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Abstract. We introduce the notion of rotation hypersurfaces of Sn
× R and H

n
× R and

we prove a criterium for a hypersurface of one of these spaces to be a rotation hypersurface.
Moreover, we classify minimal rotation hypersurfaces, flat rotation hypersurfaces and rotation
hypersurfaces which are normally flat in the Euclidean resp. Lorentzian space containing S

n
×R

resp. Hn
× R.
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1 Introduction

In [3] the classical notion of a rotation surface in E
3 was extended to rota-

tion hypersurfaces of real space forms of arbitrary dimension. Motivated by the
recent study of hypersurfaces of the Riemannian products Sn × R and H

n × R,
see for example [2], [4], [5] and [6], we will extend the notion of rotation hyper-
surfaces to these spaces. Starting with a curve α on a totally geodesic cylinder
S
1 × R resp. H1 × R and a plane containing the axis of the cylinder, we will

construct such a hypersurface and we will compute its principal curvatures.
Moreover, we will prove a criterium for a hypersurface of Sn × R resp. Hn × R

to be a rotation hypersurface and we will end the paper with some applications,
including a classification of minimal rotation hypersurfaces of Sn×R and H

n×R.

iThis research was supported by a Research Grant 1.5.134.05N of the Research Foundation
- Flanders (FWO).

iiJ. Fastenakels is a research assistant of the Research Foundation - Flanders (FWO).
iiiJ. Van der Veken is a postdoctoral researcher supported by the Research Foundation -

Flanders (FWO).

Note di Matematica
Note Mat. 29 (2009), n. 1, 41-54
ISSN 1123-2536, e-ISSN 1590-0932
DOI 10.1285/i15900932v29n1p41
http://siba-ese.unisalento.it, © 2009 Università del Salento
__________________________________________________________________



42 F. Dillen, J. Fastenakels, J. Van der Veken

2 Preliminaries

Denote by E
n+2 the Euclidean space of dimension n + 2 and by L

n+2 the
Lorentzian space of dimension n + 2, equipped with the metric ds2 = −dx21 +
dx22 + · · ·+ dx2n+2. In order to study the spaces Sn ×R and H

n ×R, we use the
following models:

S
n × R = {(x1, . . . , xn+2) ∈ E

n+2 | x21 + x22 + · · ·+ x2n+1 = 1},
H
n × R = {(x1, . . . , xn+2) ∈ L

n+2 | − x21 + x22 + · · ·+ x2n+1 = −1, x1 > 0}.
From now on, we denote by M either S or H and we set ε = 1 in the first case
and ε = −1 in the second case. Remark that ξ = (x1, . . . , xn+1, 0) is a normal
vector field on M

n × R with 〈ξ, ξ〉 = ε and that the Levi Civita connection ∇̃
of Mn × R is given by

∇̃XY = DXY + ε〈XMn , YMn〉ξ,
where D is the covariant derivative in E

n+2 resp. Ln+2 and XMn and YMn denote
the projections of X and Y on the tangent space to M

n. The curvature tensor
R̃ of Mn × R is given by

〈R̃(X,Y )Z,W 〉 = ε(〈YMn , ZMn〉〈XMn ,WMn〉 − 〈XMn , ZMn〉〈YMn ,WMn〉).
Let f : Mn → M

n × R be a hypersurface with unit normal N . Let T denote
the projection of ∂

∂xn+2
on the tangent space to Mn and denote by θ an angle

function such that cos θ = 〈N, ∂
∂xn+2

〉. This means that

∂

∂xn+2
= f∗T + cos θ N.

