Translation-invariant generalized topologies induced by probabilistic norms

Bernardo Lafuerza-Guillén
Departamento de Estadística y Matemática Aplicada, Universidad de Almería, E-04120 Almería, Spain
blafuerz@ual.es

José L. Rodríguez Blancas
Área de Geometría y Topología,
Universidad de Almería, E-04120 Almería, Spain
jlrodri@ual.es
Received: 17/06/2008; accepted: 04/07/2008.

Abstract

One considers probabilistic normed spaces as defined by Alsina, Sklar, and Schweizer, but with non necessarily continuous triangle functions. Such spaces are endowed with a generalized topology that is Fréchet-separated, translation-invariant and countably generated by radial and circled 0 -neighborhoods. Conversely, we show that such generalized topologies are probabilistically normable.

Keywords: Probabilistic norms, probabilistic metrics, triangle functions, generalized topologies, generalized uniformities.

MSC 2000 classification: Primary 46S50, Secondary 54E70.

1 Introduction

Probabilistic normed spaces (briefly, PN spaces) were first defined by Šerstnev in the early sixties [see [13]], thus originating a fruitful theory that extended the theory of ordinary normed spaces. Thirty years later, Alsina, Schweizer, and Sklar gave in [1] a quite general definition of PN space, based on the definition of Menger's betweenness in probabilistic metric spaces; [see [14],p. 232].

We here consider PN spaces in which the involved triangle functions are non necessarily continuous. With regards to a generalized topology in the sense of Fréchet and for probabilistic metric spaces, the problem was treated by Höhle in [6] where he showed that all generalized topologies which are Fréchetseparated and first-numerable are induced by certain probabilistic metrics. The main result of this paper is a similar result for probabilistic norms, where the t-norm has certain restriction:

1 Theorem. Let T be a t-norm such that $\sup _{0 \leq x<1} T(x, x)<1$. Suppose that $T(x, y) \leq x y$, whenever $x, y<\delta$, for some $\delta>0$. A Fréchet-separated, translation-invariant, generalized topology $\left(\mathcal{U}_{p}\right)_{p \in S}$ on a real vector space S is
derivable from a Menger $P N$ space $\left(S, \nu, \tau_{T}, \tau_{T^{*}}\right)$, if and only \mathcal{U}_{θ} admits a countable base of radial and circled subsets, where θ is the origin of S.

In fact, this result also holds if one assumes T to be Archimedean near the origin, i.e. there is a $\delta>0$ such that $0<T(x, x)<x$, for all $0<x<\delta$ [see Remark [8], after Theorem [1]].

We think that a similar result could be interesting for fuzzy normed spaces in the sense of Felbin [3], but allowing non-continuity of the t-norms, and t conorms involved in the fuzzy structure.

In [10] the authors use this generalized topology to define bounded subsets in PN spaces (with non necessarily continuous triangle functions) and study its relationship with \mathcal{D}-bounded subsets (a concept which is defined in probabilistic terms).

2 PM and PN spaces

Recall from [1] and [14] some definitions on probabilistic metric and probabilistic normed spaces.

As usual, Δ^{+}denotes the set of distance distribution functions, i.e. distribution functions with $F(0)=0$, endowed with the metric topology given by the modified Lévy-Sybley metric d_{L} [see 4.2 in [14]]. Given a real number a, ε_{a} denotes the distribution function defined as $\varepsilon_{a}(x)=0$ if $x \leq a$ and $\varepsilon_{a}(x)=1$ if $x>a$. Hence, the set of non-negative real numbers \mathbb{R}^{+}can be viewed as a subspace of Δ^{+}. A triangle function τ is a map from $\Delta^{+} \times \Delta^{+} \rightarrow \Delta^{+}$which is commutative, associative, nondecreasing in each variable and has ε_{0} as the identity. Such functions give rise to all possible extensions of the sum of real numbers, so that (M3) below corresponds to the triangle inequality.

