
Note di Matematica 29, n. 1, 2009, 135–144.

Generalizing the Kantor-Knuth Spreads

Vikram Jha
Mathematics Dept., University of Iowa,
Iowa City, Iowa 52242, USA;
jha@math.uiowa.edu

Norman L. Johnson
Mathematics Dept., University of Iowa,
Iowa City, Iowa 52242, USA;
njohnson@math.uiowa.edu

Received: 20/05/2008; accepted: 22/05/2008.
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1 Introduction

The Kantor-Knuth semifield spreads are important and unusual in that they
are semifield flock spreads in PG(3, q) that are derivable by a non-regulus net.
Any such conical flock spread in PG(3,K), where K is a field isomorphic to
GF (q) is a union of q reguli that share a common line of PG(3,K). The Kantor-
Knuth conical flock spreads have odd order and may be represented by

x = 0, y = x

[
u γtσ

t u

]
; u, t ∈ GF (q),

where γ is a non-square in GF (q) and σ is a non-trivial automorphism of GF (q),
where x and y are considered 2-vectors over GF (q).

Consider the subspread

Dσ : x = 0, y = x

[
0 γtσ

t 0

]
; t ∈ GF (q),

we may see that this is a derivable net that is not a regulus as follows: Change

bases by the mapping (x, y) → (x, y

[
0 1

γ−1 0

]
) to represent the subspread in

the form

x = 0, y = x

[
tσ 0
0 t

]
; t ∈ GF (q).
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Since the associated matrices form a field isomorphic to GF (q), it follows that
this spread is a derivable partial spread. Let π be a flock spread that admits
a derivable net that is not a regulus net. This is an extremely rare situation
and the second author has shown that the Kantor-Knuth spreads are precisely
the spreads with these properties. A ‘derivable flock of a quadratic cone’ is a
flock whose corresponding conical flock spread admits a derivable partial spread
sharing the line shared by the q reguli.

1 Theorem. [Johnson [5]] If F is a derivable flock of a quadratic cone in
PG(3, q) then q is odd and F is a Kantor-Knuth flock or the flock is linear.

The uniqueness of the Kantor-Knuth spreads suggests that certain general-
izations of these spreads are of interest. In this article, we give a generalization
of the Kantor-Knuth spreads to spreads of larger dimension than 2, that is,
whose spreads are not in PG(3, q). (The reader is directly to the Handbook [2]
or the Foundations’ text [1] for any background not directly given.)

2 Large Dimension Kantor-Knuth Semifield Spreads

We now show how a generalization of the Kantor-Knuth Semifield spreads
might be considered using the idea of the companion semifield. The idea arose
from an article dealing with a spread-only consideration of the dual of a semi-
field. This is as follows: Suppose we have a semifield spread of order pn written
over the prime field GF (p), the rows of an associated matrix spread set are
given in terms of linear transformations Ai of the n-dimensional GF (p)-vector
space. That is, it can be shows that a semifield spread may be represented in
the form:

y = x

⎡⎢⎢⎢⎢⎢⎣
w

wA2

wA2
...

wAt

⎤⎥⎥⎥⎥⎥⎦ , for all t-vectors x over GF (p),

where w is an arbitrary t-vector. The semifield corresponding to the dual semi-
field is then shown to be

x = 0, y = x

[
n∑
i=1

αiAi

]
,

for all t-vectors x over GF (p), for all αi ∈ GF (p), A1 = I.

This result is given in Jha and Johnson [3]. We call the associated spread
the ‘companion semifield’ and refer to the ‘companion semifield construction’.
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Kantor-Knuth Spreads 137

We shall see how this idea actually generates the manner of generalization
of the Kantor-Knuth spreads that we consider here.

Consider GF (q2), q odd and let {1, e}, for e2 = θ, for θ a non-square in
GF (q). Then the involutory automorphism mapping GF (q2) to GF (q2) and
fixing GF (q) pointwise takes u + te to u − te. Represent u + te as the matrix[
u tθ
t u

]
. Then

[
u tθ
t u

]
maps to

[
u −tθ
−t u

]
. Now let γ =

[
γ1 γ2θ
γ2 γ1

]
, be a non-

square in GF (q2), so, γ2 �= 0. Note that[
u −tθ
−t u

] [
γ1 γ2θ
γ2 γ1

]
=

[
uγ1 − tγ2θ uγ2θ − tγ1θ
−tγ1 + uγ2 −tγ2θ + uγ1

]
.