Let ∇ and R denote the Levi Civita connection and the Riemann Christoffel
curvature tensor of Mn respectively and let S be the shape operator of the
hypersurface. Then the equations of Gauss and Codazzi are given by

〈R(X,Y )Z,W 〉 = 〈SX,W 〉〈SY, Z〉 − 〈SX,Z〉〈SY,W 〉 (1)

+ε(〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉
+〈Y, T 〉〈W,T 〉〈X,Z〉+ 〈X,T 〉〈Z, T 〉〈Y,W 〉
−〈X,T 〉〈W,T 〉〈Y, Z〉 − 〈Y, T 〉〈Z, T 〉〈X,W 〉),

∇XSY −∇Y SX − S[X,Y ] = ε cos θ(〈Y, T 〉X − 〈X,T 〉Y ), (2)

where X,Y, Z,W are vector fields tangent to Mn. Moreover, by using the fact
that ∂

∂xn+2
is parallel in M

n × R, we obtain

∇XT = cos θ SX, X[cos θ] = −〈SX, T 〉. (3)

sibauser
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3 Definition and calculation of the principal curva-

tures

Consider a three-dimensional subspace P 3 of En+2 resp. Ln+2, containing
the xn+2-axis. Then (Mn × R) ∩ P 3 = M

1 × R. Let P 2 be a two-dimensional
subspace of P 3, also through the xn+2-axis. Denote by I the group of isometries
of En+2, resp. Ln+2, which leave M

n ×R globally invariant and which leave P 2

pointwise fixed. Finally, let α be a curve in M
1×R which does not intersect P 2.

1 Definition. The rotation hypersurface Mn in M
n ×R with profile curve

α and axis P 2 is defined as the I-orbit of α.
Remark that rotation hypersurfaces of Sn × R are foliated by spheres. Ro-

tation hypersurfaces of Hn × R are foliated by spheres if P 2 is Lorentzian, by
hyperbolic spaces if P 2 is Riemannian and by horospheres if P 2 is degenerate.
It is clear from the definition that the velocity vector of α is proportional to T ,
unless α lies in a plane orthogonal to ∂

∂xn+2
, in which case T = 0.

We will now construct an explicit parametrisation for a rotation hypersurface
Mn. To do this, we distinguish four cases. In all cases we will assume that P 3

is spanned by ∂
∂x1

, ∂
∂xn+1

and ∂
∂xn+2

.

1 Case. M
n = S

n

We may assume that P 2 is spanned by ∂
∂x1

and ∂
∂xn+2

. First, we consider

the case that the profile curve is not a vertical line on S
1 × R. Then it can be

parametrized as follows:

α(s) = (cos(s), 0, . . . , 0, sin(s), a(s)) ,

for a certain function a. Since α should not intersect P 2, one has to choose the
parametrisation interval such that sin(s) never vanishes.

An explicit parametrisation of the rotation hypersurface is given by

f(s, t1, . . . , tn−1) = (cos(s), sin(s)ϕ1(t1, . . . , tn−1), . . . , sin(s)ϕn(t1, . . . , tn−1), a(s)),

where ϕ = (ϕ1, . . . , ϕn) is an orthogonal parametrisation of the unit sphere

S
n−1(1) in E

n, i.e. ϕ2
1 + · · · + ϕ2

n = 1 and ∂ϕ1

∂ti
∂ϕ1

∂tj
+ · · · + ∂ϕn

∂ti
∂ϕn

∂tj
= δij

∥∥∥ ∂ϕ∂ti∥∥∥2.
Remark that

∂f

∂s
= (− sin(s), cos(s)ϕ1, . . . , cos(s)ϕn, a

′(s)),

∂f

∂ti
= (0, sin(s)

∂ϕ1

∂ti
, . . . , sin(s)

∂ϕn
∂ti

, 0),

ξ = (cos(s), sin(s)ϕ1, . . . , sin(s)ϕn, 0).
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Hence the unit normal vector field N on Mn, tangent to M
n × R is given by

N =
1√

1 + a′(s)2
(− sin(s)a′(s), cos(s)a′(s)ϕ1, . . . , cos(s)a

′(s)ϕn,−1).

We will now compute the shape operator S of Mn. Observe that for X,Y
tangent to Mn

〈SX, Y 〉 = 〈−∇̃XN,Y 〉 = 〈∇̃XY,N〉 = 〈DXY,N〉,
where ∇̃ is the Levi Civita connection of Mn×R and D that of En+2, resp. Ln+2.
Now using the fact that ϕ is an orthogonal parametrisation of a unit sphere, we
find

〈S ∂f

∂ti
,
∂f

∂tj
〉 = 〈 ∂2f

∂ti∂tj
, N〉 = 0,

〈S ∂f

∂ti
,
∂f

∂s
〉 = 〈 ∂2f

∂ti∂s
,N〉 = 0.

