σ is isomorphic to (SU(6)× SU(2))/Z2.

Select the element a6 of g0 and introduce the notation

Δ+
L = {β ∈ Δ+ | β(a6) ∈ 2Z }, Δ+

M = {β ∈ Δ+ | β(a6) ∈ 2Z+ 1 }.

Take the complementary subspaces

l = g0 +
∑

β∈Δ+
L
gβ, m =

∑
β∈Δ+

M
gβ (9)

of e6. In virtue of (7) and (9), it can be seen that the relations [l, l] ⊂ l, [l,m] ⊂ m

and [m,m] ⊂ l hold, and the Lie algebra l is isomorphic to so(10)+R. Therefore
we find an involution τ̂ : e6 → e6 defined by τ̂(Y + Z) = Y − Z for Y ∈ l

and Z ∈ m. As in the previous case, τ̂ yields an involutive automorphism τ
of the Lie group E6, and the symmetric subgroup L = (E6)τ is isomorphic to
(Spin(10)× U(1))/Z4.

Let us take the 4-dimensional subspace A =
∑5

j=2Rαj of g∗0, and denote

by A⊥ its orthogonal complement in g∗0. Let Δ+
A be the set of those positive

roots which are contained in A. This means that each element β of Δ+
A can

be expressed in the form β =
∑5

j=2 njαj , where nj ∈ Z and nj ≥ 0. Consider

now the subspace a0 =
∑5

j=2RHαj
of g0, and denote by a⊥0 the orthogonal

complement of a0 in g0. It is easy to show that a = a0 +
∑

β∈Δ+
A
gβ presents a

subalgebra of e6 which is isomorphic to so(8).

Let r : g∗0 → g∗0 be the orthogonal reflection of g∗0 on the two-dimensional
subspace A⊥. It can be seen that

r(α1) = α1 + α2 + 2α3 + 2α4 + α5, r(α6) = α2 + α3 + 2α4 + 2α5 + α6

and r(αj) = −αj (j = 2, 3, 4, 5) hold. Using the notation Δ+
R = Δ+ \ Δ+

A, we
obtain that r(Δ+

R) = Δ+
R. Since the roots β and r(β) are orthogonal for β ∈ Δ+

R,
the relation [gβ, gr(β)] = 0 holds provided that β ∈ Δ+

R. Then, this reflection r
induces an involution �̂ : e6 → e6 such that the following assertions are true:

(1) The Lie algebra of the elements left fixed by �̂ is isomorphic to f4.

(2) �̂(Y ) = Y and �̂(Z) = −Z hold for all Y ∈ a and Z ∈ a⊥0 .

(3) �̂(gβ) = gr(β) is valid for each β ∈ Δ+
R.
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192 L. Verhóczki

Hereafter, we denote by f4 the subalgebra of the fixed elements of �̂. Take the
involutive automorphism � of E6 determined by �̂. Clearly, the subgroup (E6)�
is isomorphic to the exceptional compact Lie group F4.

The involution �̂ yields the decomposition e6 = f4 + n, where
n = {Z ∈ e6 | �̂(Z) = −Z }. Since gβ + gr(β) is an invariant subspace of �̂, it
is reasonable to introduce the notation qβ,r(β) = {Y ∈ gβ + gr(β) | �̂(Y ) = Y }
and q⊥β,r(β) = {Z ∈ gβ + gr(β) | �̂(Z) = −Z }. Then f4 and n can be expressed
as the direct sums of orthogonal subspaces in the following way:

f4 = a0 +
∑

β∈Δ+
A
gβ +

∑
β∈Δ+

R
qβ,r(β), n = a⊥0 +

∑
β∈Δ+

R
q⊥β,r(β). (10)

We remark that for each β ∈ Δ+
R, the subspace qβ,r(β) + R(Hβ + Hr(β)) is a

subalgebra of e6 which is isomorphic to su(2), and q⊥β,r(β) is a Lie triple system.

Observe that �̂(k) = k and �̂(p) = p hold. It follows from this that the
involutions �̂ and σ̂ commute. Consider now the symmetric subalgebra h =
{Y ∈ e6 | �̂σ̂(Y ) = Y }. Using the relation h = k ∩ f4 + p ∩ n and the above
decompositions, we obtain that h is isomorphic to the Lie algebra sp(4). �̂σ̂
induces the involutive automorphism �σ of E6, and the subgroup H of the fixed
elements of �σ is isomorphic to Sp(4)/Z2.

Finally, we can show that τ̂ commutes with �̂ and σ̂. Consequently, �τ and
στ are also involutions of E6. It can be seen that the symmetric subgroups
(E6)�τ and (E6)στ are isomorphic to F4 and (SU(6)× SU(2))/Z2, respectively.