Now take the Kantor-Knuth spread of order q4.

x = 0, y = x

[
w rqγ
r w

]
;

for all w, r ∈ GF (q2). Let r =

[
u tθ
t u

]
and w =

[
k sθ
s k

]
. Then rq =

[
u −tθ
−t u

]
.

Now represent the Kantor-Knuth spread in its 4-dimensional representation.⎡⎢⎢⎣
k sθ uγ1 − tγ2θ uγ2θ − tγ1θ
s k −tγ1 + uγ2 −tγ2θ + uγ1
u tθ k sθ
t u s k

⎤⎥⎥⎦
We consider now the additive spread obtained by the span of the non-

singular linear transformations mapping the 4th row into the 4th, 3rd, 2nd
and 1st rows respectively, call these A4 = I4, A3, A2, A1, respectively. Regard-
ing (t, u, s, k) as t(1, 0, 0, 0) + u(0, 1, 0, 0) + s(0, 0, 1, 0) + k(0, 0, 0, 1), we observe
that

sA3 = s

⎡⎢⎢⎣
0 θ 0 0
1 0 0 0
0 0 0 θ
0 0 1 0

⎤⎥⎥⎦ , (t, u, s, k)

⎡⎢⎢⎣
0 θ 0 0
1 0 0 0
0 0 0 θ
0 0 1 0

⎤⎥⎥⎦ = 3rd row

uA2 = u

⎡⎢⎢⎣
0 0 −γ1 −γ2θ
0 0 γ2 γ1
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ , (t, u, s, k)
⎡⎢⎢⎣
0 0 −γ1 −γ2θ
0 0 γ2 γ1
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ = 2nd row

tA1 = t

⎡⎢⎢⎣
0 0 −γ2θ −γ1θ
0 0 γ1 γ2θ
0 θ 0 0
1 0 0 0

⎤⎥⎥⎦ , (t, u, s, k)
⎡⎢⎢⎣
0 0 −γ2θ −γ1θ
0 0 γ1 γ2θ
0 θ 0 0
1 0 0 0

⎤⎥⎥⎦ = 1st row
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Then

kI4 + sA3 + uA2 + tA1 =

⎡⎢⎢⎣
k sθ −uγ1 − tγ2θ −uγ2θ − tγ1θ
s k uγ2 + tγ1 uγ1 + tγ2θ
u tθ k sθ
t u s k

⎤⎥⎥⎦ .
Now note that[−uγ1 − tγ2θ −uγ2θ − tγ1θ

uγ2 + tγ1 uγ1 + tγ2θ

]
=

[−u −tθ
t u

] [
γ1 γ2θ
γ2 γ1

]
=

[
u −tθ
−t u

] [−1 0
0 1

] [
γ1 γ2θ
γ2 γ1

]
rq
[−1 0
0 1

]
γ.

Hence, we see that the construction maps

[
w rqγ
r w

]
to

⎡⎣w rq
[−1 0
0 1

]
γ

r w

⎤⎦ .
Since the latter spread does not have GF (q2) as kernel, the second spread

cannot be isomorphic to the first.
We may now generalize Kantor-Knuth spreads as follows:

2 Theorem. Let the Kantor-Knuth spread of odd order q4 and kernel
GF (q2) be given by

x = 0, y = x

[
w rqγ
r w

]
;∀w, r ∈ GF (q2),

where γ is a non-square in GF (q2).

(1) Then using the ‘companion semifield spread’ construction, the following
defines a semifield spread of order q4 and kernel GF (q) (which is the dual
of the Kantor-Knuth semifield plane by the main result of [3]).

x = 0, y = x

⎡⎣w rq
[−1 0
0 1

]
γ

r w

⎤⎦
(2) Let σ be an automorphism of GF (qk). Let y = xM be a k-dimensional

subspace of a 2k-dimensional vector space on which there is a Desarguesian
spread Σ

x = 0, y = xm; m ∈ GF (qk)/{0}.
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Kantor-Knuth Spreads 139

Assume further that y = xM is contained in the partial spread of non-zero
squares S =

{
y = xm2; m ∈ GF (qk)/{0}} and is not a component of Σ.

Then the following gives a spread

x = 0, y = x

[
w rσMγ
r w

]
; ∀w, r ∈ GF (qk).

(3) If σ is not q or 1,then the kernel of this spread is GF (q),the right nucleus
is GF (q) ∩ Fixσ, and the middle nucleus is Fixσ.