This implies that the basis
{
∂f
∂s ,

∂f
∂t1

, . . . , ∂f
∂tn−1

}
diagonalizes S. We compute

the principal curvatures as follows:

λ = 〈S∂f

∂s
,
∂f

∂s
〉 1

〈∂f∂s , ∂f∂s 〉

= 〈∂
2f

∂s2
, N〉 1

1 + a′(s)2

= − a′′(s)
(1 + a′(s)2)3/2

,

μi = 〈S ∂f

∂ti
,
∂f

∂ti
〉 1

〈 ∂f∂ti ,
∂f
∂ti
〉

= 〈∂
2f

∂t2i
, N〉 1

sin(s)2
∥∥∥ ∂ϕ∂ti∥∥∥2

= − a′(s) cot(s)
(1 + a′(s)2)1/2

.

Since μi is independent of i, we denote it by μ.
If α is a vertical line α(s) = (cos(c), 0, . . . , 0, sin(c), s), where c is a real

constant such that sin(c) �= 0, we obtain from an analogous calculation

λ = 0,

μ = − cot(c).
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We conclude that the shape operator S has at most two distinct eigenvalues
and if there are exactly two, one of them has multiplicity 1 and the corresponding
eigenspace is spanned by T .

2 Case. M
n = H

n and P 2 is Lorentzian
In this case we may assume again that P 2 is spanned by ∂

∂x1
and ∂

∂xn+2
.

Starting with the curve

α(s) = (cosh(s), 0, . . . , 0, sinh(s), a(s)) ,

with s �= 0, we can perform exactly the same calculation as in case 1, yielding

λ = − a′′(s)
(1 + a′(s)2)3/2

,

μ = − a′(s) coth(s)
(1 + a′(s)2)1/2

.

If α is a vertical line α(s) = (cosh(c), 0, . . . , 0, sinh(c), s), where c �= 0 is a
real constant, we obtain

λ = 0,

μ = − coth(c).

3 Case. M
n = H

n and P 2 is Riemannian
We may suppose that P 2 is spanned by ∂

∂xn+1
and ∂

∂xn+2
and that the profile

curve is given by

α(s) = (cosh(s), 0, . . . , 0, sinh(s), a(s)) .

Remark that α does not intersect P 2.
An explicit parametrisation of the rotation hypersurface is given by

f(s, t1, . . . , tn−1) = (cosh(s)ϕ1(t1, . . . , tn−1), . . . , cosh(s)ϕn(t1, . . . , tn−1), sinh(s), a(s)),

where ϕ = (ϕ1, . . . , ϕn) is an orthogonal parametrisation of the hyperbolic space
H
n−1(−1) in L

n. This means −ϕ2
1+ϕ2

2+ · · ·+ϕ2
n = −1, ϕ1 > 0 and −∂ϕ1

∂ti
∂ϕ1

∂tj
+

· · ·+ ∂ϕn

∂ti
∂ϕn

∂tj
= δij

∥∥∥ ∂ϕ∂ti∥∥∥2. Hence we obtain

∂f

∂s
= (sinh(s)ϕ1, . . . , sinh(s)ϕn, cosh(s), a

′(s)),

∂f

∂ti
= (cosh(s)

∂ϕ1

∂ti
, . . . , cosh(s)

∂ϕn
∂ti

, 0, 0),

ξ = (cosh(s)ϕ1, . . . , cosh(s)ϕn, sinh(s), 0),

N =
1√

1 + a′(s)2
(sinh(s)a′(s)ϕ1, . . . , sinh(s)a

′(s)ϕn, cosh(s)a′(s),−1).
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It turns out that the basis
{
∂f
∂s ,

∂f
∂t1

, . . . , ∂f
∂tn−1

}
diagonalizes the shape op-

erator and the principal curvatures can be computed in the same way as above,
yielding

S =

⎛⎜⎜⎜⎝
λ

μ
. . .