4 The isometric action of F4 on E6/(SU(6)×SU(2)/Z2)

Let us consider the compact symmetric space E6/K, where the symmetric
subgroup K defined by the involution σ is isomorphic to (SU(6)× SU(2))/Z2.
In this section, we also denote the symmetric space E6/K by N . Using the
relations (2) and (8), it can be seen that the maximal sectional curvature κ of
E6/K is equal to 1/(c2 ·12). We mention that the value of κ can also be obtained
by means of Theorem 11.1 of Chapter VII in [10].

Take the symmetric subgroups F4 = (E6)� andH = (E6)�σ and their natural
isometric actions on N = E6/K. Recall that H is isomorphic to the Lie group
Sp(4)/Z2. Concerning the totally geodesic orbits of the point o = eK under
these actions, we can state the following assertion.

7 Proposition. F4(o) is isometric to the symmetric space F4/(Sp(3) ×
Sp(1)/Z2) with maximal sectional curvature κ, and H(o) is isometric to the
quaternion projective space HP 3 with maximal sectional curvature κ/2.

sibauser
Linea



On compact symmetric spaces associated to the Lie Group E6 193

Proof. It is clear that the isotropy subgroup of F4 at o coincides with
F4 ∩K. Since � and σ commute, it can be seen that σ(F4) = F4 and F4 ∩K =
{ g ∈ F4 | σ(g) = g } are valid. This implies that F4∩K is a symmetric subgroup
of F4 and the orbit F4(o) is isometric to the symmetric space F4/(F4 ∩K). By
the decompositions (8) and (10) we obtain that f4 ∩ k is isomorphic to the Lie
algebra sp(3) + sp(1). Hence, F4 ∩K is isomorphic to (Sp(3)× Sp(1))/Z2.

Consider the exponential map Expo : ToN → N on the tangent space ToN
of N at o, which is identified with the subspace p of e6. Then the totally geodesic
orbit F4(o) coincides with Expo(f4 ∩ p). The Lie triple system f4 ∩ p contains
the two-dimensional root subspace gα4 of e6, and it follows from this that the
maximal sectional curvature of F4(o) equals κ.

Take the other totally geodesic orbit H(o) = Expo(h∩ p). Since the relation
h ∩ k = f4 ∩ k holds, the isotropy subgroup H ∩K of H at o is also isomorphic
to (Sp(3)× Sp(1))/Z2. Consequently, the symmetric space H(o) = H/(H ∩K)
is isometric to HP 3. We can verify that there is no root subspace of e6 which is
included in the Lie triple system h ∩ p. On the other hand, select the root β =
α1+α3+α4 which is contained in Δ+

P ∩Δ+
R. Then the two-dimensional subspace

q⊥β,r(β) is a Lie triple system included in h∩ p, and the surface Expo(q
⊥
β,r(β)) is a

totally geodesic submanifold of N . It can be seen that the sectional curvature
with respect to the plane q⊥β,r(β) equals κ/2. This implies that the maximal

sectional curvature of H(o) is κ/2. QED

Hereafter, we study the isometric action λ : F4 × N → N of F4 on N . It
follows from Theorem 1 and Proposition 7 that the cohomogeneity of λ is equal
to one. Hence, the orbits of F4 are tubular surfaces around the totally geodesic
submanifold M = F4(o).

Take the orthogonal decomposition ToN = ToM + νoM , where νoM =
ToH(o). Fix a unit vector u of the subspace νoM and take the closed geodesic
γ : R → N defined by γ(t) = Expo(tu). Then the circle C = γ(R) intersects
orthogonally all the orbits of F .

Consider now the Jacobi operator Ru : ToN → ToN . Since H(o) is isometric
to HP 3 with maximal sectional curvature κ/2, the eigenvalues of the restriction
of Ru to νoM (and their multiplicities) are

b1 = κ/2 (k1 = 3), b2 = κ/8 (k2 = 8), b3 = 0 (k3 = 1). (11)

In order to describe the shape operators of the principal orbits and to compute
their volumes we need the eigenvalues of the other restricted endomorphism
Ru|ToM .