(4) This spread is the dual of the corresponding Kantor-Knuth spread if and
only if σ is q, or 1.

Note that for the Kantor-Knuth spread above, the kernel is GF (qk),the
right nucleus is Fixσ, and the middle nucleus is Fixσ.

(5) If σ is not q or 1 then the spread

x = 0, y = x

[
w rσMγ
r w

]
; ∀w, r ∈ GF (q2).

is not isomorphic to either the Kantor-Knuth spread, the dual of the
Kantor-Knuth spread or to the transpose of the Kantor-Knuth spread.

Proof. We note that we have the subspread

x = 0, y = x

[
w 0
0 w

]
; ∀w ∈ GF (q2).

Assume that the kernel of the new spread is isomorphic to GF (q2). Let Diag(A,
A,A,A) be an element of the kernel. The kernel leaves each component invariant,
which implies that AwA−1 = w and then it follows that A is in the original field
F isomorphic to GF (q2). But, then it follows that rσMγ must commute with
F . However, since rσ and γ are elements of F , it follows that M must commute
with F , a contradiction. Hence, the kernel is the subfield of F isomorphic to
GF (q).

In order that this spread is the dual of the corresponding Kantor-Knuth
spread, it must be that there is a collineation group with elements (x, y) →
(x, yM), where M belongs to a field isomorphic to GF (q2). It is essentially

immediate that M =

[
v 0
0 v

]
for all v ∈ GF (q2). However, an easy calculation

shows that this implies that

MrM−1 = rσ.
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This implies that σ is either q or q2. Now since[
u tθ
t u

]q
=

[
u −tθ
−t u

]
=

[−1 0
0 1

] [
u tθ
t u

] [−1 0
0 1

]
,

it follows that when σ = q, we obtain this structure is the companion spread
to the Kantor-Knuth spread and is therefore the dual Kantor-Knuth spread by
the main result of [3]):

When σ is not q or 1, clearly the kernel is then GF (q). Consider,[
v 0
0 v

] [
w rσMγ
r w

]
=

[
vw vrσMγ
vr vw

]
,

which clearly implies that vσ = v. So the middle nucleus is Fixσ.

Then [
w rσMγ
r w

] [
[c]ccv 0
0 v

]
=

[
wv rσMγv
rv wv

]
,

implies

rσMγv = (rv)σMγ,

which implies that [−1 0
0 1

]
v = vσ

[−1 0
0 1

]
,

which implies that the right nucleus is GF (q) ∩ Fixσ.

Part (3) follows easily since there are no GF (qk)’s in the right, middle, or
right nuclei. QED

Now consider the spread

x = 0, y = x

⎡⎣w rσ
[−1 0
0 1

]
γ

r w

⎤⎦ ; ∀w, r ∈ GF (q2)

and note that, of course, we have a derivable net

D(w,w) : x = 0, y = x

[
w 0
0 w

]
; ∀w ∈ GF (q2)

that feels like a regulus net, except that projectively the spread is in PG(7, q)
and not in any PG(3, q2). which is generated by the subkernel group, sub-middle
nucleus homology group and the right nucleus homology groups.
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Moreover, change bases by (x, y)→ (x, y

[
0 1
1 0

]
) to represent the spread in

the form:

x = 0, y = x

⎡⎣rσ [−1 0
0 1

]
γ u

u r

⎤⎦ ; ∀r ∈ GF (q2)

now change bases by (x, y) → (x, y

⎡⎣[−1 0
0 1

]
γ−1 0

0 1

⎤⎦) to finally represent the

spread in the form:

x = 0, y = x

⎡⎣ rσ u

u

[−1 0
0 1

]
γ−1 r

⎤⎦ ; ∀u, r ∈ GF (q2).

Consider the matrix

⎡⎢⎢⎣
e 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e

⎤⎥⎥⎦, which maps

x = 0, y = x

⎡⎣ rσ u

u

[−1 0
0 1

]
γ−1 r

⎤⎦
onto

x = 0, y = x

[
e−1 0
0 1

]⎡⎣ rσ u

u

[−1 0
0 1

]
γ−1 r

⎤⎦[1 0
0 e

]
=

⎡⎣ e−1rσ u

u

[−1 0
0 1

]
γ−1 er

⎤⎦ .
Now choose eσ = e−1, if possible. For example, if q = pr and σ = pc, for c
properly dividing r, we obtain ep