μ

⎞⎟⎟⎟⎠ ,

with ST = λT and

λ = − a′′(s)
(1 + a′(s)2)3/2

,

μ = − a′(s) tanh(s)
(1 + a′(s)2)1/2

.

In the case that α is a vertical line α(s) = (cosh(c), 0, . . . , 0, sinh(c), s), with
c ∈ R, we have

λ = 0,

μ = − tanh(c).

4 Case. M
n = H

n and P 2 is degenerate
In this case we work with the following pseudo-orthonormal basis for Ln+2:

e1 =
1√
2

(
∂

∂x1
+

∂

∂xn+1

)
, en+1 =

1√
2

(
∂

∂x1
+

∂

∂xn+1

)
, ek =

∂

∂xk

for k ∈ {2, . . . , n, n + 2} and we may assume that P 2 is spanned by en+1 and
en+2. Remark that 〈e1, e1〉 = 〈en+1, en+1〉 = 0 and 〈e1, en+1〉 = 1. If α is not a
vertical line, we may assume that it is given by

α(s) = (s, 0, . . . , 0,− 1

2s
, a(s))

with respect to the basis {e1, . . . , en+2}.
In [3], it was proven that the group I consists in this case of transformations

of the form A(t,i), with t ∈ R, i ∈ {2, . . . , n}, whose action on α is given by

A(t,i)α(s) = (s, 0, . . . , 0, ts︸︷︷︸
i

, 0, . . . , 0,− 1

2s
− s

t2

2
, a(s)).

This means that a parametrisation of the rotation hypersurface is given by

f(s, t2, . . . , tn) = (s, st2, . . . , stn,− 1

2s
− s

2

n∑
i=2

t2i , a(s)).

sibauser
Linea



Rotation hypersurfaces 47

Hence we obtain

∂f

∂s
= (1, t2, . . . , tn,

1

2s2
− 1

2

∑
t2i , a

′(s)),

∂f

∂ti
= (0, 0, . . . , 0, s︸︷︷︸

i

, 0, . . . , 0,−sti, 0),

ξ = (s, st2, . . . , stn,− 1

2s
− s

2

∑
t2i , 0),

N =
1√

1
s2

+ a′(s)2
(sa′(s), sa′(s)t2, . . . , sa′(s)tn,

1

2s
a′(s)−

s

2
a′(s)

∑
t2i ,−

1

s
).

The principal curvatures can be computed in an analogous way as before:

λ = − sa′(s) + s2a′′(s)
(1 + s2a′(s)2)3/2

,

μ = − sa′(s)
(1 + s2a′(s)2)1/2

,

where λ has, in general, multiplicity 1 and T is an eigenvector with eigenvalue
λ.

If α is a vertical line α(s) = (c, 0, . . . , 0,− 1
2c , s), with c ∈ R, we obtain

λ = 0,

μ = −1.

4 Criterium

We prove the following criterium for a hypersurface of M
n × R to be a

rotation hypersurface:

2 Theorem. Take n ≥ 3 and let f : Mn →M
n × R be a hypersurface with

shape operator

S =

⎛⎜⎜⎜⎝
λ

μ
. . .

μ

⎞⎟⎟⎟⎠ ,

with λ �= μ and suppose that ST = λT . Assume moreover that there is a func-
tional relation λ(μ). Then Mn is an open part of a rotation hypersurface.

sibauser
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Proof. Let Dλ and Dμ be the distributions spanned by the eigenspaces of
λ and μ respectively. These distributions are involutive. For Dλ this is clear,
since it is one-dimensional. For Dμ, we use the equation of Codazzi (2). Take
linearly independent vector fields X and Y in Dμ. Then

S[X,Y ] = ∇XSY −∇Y SX − ε cos θ(〈Y, T 〉X − 〈X,T 〉Y )

= ∇X(μY )−∇Y (μX)

= X[μ]Y − Y [μ]X + μ[X,Y ].