A probabilistic metric space (briefly, a PM space) is a triple (S, F, τ) where S is a non-empty set, F is a map from $S \times S \rightarrow \Delta^{+}$, called the probabilistic metric, and τ is a triangle function, such that:
(M1) $F_{p, q}=\varepsilon_{0}$ if and only if $p=q$.
(M2) $F_{p, q}=F_{q, p}$.
(M3) $F_{p, q} \geq \tau\left(F_{p, r}, F_{r, q}\right)$.
When only (M1) and (M2) are required, it the pair (S, F) is said to be a probabilistic semi-metric space (briefly, PSM space).

A $P N$ space is a quadruple $\left(S, \nu, \tau, \tau^{*}\right)$ in which S is a vector space over \mathbb{R}, the probabilistic norm ν is a map $S \rightarrow \Delta^{+}, \tau$ and τ^{*} are triangle functions ${ }^{1}$

[^0]such that the following conditions are satisfied for all p, q in S :
(N1) $\nu_{p}=\varepsilon_{0}$ if and only if $p=\theta$, where θ is the origin of S.
(N2) $\nu_{-p}=\nu_{p}$.
(N3) $\nu_{p+q} \geq \tau\left(\nu_{p}, \nu_{q}\right)$.
(N4) $\nu_{p} \leq \tau^{*}\left(\nu_{\lambda p}, \nu_{(1-\lambda) p}\right)$ for every $\lambda \in[0,1]$.
Observe that every PN space $\left(S, \nu, \tau, \tau^{*}\right)$ is a PM space, where $F_{p, q}:=\nu_{p-q}$.
Recall that a t-norm is a binary operation on $[0,1]$ that is commutative, associative, nondecreasing in each variable, and has 1 as identity. Dually, a t-conorm is a binary operation on $[0,1]$ that is commutative, associative, nondecreasing in each variable, and has 0 as identity. If T is a t-norm, its associated t-conorm T^{*} is defined by $T^{*}(x, y):=1-T(1-x, 1-y)$. Given a t-norm T one defines the functions τ_{T} and $\tau_{T^{*}}$ by
$$
\tau_{T}(F, G)(x):=\sup \{T(F(s), G(t)): s+t=x\}
$$
and
$$
\tau_{T^{*}}(F, G)(x):=\inf \left\{T^{*}(F(s), G(t)): s+t=x\right\}
$$

Recall that if T is left-continuous then τ_{T} is a triangle function [14, p. 100], although this is not necessary; For example, if Z denotes the weakest t-norm, defined as $Z(x, 1)=Z(1, x)=x$ and $Z(x, y)=0$ elsewhere, then τ_{Z} is a triangle function which is not continuous.

A Šerstnev $P N$ space is a PN space $\left(V, \nu, \tau, \tau^{*}\right)$ where ν satisfies the following Šerstnev condition:
(̌̌) $\quad \nu_{\lambda p}(x)=\nu_{p}\left(\frac{x}{|\lambda|}\right)$, for all $x \in \mathbb{R}^{+}, p \in V$ and $\lambda \in \mathbb{R} \backslash\{0\}$.
which clearly implies (N2) and also [see [1]](N4) in the strengthened form

$$
\begin{equation*}
\nu_{p}=\tau_{M}\left(\nu_{\lambda p}, \nu_{(1-\lambda) p}\right) \tag{1}
\end{equation*}
$$

for all $p \in V$ and $\lambda \in[0,1]$ [see [1, Theorem 1]], where M is the t-norm defined as $M(x, y)=\min \{x, y\}$.

Let T be a t-norm. A Menger PM space under T is a PM space of the form $\left(S, F, \tau_{T}\right)$. Analogously, a Menger PN space under T is a PN space of the form $\left(S, \nu, \tau_{T}, \tau_{T^{*}}\right)$. Note that every metric space (S, d) is a Menger space $\left(S, F, \tau_{M}\right)$ where $F_{p, q}=\varepsilon_{d(p, q)}$. Analogously, every normed space $(S,\|\cdot\|)$ is a Menger and Šerstnev PN space $\left(S, \nu, \tau_{M}, \tau_{M}\right)$ where $\nu_{p}=\varepsilon_{\|p\|}$.

3 Probabilistic metrization of generalized topologies

In [6] Höhle solved a problem posed by Thorp about the probabilistic metrization of generalized topologies. We recall some definitions and results that we shall use in the next section.