8 Proposition. The eigenvalues of Ru on the invariant subspace ToM (and
their multiplicities) are

a1 = κ/2 (m1 = 5), a2 = κ/8 (m2 = 8), a3 = 0 (m3 = 15). (12)
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Proof. We shall apply the restricted root space decomposition of p = ToN
(for details see Chapter VII in [10]). As well-known, the rank of E6/K equals
4. Let p0 be a four-dimensional Abelian subspace of p. Take a real-valued linear
form α on p0 and the subspace pα defined by

pα = {Y ∈ p | (adX)2(Y ) = −α(X)2 Y for all X ∈ p0 }.
Recall that α is a restricted root if α �= 0 and pα �= {0} hold, and the dimension
of pα is called the multiplicity of α. Let R denote the set of the restricted
roots. We can take the orthogonal decomposition p = p0 +

∑
α∈R+ pα, where

R+ denotes the set of the positive restricted roots with respect to an ordering
in the dual space of p0. Using the Killing form B of e6, we associate to each
α ∈ R the vector Xα∈p0 for which B(Xα, X) = α(X) holds for all X ∈ p0. It is
well-known that the restricted root system R of E6/K is of type F4 (for details
see Chapter X in [10]). Hence, the elements of R+ are εi (1 ≤ i ≤ 4), εj ± εk
(1 ≤ j < k ≤ 4) and 1

2(ε1 ± ε2 ± ε3 ± ε4), where the roots εi (1 ≤ i ≤ 4) are
orthogonal and all the combinations of signs are admissible. The multiplicity of
the long roots equals one, and the multiplicity of the short roots equals two.

Notice that Ru = −(adu)2 holds for the Jacobi operator Ru. Since the arc
length of C equals (2

√
2π)/

√
κ, we assume that u is parallel to the root vector

Xε1 . In this case pε1 and pε1±εj (j = 2, 3, 4) are eigenspaces of Ru with the
eigenvalue κ/2. This means that κ/2 is an eigenvalue of Ru with the multiplicity
8. Analogously, considering the two-dimensional eigenspaces p 1

2
(ε1±ε2±ε3±ε4), we

obtain that κ/8 is another eigenvalue of Ru with the multiplicity 16. It is clear
that Ru vanishes on the other root subspaces. Then, the relation (11) presenting
the multiplicities of the eigenvalues of Ru|νoM implies that Proposition 8 is
true. QED

9 Remark. By Theorem 2 the symmetric space N = E6/K can be thought
of as a compact tube around M = F4(o). It follows from Proposition 8 that the
radius of this tube is r = π/

√
2κ. Moreover, by means of the relations (11), (12)

and (3) we get all the principal curvatures of the principal orbits M t, 0 < t < r.
Since M = F4(o) is isometric to F4/(Sp(3)× Sp(1)/Z2),

Vol(M) =
223

35 · 53 · 72 · 11 π14 κ−14

is valid (see [5] for proof). Considering the well-known equality Vol(S11) = 1
60π

6,
Theorem 5 implies the following statement.

10 Corollary. The relation

Vol(M t) = Vol(M) · 1
60π

6 · (κ/2)− 11
2 · sin11(√κ/2 t) cos5(

√
κ/2 t)
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On compact symmetric spaces associated to the Lie Group E6 195

holds for the volumes of the principal orbits M t = F4(γ(t)), 0 < t < r.

Using Theorem 2 and Corollary 10, we obtain that

Vol(N) =

∫ r

0
Vol(M t) dt =

223

37 · 54 · 73 · 11 π20 κ−20

holds for the volume of the compact symmetric space N = E6/K.

5 The isometric action of F4 on E6/(Spin(10)×U(1)/Z4)

Recall that the symmetric subgroup L defined by the involution τ is iso-
morphic to (Spin(10)× U(1))/Z4. Consider now the compact symmetric space
N = E6/L of rank two. Then the tangent space ToN of N at the point o = eL
is identified with the subspace m of e6. By means of (2) and (9) it can be seen
that the maximal sectional curvature κ of N = E6/L is equal to 1/(c2 · 12).

Take the symmetric subgroups F4 = (E6)� and H = (E6)�τ . Using the
decompositions (9) and (10), we obtain that in this case H is isomorphic to F4.
We can characterize the orbits of the point o under the isometric actions of F4

and H on N .

11 Proposition. The totally geodesic orbits F4(o) and H(o) are isometric
to the Cayley projective plane OP 2 with maximal sectional curvature κ/2.

Proof. As in the proof of Proposition 7, first we take the isotropy subgroup
F4∩L of F4 at o. Since the involutions � and τ commute, τ(F4) = F4 and F4∩L =
{ g ∈ F4 | τ(g) = g } are valid. Consequently, F4 ∩ L is a symmetric subgroup
of F4 and the orbit F4(o) is isometric to the symmetric space F4/(F4 ∩L). The
relations (9) and (10) imply that f4 ∩ l is isomorphic to the Lie algebra so(9).
It follows from this that F4 ∩ L is isomorphic to Spin(9). Therefore we obtain
that F4(o) coincides with the Cayley projective plane OP 2.