Now X[μ]Y −Y [μ]X ∈ Dμ, whereas (S−μ id)[X,Y ] ∈ Dλ, since (S−λ id)(S−
μ id) = 0. This implies that X[μ] = Y [μ] = (S − μ id)[X,Y ] = 0. Hence Dμ is
involutive and μ is constant along the leaves of Dμ. Due to the relation λ(μ),
we find that λ is also constant along the leaves of Dμ.

Fix a point p ∈ Mn and denote by Mλ(p) and Mμ(p) the leaves of Dλ

and Dμ through p. On a neighbourhood of p in Mn we choose coordinates
(t, u1, . . . , un−1) such that T = ∂

∂t and such that (u1, . . . , un−1) are local coor-

dinates on Mμ(p). Let Ui =
∂
∂ui

for i = 1, . . . , n − 1 and denote by N a unit
normal on the hypersurface.

First we will show thatMμ(p) is totally umbilical in E
n+2, resp. Ln+2. Denote

by D the covariant derivative in E
n+2, resp. Ln+2 and by ∇̃ the Levi Civita

connection of Mn × R. Then

DUi
N = ∇̃Ui

N = −μUi (4)

DTN = ∇̃TN = −λT. (5)

Denoting by λ′ and μ′ the derivatives of λ and μ with respect to t, we find

0 = DTDUi
N −DUi

DTN −D[Ui,T ]N

= DT (−μUi)−DUi
(−λT )

= −μ′Ui − μDTUi + λDUi
T

= −μ′Ui + (λ− μ)DUi
T,

from which

DUi
T =

μ′

λ− μ
Ui. (6)

Finally, we have
DUi

ξ = (Ui)Mn = Ui. (7)

Equations (4), (6) and (7) yield that Mμ(p) is totally umbilical in E
n+2, resp.

L
n+2. This implies that Mμ(p) ⊂ Pn(p), where Pn(p) is an n-dimensional affine

subspace of En+2, resp. Ln+2. We will now show that these subspaces are parallel
for different leaves of Dμ, i.e. if we vary the point p.

sibauser
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Consider the following vector field along Mμ(p):

X =
μ′

λ− μ
N + μT.

Remark that 〈Ui, X〉 = 0 and DUi
X = 0. This means that X is a constant

vector field along Mμ(p), orthogonal to Pn(p). Next consider

Y = ξ +
1

μ
N.

Again, we observe 〈Ui, Y 〉 = 0 and DUi
Y = 0, such that Y is also constant along

Mμ(p) and orthogonal to Pn(p). Since X and Y are linearly independent, we
can consider the plane π(p) spanned by X(p) and Y (p), which is the orthogonal
complement of Pn(p) for every point p ∈ Mn. To prove the parallelism of the
subspaces Pn(p), it suffices to prove the parallelism of the planes π(p). Therefore,
we have to show that DTX and DTY are in the direction of π(p). Remark that
from [T, Ui] = 0, we obtain

DUi
DTX = DTDUi

X = DT 0 = 0,

DUi
DTY = DTDUi

Y = DT 0 = 0.

Thus DTX and DTY are vector fields which are constant along Mμ(p) and
which are orthogonal to Pn(p). This means that they are in the direction π(p),
such that the spaces π(p) and hence Pn(p) are parallel.

Now if we move Pn along Mλ(p), the intersection with M
n × R gives a

rotation hypersurface with axis π. QED

5 Some applications

In this last section, we will first classify the rotation hypersurfaces of Mn×R

which are intrinsically flat. Then we will prove that all rotation hypersurfaces
of M

n × R are normally flat in E
n+2 resp. Ln+2, and to conclude we give a

classification of minimal rotation hypersurfaces of Mn × R.

5.1 Rotation hypersurfaces which are intrinsically flat

Rotation hypersurfaces of En+1 are flat if and only if n = 2 and the profile
curve is an open part of a line. We will now classify flat rotation hypersurfaces
of Sn × R.

sibauser
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3 Theorem. Let Mn be a rotation hypersurface of Sn ×R, with axis P 2 as
above, which is intrinsically flat. Then n = 2 and the profile curve is either a
vertical line on S

1 × R or it is parametrized as follows:

α(s) =

(
cos(s), 0, sin(s), ±

∫ s

s0

√
C cos(σ)2 − 1 dσ

)
(8)

with C ∈ R.