Let S be a (non-empty) set. A generalized topology (of type V_{D}) on S is a family of subsets $\left(\mathcal{U}_{p}\right)_{p \in S}$, where \mathcal{U}_{p} is a filter on S such that $p \in U$ for all $U \in \mathcal{U}_{p}$ [see e.g. [14, p. 38], [2, p. 22]]. Elements of \mathcal{U}_{p} are called neighborhoods at p. Such a generalized topology is called Fréchet-separated if $\bigcap_{U \in \mathcal{U}_{p}} U=\{p\}$.

A generalized uniformity \mathcal{U} on S is a filter on $S \times S$ such that every $V \in \mathcal{U}$ contains the diagonal $\{(p, p): p \in S\}$, and for all $V \in \mathcal{U}$, we have that $V^{-1}:=$ $\{(q, p):(p, q) \in V\}$ also belongs to \mathcal{U}. Elements of \mathcal{U} are called vicinities (or "entourages"). Every generalized uniformity \mathcal{U} induces a generalized topology as follows: for $p \in S$,

$$
\begin{equation*}
\mathcal{U}_{p}:=\{U \subseteq S \mid \exists V \in \mathcal{U}: U \supseteq\{q \in S \mid(p, q) \in V\}\} . \tag{2}
\end{equation*}
$$

A uniformity \mathcal{U} is called Hausdorff-separated if the intersection of all vicinities is the diagonal on S. Theorem 1 in [6] claims:

2 Theorem. [Höhle] Every Fréchet-separated generalized topology $\left(\mathcal{U}_{p}\right)_{p \in S}$ on a given set S is derivable from a Hausdorff-separated generalized uniformity \mathcal{U} in the sense of (2).

QED
Let (S, F) be a PSM space. Consider the $\operatorname{system}\left(\mathcal{N}_{p}\right)_{p \in S}$, where $\mathcal{N}_{p}=$ $\left\{N_{p}(t): t>0\right\}$ and

$$
N_{p}(t):=\left\{q \in S: F_{p, q}(t)>1-t\right\} .
$$

This is called the strong neighborhood system. If we define $\delta(p, q):=d_{L}\left(F_{p, q}, \varepsilon_{0}\right)$, then δ is a semi-metric on S (i.e. it may not satisfy the triangle inequality of the standard metric axioms), and $N_{p}(t)=\left\{q: d_{L}\left(F_{p, q}, \varepsilon_{0}\right)<t\right\}$. Clearly $p \in N$ for every $N \in \mathcal{N}_{p}$, and the intersection of two strong neighborhoods at p is a strong neighborhood at p. Furthermore, \mathcal{N}_{p} admits a countable filter base given by $\left\{N_{p}(1 / n): n \in \mathbb{N}\right\}$, hence the strong neighborhood system is first-countable. The above explanation yields the following fact [see more details in [14], p. 191]:

3 Theorem. Let (S, F) be a PSM space, then the strong neighborhood system defines a generalized topology of type V_{D} which is Fréchet-separated and first-countable.

This generalized topology is called the strong generalized topology of the PSM space (S, F).

The main result in $[6]$ is the following.

4 Theorem. [Höhle] Let T be a t-norm such that $\sup _{0 \leq x<1} T(x, x)<1$. A Fréchet-separated generalized topology $\left(\mathcal{U}_{p}\right)_{p \in S}$ on a set S is derivable from a Menger PM space (S, F, T) if and only if there exists a Hausdorff-separated, generalized uniform structure \mathcal{U} having a countable filter base, such that \mathcal{U} is compatible with $\left(\mathcal{U}_{p}\right)_{p \in S}$.

QED
$\mathbf{5}$ Remark. If (S, F, τ) is a PM space with τ continuous, then the associated generalized topology is in fact a topology. This topology is called the strong topology. Because of (M1) this topology is Hausdorff. Since it is first-countable and uniformable, it is metrizable [see [14, Theorem 12.1.6]].

Conversely, if $\sup _{0 \leq x<1} T(x, x)=1$, then a Fréchet-separated, uniformable topology is derivable from a Menger space (S, F, T) if and only if there exists a Hausdorff uniformity U on S having a countable filter base [6].