The tangent space ToF4(o) of the totally geodesic orbit F4(o) at o equals
the Lie triple system f4 ∩ m. However, there is no root subspace of e6 which is
contained in f4∩m. On the other hand, qα6,r(α6) presents a two-dimensional Lie
triple system which is included in f4 ∩ m. The sectional curvature with respect
to the plane qα6,r(α6) equals κ/2. Consequently, the maximal sectional curvature
of the symmetric space F4(o) is κ/2.

Finally, notice that since H is isomorphic to F4, the totally geodesic orbit
H(o) is isometric to F4(o). QED

In what follows, we discuss the isometric action λ : F4 × N → N of F4 on
N . It is clear that the principal orbits are tubular hypersurfaces around the
singular orbit M = F4(o).
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Fix a unit vector u of the normal subspace νoM . We shall need the closed
geodesic γ : R → N defined by γ(t) = Expo(tu). Take the Jacobi operator Ru

on ToN . Proposition 11 implies that the eigenvalues of the restriction of Ru to
νoM (and their multiplicities) are

b1 = κ/2 (k1 = 7), b2 = κ/8 (k2 = 8), b3 = 0 (k3 = 1). (13)

Concerning the eigenvalues of the other restricted endomorphism Ru|ToM , we
state the following assertion.

12 Proposition. The eigenvalues of Ru on the subspace ToM (and their
multiplicities) are

a1 = κ/2 (m1 = 1), a2 = κ/8 (m2 = 8), a3 = 0 (m3 = 7). (14)

Proof. As in the proof of Proposition 8, we apply the restricted root space
decomposition of m = ToN . Take a two-dimensional Abelian subspace m0 of
m and the set R of the restricted roots in the dual space of m0. Considering
the root subspaces mα, α ∈ R, we obtain the orthogonal decomposition m =
m0 +

∑
α∈R+ mα. It is well-known that the restricted root system R of the

symmetric space E6/L is of type BC2, which is represented in Figure 2. In this
case the positive roots of R are ε1± ε2, εi and 2εi (i = 1, 2). The multiplicities
of the roots are 6, 8 and 1, respectively.

Figure 2. The root system of type BC2 and its positive roots.

Since the arc length of C = γ(R) equals (2
√
2π)/

√
κ, we assume that u is

parallel to the root vector Xε1+ε2 in m0. Then the root subspaces mε1+ε2 , m2ε1

and m2ε2 are eigenspaces of the Jacobi operator Ru = −(adu)2 with the eigen-
value κ/2. Consequently, κ/2 is an eigenvalue of Ru with the multiplicity 8. It
is clear that the 8-dimensional subspaces mε1 and mε2 are also eigenspaces of
Ru with the eigenvalue κ/8, and Ru vanishes on mε1−ε2 . Hence, the relation
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(13) which gives the multiplicities of the eigenvalues of Ru|νoM implies that
Proposition 12 is true. QED

13 Remark. The symmetric space N = E6/L can be thought of as a
compact tube around M = F4(o). Proposition 12 implies that the radius of this
tube equals r = π/

√
2κ. Using the relations (13), (14) and (3), we obtain the

principal curvatures of the tubular hypersurfaces M t, 0 < t < r.

Since the symmetric space M = F4(o) is isometric to the Cayley projec-

tive plane OP 2, Vol(M) =
29

33 · 52 · 7 · 11 π8 (κ/2)−8 holds, where κ denotes the

maximal sectional curvature of N . Moreover, it follows from Theorem 5 that
the following assertion is true.

14 Corollary. Concerning the volumes of the principal orbits
M t = F4(γ(t)),

Vol(M t) = Vol(M) ·Vol(S15) · (κ/2)− 15
2 · sin15(

√
κ/2 t) cos(

√
κ/2 t)

is valid, where Vol(S15) = 2π8/7! .

As in the previous case, we can compute the volume of the compact sym-
metric space N = E6/L. We obtain

Vol(N) =

∫ r

0
Vol(M t) dt =

218

35 · 53 · 72 · 11 π16 κ−16

by using the relation in Corollary 14.

6 The isometric action of (SU(6)×SU(2))/Z2 on E6/F4

Let us take the compact symmetric space N = E6/F4 of rank two, where
F4 = (E6)�. Select the point o = eF4 of N . In this case the tangent space ToN
of N at o is identified with the subspace n of e6. Observe that there is no root
subspace of e6 which is included in n. Therefore the relations (2) and (10) imply
that the maximal sectional curvature κ of N = E6/F4 is equal to 1/(c2 · 24).