Proof. Let Mn be a flat rotation hypersurface of Sn × R.
If n ≥ 3, the equation of Gauss (1) yields{

λμ+ 1− ‖T‖2 = 0
μ2 + 1 = 0.

(9)

It is clear that this system has no solutions for λ and μ.
For n = 2, the equation of Gauss only yields the first equation of (9), which

is equivalent to

λμ = − cos2 θ. (10)

Using the results from section 3, we see that this equation is satisfied if α is a
vertical line. If α is not a vertical line, and it is parametrized as before, one sees
that the left-hand side of this equation can be rewritten as

λμ =
a′(s)a′′(s) cot(s)
(1 + a′(s)2)2

,

and the right-hand side as

− cos2 θ = sin2 θ − 1 = 〈 ∂

∂xn+2
,

T

‖T‖〉
2 − 1 = 〈 ∂

∂xn+2
,

α′

‖α′‖〉
2 − 1

=
a′(s)2

1 + a′(s)2
− 1 = − 1

1 + a′(s)2
.

This means that equation (10) is equivalent to

(a′(s)2)′ + 2 tan(s)a′(s)2 = −2 tan(s),

for which the general solution is given by

a′(s)2 = C cos(s)2 − 1, C ∈ R.

Thus an explicit parametrisation of α is given by (8). QED

Next, we look at the flat rotation hypersurfaces of Hn × R.
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4 Theorem. Let Mn be a rotation hypersurface of Hn × R, with axis P 2

as above, which is intrinsically flat. If n ≥ 3, then P 2 is either Lorentzian or
degenerate and the profile curve α satisfies the following:

(i) α(s) = (cosh(s), 0, . . . , 0, sinh(s), ± cosh(s) + C), with C ∈ R, if P 2 is
Lorentzian,

(ii) α is a vertical line on H
1 × R if P 2 is degenerate.

If n = 2, then the profile curve α is either a vertical line on H
1 × R or it is

parametrized as follows, with C ∈ R:

(i) α(s) =

(
cosh(s), 0, sinh(s), ±

∫ s

s0

√
C cosh(σ)2 − 1 dσ

)
if P 2 is Loren-

tzian,

(ii) α(s) =

(
cosh(s), 0, sinh(s), ±

∫ s

s0

√
C sinh(σ)2 − 1 dσ

)
if P 2 is Rieman-

nian,

(iii) α(s) =

(
s, 0, − 1

2s
, ±
∫ s

s0

√
C − 1

σ2
dσ

)
, with respect to the basis

{e1, e2, e3, e4} defined above, if P 2 is degenerate.

Proof. Let Mn be a flat rotation hypersurface of Hn × R.

If n ≥ 3, the equation of Gauss (1) yields{
λμ− 1 + ‖T‖2 = 0
μ2 − 1 = 0.

(11)

Remark that the first equation of this system is equivalent to

λμ = cos2 θ. (12)

If α is not a vertical line, it follows immediately from our results in section
3 that the equation μ2 = 1 only has a solution if P 2 is Lorentzian, namely
a(s) = ± cosh(s) +C. The formula for cos2 θ, deduced in the proof of Theorem
3, is still valid and hence it is easy to check that the resulting hypersurface also
satisfies (12) and hence is indeed flat. If α is a vertical line, the equation μ2 = 1
has no solutions if P 2 is non-degenerate. If P 2 is degenerate, both equations of
(11) are satisfied for every vertical line.