4 Translation-invariant generalized topologies

Assume now that S is a vector space over \mathbb{R}. A generalized topology $\left(\mathcal{U}_{p}\right)_{p \in S}$ on S is said to be translation-invariant if for all $U \in \mathcal{U}_{p}$ and $q \in S$, we have $q+U \in \mathcal{U}_{p+q}$. Consequently, a translation-invariant generalized topology is uniquely determined by the neighborhood system \mathcal{U}_{θ} at the origin θ of S. In this case, the generalized uniformity from which one can derive the generalized topology is:

$$
\mathcal{U}:=\left\{V \subseteq S \times S \mid \exists U \in \mathcal{U}_{\theta}: V \supseteq\{(p, q) \mid p-q \in U\}\right\}
$$

Recall that a subset U of a vector space is called radial if $-U=U$; it is called circled (or balanced) if $\lambda U \subset U$ for all $|\lambda| \leq 1$.

6 Theorem. Every PN space (S, ν, τ, τ^{*}) admits a generalized topology $\left(\mathcal{U}_{p}\right)_{p \in S}$ of type V_{D} which is Fréchet-separated, translation-invariant, and counta-bly-generated by radial and circled θ-neighborhoods.

Proof. Let $\left(S, \nu, \tau, \tau^{*}\right)$ be a PN space with τ non-necessarily continuous. Let (S, F) be its associated PSM space, where $F_{p, q}=\nu_{p-q}$. The strong neighborhoods at p are given by $N_{p}(t)=\left\{q \in S: \nu_{p-q}(t)>1-t\right\}=p+N_{\theta}(t)$. In particular, the generalized topology is translation-invariant. By (N1) we have that this generalized topology is Fréchet-separated (as in the case of PSM spaces). The countable base of θ-neighborhoods is $\left\{N_{\theta}\left(\frac{1}{n}\right): n \in \mathbb{N}\right\}$, whose elements are clearly radial and circled, by axioms (N2) and (N4), respectively. QED

Note that the generalized topology induced by a PN space $\left(S, \nu, \tau, \tau^{*}\right)$ is derivable from the following generalized uniformity:

$$
\mathcal{U}:=\left\{V \subset S \times S \mid \exists n \in \mathbb{N}: V \supseteq\left\{(p, q) \left\lvert\, \nu_{p-q}\left(\frac{1}{n}\right) \geq 1-\frac{1}{n}\right.\right\}\right\}
$$

which is translation-invariant and has a countable filter base of radial and circled vicinities.

Adapting the methods in [6], we next show that a converse result holds for such generalized topologies (or generalized uniformities).

Let S be a vector space and $\left(\mathcal{U}_{p}\right)_{p \in S}$ be a Fréchet-separated, translationinvariant, generalized topology of type V_{D} on S. Then, there is a unique transla-tion-invariant, Hausdorff-separated generalized uniformity, which is defined as follows

$$
\mathcal{U}:=\left\{V \subseteq S \times S \mid \exists U \in \mathcal{U}_{\theta}: V \supseteq\{(p, q): p-q \in U\}\right\}
$$

The analogous result of Theorem 4 for PN spaces is the following. (Note that there is an extra assumption on T):

7 Theorem. Let T be a t-norm such that $\sup _{0 \leq x<1} T(x, x)<1$. Suppose that $T(x, y) \leq x y$, whenever $x, y<\delta$, for some $\delta>0$. A Fréchet-separated, translation-invariant, generalized topology $\left(\mathcal{U}_{p}\right)_{p \in S}$ on a real vector space S is derivable from a Menger $P N$ space $\left(S, \nu, \tau_{T}, \tau_{T^{*}}\right)$, if and only \mathcal{U}_{θ} admits a countable base of radial and circled subsets.

Proof. The direct implication has been shown above. For the converse, let $\mathcal{B}=\left\{V_{n} \mid n \in \mathbb{N}\right\}$ be a countable filter base for \mathcal{U}_{θ} consisting on radial and circled θ-neighborhoods.