c
= e−1 if and only if ep

c+1 = 1. Therefore,
in this setting, we have a left nucleus GF (q), middle nucleus= GF (pc) =right
nucleus and we have a Baer group of order pc+1. Note that since the left nucleus
contains the right/middle nucleus, we see that we have another Baer group of

order pc+1, namely with elements

⎡⎢⎢⎣
1 0 0 0
0 e 0 0
0 0 e 0
0 0 0 1

⎤⎥⎥⎦. Now take the generated group

〈⎡⎢⎢⎣
f 0 0 0
0 e 0 0
0 0 e 0
0 0 0 f

⎤⎥⎥⎦ ; f, e of orders dividing pc + 1

〉
.
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Now in the special case when q = pce, where e is even, there is a subkernel group
of order p2c − 1. Multiplication of this kernel will produce a double-Baer group
of order pc + 1. All of this may be generalized as follows.

3 Theorem. Representing the spread as

x = 0, y = x

[
rσMγ u

u r

]
; ∀r ∈ GF (q2),

and σ : x→ xp
c
, for q = pce, and e > 1, we have a double-Baer group of order

pe + 1.

Then we see that have another derivable net

D(rσ ,r) : x = 0, y = x

[
rσ 0
0 r

]
; ∀u, r ∈ GF (q2).

Now consider that we derive either of the derivable nets mentioned. We are now
deriving a semifield plane of order q4. It follows by Johnson [8], that the full
collineation of any of these derived spreads is the inherited group.

If we derive D(w,w), we note by Johnson [6], that since the net is a regu-

lus net, the Baer subplanes are GF (qk)-subspaces. Hence, when we derive this
spread, the kernel is still GF (q). The right and middle nuclei associated homol-
ogy groups leave invariant this derivable net, so they are inherited as collineation
groups isomorphic to the multiplicative subgroups of GF (q) ∩ Fixσ and Fixσ,
respectively.

When we derive the D(rσ ,r) derivable net, we note that the Baer subplanes
are Fixσ-subspaces, by Johnson [6]. Hence, the kernel of the derived plane now
becomes GF (q) ∩ Fixσ, since the remaining components are GF (q)-subspaces.
Therefore, we have proved the following about the derived spreads.

4 Theorem. Assume that σ is not q or 1. In the spread

x = 0, y = x

[
w rσMγ
r w

]
; ∀w, r ∈ GF (qk),

there are two derivable nets D(w,w) and, after a basis change, D(rσ ,r).

(1) Derivation of D(w,w) produces a translation plane with kernel GF (q) that
admits affine Baer groups isomorphic to the multiplicative subgroups of
GF (q) ∩ Fixσ and Fixσ, respectively.

(2) Derivation of D(rσ ,r), representing the spread as

x = 0, y = x

[
rσ u

uMγ−1 r

]
; ∀u, r ∈ GF (qk).
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produces a translation plane with kernel GF (q) ∩ Fixσ, and also admits
Baer groups isomorphic to the multiplicative subgroups of GF (q) ∩ Fixσ
and Fixσ, respectively.

If σ : x → xp
c
, for pce = q, and e > 1, we admit symmetric affine homology

groups of orders pc + 1.

5 Definition. We call any of the spreads

x = 0, y = x

[
w rσMγ
r w

]
; ∀w, r ∈ GF (qk),

‘generalized Kantor-Knuth spreads’.

Of course, the question is, are there any new semifield spreads that may be
constructed in this way. Letting Σ be the associated Desarguesian affine plane of
order qk, then we ask what are the various subspaces y = xM that lie within the
net of non-zero squares? Of course, if y = xM is y = xq

i
z, where z is a square

does have this property. For this set of subspaces, it is not difficult to verify
that these generalized Kantor-Knuth spreads are the Knuth generalized Dickson
semifields (see e.g. Handbook of Finite Translation Planes [2]). In general, any
such y = xM has the general form

∑kr
i=1 fix

pi , where qk = prk, for p a prime
and fi ∈ GF (qk). Then the following defines the corresponding semifield spread:

(x, z) ◦ (r, w) = (x, z)

[
w rσMγ
r w

]
= (xw + zr, xrσMγ + zw)

= (xw + zr,
kr∑
i=1

fi(xr
σ)p

i

+ zw).

So if y = xM = xq
i
z, we see the semifield is a Knuth generalized Dickson

semifield.

6 Problem. Show that there exist subspaces y = xM within the subspread
of non-zero squares of a Desarguesian affine plane of order qk that are not of
the form y = xq

i
z.
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