If n = 2, the equation of Gauss only yields equation (12). We can then
proceed as in the second part of the proof of Theorem 3. QED
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5.2 Rotation hypersurfaces which are normally flat in E
n+2,

resp. Ln+2

Let Mn be a hypersurface of Mn × R and denote, as above, by N a unit
normal on Mn, tangent to M

n×R, and by ξ a unit normal on M
n×R. Let SN

and Sξ be the corresponding shape operators.
The normal connection of Mn as a submanifold of En+2, resp. Ln+2 is given

by

∇⊥
Xξ = 〈∇⊥

Xξ,N〉N = 〈DXξ,N〉N
= −〈X,

∂

∂xn+2
〉〈N,

∂

∂xn+2
〉N = −〈X,T 〉 cos θ N (13)

and
∇⊥
XN = ε〈∇⊥

XN, ξ〉ξ = −ε〈N,∇⊥
Xξ〉ξ = ε〈X,T 〉 cos θ ξ. (14)

We can now prove the following:

5 Theorem. Let Mn be a rotation hypersurface of Mn × R. Then Mn is
normally flat in E

n+2, resp. Ln+2.

Proof. Denote by R⊥ the normal curvature tensor of Mn as a submanifold
of En+2, resp. Ln+2 and let X and Y be tangent vector fields to Mn, which are
orthogonal to T .

From (13) and (14), we see that R⊥(X,Y ) = 0.
Remark that [T,X] has no component in the direction of T . Indeed, using

(3) we obtain

〈[T,X], T 〉 = 〈∇TX −∇XT, T 〉
= −〈X,∇TT 〉 − 1

2
X[〈T, T 〉]

= −〈X, cos θ λT 〉 − 1

2
X[1− cos2 θ]

= cos θX[cos θ]

= − cos θ〈μX, T 〉
= 0.

This implies that

R⊥(T,X)N = ∇⊥
T∇⊥

XN −∇⊥
X∇⊥

TN −∇⊥
[T,X]N

= −∇⊥
X(ε cos θ sin2 θ N)

= −εX[cos θ sin2 θ]N,

which is zero because θ is constant in all directions orthogonal to T , due to (3).
We conclude that R⊥ = 0. QED
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5.3 Rotation hypersurfaces which are minimal

Minimal rotation surfaces in E
3 are catenoids, whereas minimal rotation

hypersurfaces of En+1 are generalized catenoids in the sense of Blair, see for
example [1]. The following theorem gives all minimal rotation hypersurfaces of
S
n × R.

6 Theorem. Let Mn be a minimal rotation hypersurface of Sn × R, with
axis P 2 as above. Then the profile curve is either the vertical line

α(s) = (0, . . . , 0, 1, s)

or it is given by

α(s) =

(
cos(s), 0, . . . , 0, sin(s),

∫ s

s0

C√
sin(σ)2(n−1) − C2

dσ

)
,

with C ∈ R.

Proof. In order to find minimal rotation hypersurfaces, we have to solve
the equation

λ+ (n− 1)μ = 0. (15)

If α is a vertical line, the equation reduces to cot(c) = 0, which gives the first
profile curve in the theorem. Remark that the resulting rotation hypersurface
is totally geodesic.

If α is not a vertical line, equation (15) becomes

a′′(s)
(1 + a′(s)2)3/2

+ (n− 1)
a′(s) cot(s)

(1 + a′(s)2)1/2
= 0,

which is equivalent to

a′′(s)
a′(s)(1 + a′(s)2)

= −(n− 1) cot(s).

Integrating both sides of the equation yields

a′(s) =
C√

sin(s)2(n−1) − C2
, C ∈ R.

QED

In an analogous way, we can prove the following result.

7 Theorem. Let Mn be a minimal rotation hypersurface of Hn × R, with
axis P 2 as above. Then the profile curve is described as follows, with C ∈ R:
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(i) α(s) =

(
cosh(s), 0, . . . , 0, sinh(s), ±

∫ s

s0

C√
sinh(σ)2(n−1) − C2

dσ

)
if

P 2 is Lorentzian,

(ii) α(s) =

(
cosh(s), 0, . . . , 0, sinh(s), ±

∫ s

s0

C√
cosh(σ)2(n−1) − C2

dσ

)
or

α(s) = (1, 0, . . . , 0, s) if P 2 is Riemannian,

(iii) α(s) =

(
s, 0, . . . , 0, − 1

2s
, ±
∫ s

s0

C

σ
√
σ2(n−1) − C2

dσ

)
, with respect to

the basis {e1, . . . , en+2} defined above, if P 2 is degenerate.
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