Let $N_{0} \in \mathbb{N}$ such that $1-\frac{1}{N_{0}} \geq \sup _{0 \leq x<1} T(x, x)$. We can assume that $\frac{1}{N_{0}}<\delta$, so that $T(x, y) \leq x y$, for all $x, y \leq \frac{1}{N_{0}}$, where δ is given by hypothesis.

Before defining ν, recall from [6, Theorem 2] the distribution functions F_{n} (used to define the probabilistic metric F):

$$
F_{n}(x):= \begin{cases}0 & : x \leq 0 \\ 1-1 /\left(N_{0}(n+1)\right), & 0<x \leq \frac{1}{n+1} \\ 1-1 /\left(2 N_{0}(n+1)\right), & \frac{1}{n+1}<x \leq 1 \\ 1-1 /\left(2^{m+1} N_{0}(n+1)\right), & m<x \leq m+1 \quad \text { for } m \in \mathbb{N}\end{cases}
$$

By putting " $\nu_{p}=F_{p, \theta}$ " in [6, Theorem 2]) we define:

$$
\nu_{p}(x):= \begin{cases}F_{0}, & p \notin V_{1} \\ F_{n}, & p \in V_{n} \backslash V_{n+1}, \text { for } n \in \mathbb{N} \\ \varepsilon_{0}, & p \in \cap_{n} V_{n}\end{cases}
$$

We next check that $\left(S, \nu, \tau_{T}, \tau_{T^{*}}\right)$ is a PN space. Axiom (N1) holds because the generalized topology is Fréchet-separable. (N2) holds because all V_{n} 's are radial. (N3) holds as in [6]:

$$
\tau_{T}\left(\nu_{p}, \nu_{q}\right)(x)=\sup _{r+s=x} T\left(\nu_{p}(r), \nu_{q}(s)\right) \leq 1-1 / N_{0} \leq \nu_{p+q}(r+s)=\nu_{p+q}(x)
$$

Finally, for (N4): Let $p \in V_{n}$ and $\lambda \in[0,1]$. Then, λp and $(1-\lambda) p$ are also in V_{n}, because V_{n} is circled. For $x=r+s$, we have to show that

$$
\nu_{p}(x) \leq T^{*}\left(\nu_{\lambda p}(r), \nu_{(1-\lambda) p}(s)\right)
$$

Suppose first that r and s are strictly greater than $1, r, s>1$. Let $a, b, c \in \mathbb{N}$ such that $a<r \leq a+1, b<s \leq b+1$, and $c<r+s \leq c+1$. Then,

$$
\begin{aligned}
\nu_{\lambda p}(r) & =1-1 /\left(2^{a+1} N_{0}(n+1)\right), \\
\nu_{(1-\lambda) p}(s) & =1-1 /\left(2^{b+1} N_{0}(n+1)\right), \\
\nu_{p}(r+s) & =1-1 /\left(2^{c+1} N_{0}(n+1)\right) .
\end{aligned}
$$

By the properties of T it follows that

$$
\begin{aligned}
T^{*}\left(\nu_{\lambda p}(r), \nu_{(1-\lambda) p}(s)\right) & =1-T\left(1-\nu_{\lambda p}(r), 1-\nu_{(1-\lambda) p}(s)\right) \\
& =1-T\left(1 /\left(2^{a+1} N_{0}(n+1)\right), 1 /\left(2^{b+1} N_{0}(n+1)\right)\right) \\
& \geq 1-\left(1 /\left(2^{a+1} N_{0}(n+1)\right)\right) \cdot\left(1 /\left(2^{b+1} N_{0}(n+1)\right)\right) \\
& \geq 1-1 /\left(2^{c+1} N_{0}(n+1)\right) \\
& =\nu_{p}(r+s)=\nu_{p}(x)
\end{aligned}
$$

In the third line we have used that the arguments of T are smaller than $1 / N_{0}$, thus we can apply $T(x, y) \leq x y$. Then, we obtain $\nu_{p} \leq \tau_{T^{*}}\left(\nu_{\lambda p}, \nu_{(1-\lambda p)}\right)$ as desired. The inequality for the other possible values of r and s, is checked in a similar way. We conclude that $\left(S, \nu, \tau_{T}, \tau_{T^{*}}\right)$ is a Menger PN space under T.