Recall that the symmetric subgroup K defined by the involution σ is iso-
morphic to (SU(6) × SU(2))/Z2 and H = (E6)�σ is isomorphic to Sp(4)/Z2.
Consider the natural isometric actions of K and H on N = E6/F4.

15 Proposition. The totally geodesic orbits K(o) and H(o) are isometric to
the symmetric spaces SU(6)/Sp(3) and HP 3 with maximal sectional curvature
κ, respectively.
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Proof. In the proof of Proposition 7, we obtained that K∩F4 is isomorphic
to the Lie group (Sp(3)× Sp(1))/Z2. Hence, the totally geodesic singular orbit
K(o) = K/(K ∩ F4) is isometric to the symmetric space SU(6)/Sp(3).

On the other hand, since H ∩ F4 is also isomorphic to (Sp(3) × Sp(1))/Z2,
the orbit H(o) = H/(H ∩ F4) is isometric to the quaternion projective space
HP 3. QED

Hereafter, we discuss the isometric action λ : K × N → N of K on N .
Proposition 15 implies that the cohomogeneity of λ is equal to one. Hence,
the orbits of K are tubular surfaces around the totally geodesic submanifold
M = K(o).

Consider the orthogonal decomposition ToN = ToM + νoM , where νoM =
ToH(o). Fix a unit vector u of νoM and take the closed geodesic γ : R → N
defined by γ(t) = Expo(tu) for t ∈ R.

It follows from Proposition 15 that the eigenvalues of the Jacobi operator
Ru on the normal subspace νoM (and their multiplicities) are

b1 = κ (k1 = 3), b2 = κ/4 (k2 = 8), b3 = 0 (k3 = 1). (15)

Moreover, we can state the following assertion.

16 Proposition. The eigenvalues of Ru on the invariant subspace ToM
(and their multiplicities) are

a1 = κ (m1 = 5), a2 = κ/4 (m2 = 8), a3 = 0 (m3 = 1). (16)

Proof. We use the same technique as in the proof of Proposition 8. Take
a two-dimensional Abelian subspace n0 of n and the restricted roots in the dual
space of n0. Recall that the restricted root system R of E6/F4 is of type A2.
This means that R consists of only six roots. Let α, β be a basis of the root
system R represented in Figure 3. Then we get the orthogonal decomposition
n = n0 + nα + nβ + nα+β of n, where the root subspaces are 8-dimensional.

Since the arc length of C = γ(R) equals (2π)/
√
κ, we assume that u is

parallel to the root vector Xα+β in n0. Then Ru(v) = κ v and Ru(w) = (κ/4)w
hold for all v ∈ nα+β and w ∈ nα+nβ . Therefore we obtain that the eigenvalues
of Ru on ToN are κ, κ/4 and 0 with the multiplicities 8, 16 and 2, respectively.
Consequently, the relation (15) verifies that Proposition 16 is true. QED

17 Remark. Let us consider the symmetric space N = E6/F4 as a compact
tube around M = K(o). It follows from Proposition 16 that the radius of this
tube equals r = π/(2

√
κ). Moreover, by means of the relations (15), (16) and (3)

we can express the principal curvatures of the principal orbits M t, 0 < t < r.
Since M = K(o) is isometric to SU(6)/Sp(3), we obtain that Vol(M) =√

3
24 π8 κ−7 is valid. Hence, Theorem 5 implies the following statement.
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Figure 3. The root system of type A2.

18 Corollary. The relation

Vol(M t) = Vol(M) ·Vol(S11) · κ− 11
2 · sin11(√κ t) cos5(

√
κ t)

holds for the volumes of the principal orbits M t = K(γ(t)), 0 < t < r.

Using Corollary 18, we get

Vol(N) =

∫ r

0
Vol(M t) dt =

√
3

29 · 33 · 5 · 7 π14 κ−13 .

for the volume of the compact symmetric space N = E6/F4.

19 Remark. Finally, let us consider the compact symmetric space N =
E6/H, where the subgroup H = (E6)�σ is isomorphic to Sp(4)/Z2. Take the
isometric actions of F4 = (E6)� and K = (E6)σ on N . Select the point o = eH
of N . We have shown that the isotropy subgroup F4 ∩ H = K ∩ H at o is
isomorphic to (Sp(3)× Sp(1))/Z2. Hence, the totally geodesic orbits F4(o) and
K(o) are isometric to F4/(Sp(3) × Sp(1)/Z2) and SU(6)/Sp(3), respectively.
Since K(o) is a symmetric space of rank two, it follows from Theorem 1 that
the cohomogeneity of the hyperpolar action of F4 on E6/(Sp(4)/Z2) equals two.
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