It only remains to show that the generalized topology induced by ν is the same as the one given at the beginning. As in [6], we have by construction that

$$
V_{n}=\left\{p \in S \left\lvert\, \nu_{p}\left(\frac{1}{n+1}\right) \geq 1-\frac{1}{N_{0}(n+1)}\right.\right\}
$$

Thus, the filter base $\left\{p \in S \left\lvert\, \nu_{p}\left(\frac{1}{n+1}\right) \geq 1-\frac{1}{n+1}\right.\right\}$ induced by ν is equivalent to \mathcal{B}, hence the proof is finished.

QED
8 Remark. Theorem 6 also holds if instead of assuming $T(x, y) \leq x y$ near the origin, one assumes that T is Archimedean near the origin (i.e. there is a $\delta>0$ such that $0<T(x, x)<x$, for all $0<x<\delta)$. In that case, the distribution function F_{n} can be chosen as:

$$
F_{n}(x):= \begin{cases}0 & : x \leq 0 \\ 1-z & : 0<x \leq \frac{1}{n+1} \\ 1-T(z, z) & : \frac{1}{n+1}<x \leq 1 \\ 1-T^{m+1}(z, z) & : m<x \leq m+1 \quad \text { for } m \in \mathbb{N}\end{cases}
$$

where $z=1 /\left(N_{0}(n+1)\right), T^{1}(x, y)=T(x, y)$ and recursively

$$
T^{r}(x, y)=T\left(T^{r-1}(x, y), T^{r-1}(x, y)\right)
$$

References

[1] C. Alsina, B. Schweizer, A. Sklar: On the definition of a probabilistic normed space, Aequationes Math. 46 (1993), 91-98.
[2] A. Appert, Ky-Fan: Espaces topologiques intermédiaires, Act- Sci. et Ind., Herman, Paris 11211951.
[3] C. Felbin: Finite-dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48 (1992), 239-248.
[4] R. Fritsche: Topologies for probabilistic metric spaces, Fund. Math., 72 (1971), 7-16.
[5] T. L. Hicks, P.L. Sharma: Probabilistic metric structures. Topological classification, Review of Research Faculty of Science, Univ. of Novi Sad, 14 (1984), 43-50.
[6] U. HöHLE: Probabilistic metrization of generalized topologies, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 25 (1977), 493-498.
[7] I. M. James: Introduction to Uniform Spaces, Cambridge Univ. Press, Cambridge, U. K., 1990.
[8] B. Lafuerza-Guillén, J.A. Rodríguez-Lallena, C. Sempi: A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl., 232 (1999), 183-196.
[9] B. Lafuerza Guillén, J.A. Rodríguez Lallena, C. Sempi: Normability of Probabilistic Normed Spaces, Note di Matematica, Vol. 29(1), in press, to appear in (2009).
[10] B. Lafuerza-Guillén, J. L. Rodríguez: Boundedness in generalized Šerstnev PN spaces, math.PR/0408207.
[11] B. Morrel, J. Nagata: Statistical metric spaces as related to topological spaces, General Top. Appl. 9 (1978), 233-237.
[12] D. H. Mushtari, A. N. Šerstnev: On methods of introducing a topology in random metric spaces, Izv. vyssh. Uch. Zav. Math., 655 (1966), 99-106.
[13] A. N. Šerstnev: On the notion of a random normed space, Dokl. Akad. Nauk SSSR, 149 (2)(1963), 280-283 (English translation in Soviet Math. Dokl., 4 (1963), 338-390).
[14] B. Schweizer, A. Sklar: Probabilistic Metric Spaces, Dover Publication, Inc. Mineola, New York, 2005.
[15] R. M. TARDIFF: Topologies for probabilistic metric spaces, Pacific J. Math., 65 (1976), 233-251.
[16] E. Thorp: Generalized topologies for statistical metric spaces, Fund. Math., 51 (1962), 9-21.
[17] Jianzhong Xiao, Xinghua Zhu: On linearly topological structure and property of fuzzy normed linear spaces, Fuzzy Sets and Systems, 125 (2002), 153-161.

[^0]: ${ }^{1}$ In the definition of PN space given in [1] the triangle functions are assumed to be continuous

