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Abstract. We extend to Orlicz spaces with weight a transfer principle of R. Coifman and
G. Weiss, concerning Lp-inequalities on some convolution operators. We also extend to Orlicz
spaces the Birkhoff’s pointwise ergodic theorem, and Lp-inequalities on some maximal oper-
ators, using a transfer argument which follows Wiener and Calderon’s ideas. We get a new
characterization of the so called Dini-condition.
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Introduction

We are interested in the transfer principle of R. Coifman and G. Weiss [5]
in the context of Orlicz spaces with weight. The idea of the transfer principle
is to transfer some properties of convolution operators on classical groups G,
such as locally compact amenable groups, to operators associated with more
general measure spaces. The transfer principle was studied, developped by many
authors, let us mention [1,5]. To be more precise, let k be in L1(G) and Hk be
a convolution operator on G given by

Hkf = k ? f =

∫

G
k(y)f( · y−1)dy.

Let R : u → Ru be a representation of G on some Banach space. Then the
transfered operator H#

k is defined by letting

H#
k =

∫

G
k(y)Ry−1dy.

Many properties of Hk are still valid for H#
k , in particular the preservation of

Lp inequalities [1,5]. In Section 2 of this article we extend these results to Orlicz
spaces with weight.

iResearch of the authors is supported by Banque Nationale de Belgique and a FNRS grant.



168 C. Finet, P. Wantiez

Sections 3 and 4 are devoted to the extension of ergodic theorems to Orlicz
spaces. More precisely, if (M,B, µ) is a measure space and T : M → M is a
measure preserving measurable function, we define, for a measurable function
f and x in M:

Anf(x) =
1

n+ 1

n∑

k=0

f(T kx).

We prove that {Anf(x)} converges almost everywhere on M, for each f in
a reflexive Orlicz space Lφ(M,B, µ). This result extends Birkhoff’s pointwise
ergodic theorem to Orlicz spaces.

We also prove that the operator A∞ defined by

A∞f(x) = sup
n≥0
|Anf(x)|

satisfies a strong type maximal inequality, i.e. there exists a constant C > 0
such that

‖A∞f‖φ ≤ C‖f‖φ (?)

for all f in Lφ(M,B, µ) (where ‖ · ‖φ is the norm defined in Lφ(M,B, µ)), and
an extension of Wiener-Calderon’s transfer principle [4,15] allows us to prove
the result only for Lφ(N).

We also prove an inequality like (?) for other maximal functions which are
defined with respect to integrals of functions in Lφ(R). This last result extends
to Orlicz spaces a result of Hardy and Littlewood for Lp(R) [14, 5.7.5]. Finally
we get a new characterization of the Dini-condition.

1 Orlicz spaces

We start by recalling some well known facts about Orlicz spaces, for more
details, see [12].

Orlicz spaces are defined with respect to an Orlicz function (or “N -function”).
An Orlicz function φ is a function from R to R which can be defined by

φ(u) =

∫ |u|

0
p(t)dt

where p(t) is a right continuous function defined for t ≥ 0, which is nondecreas-
ing, positive for t > 0 and satisfies

p(0) = 0 and p(+∞) = lim
t→+∞

p(t) = +∞.

This definition implies that an Orlicz function is even, continuous, increases on
[0,+∞[ and φ(u) = 0 if and only if u = 0.

The function φ is convex and has the following properties:
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a) lim
u→0

φ(u)
u = 0 and lim

u→+∞
φ(u)
u = +∞,

b) φ(u) ≤ up(u) ≤ φ(2u) for u > 0,

c) φ(u) + φ(v) ≤ φ(u+ v) for u, v > 0.

We will always denote by ψ the complementary function of an Orlicz function
φ. It is defined by

ψ(u) = sup
v≥0
{|u|v − φ(v)}

ψ is itself an Orlicz function and we have

uv ≤ φ(u) + ϕ(v) for all u, v > 0.

Let us recall two definitions.
An Orlicz function φ satisfies the ∆2-condition if there exists a constant

K > 0 and u0 ≥ 0 such that for all u ≥ u0, φ(2u) ≤ Kφ(u).
An Orlicz function φ satisfies the Dini-condition if there exists a constant

C > 0 such that, for all u > 0,
∫ u

0

p(t)

t
dt ≤ Cp(u),

where p(t) is the derivative of φ(t). Note that this condition is equivalent to the
∆2-condition on ψ.

Let (M,B, µ) be a σ-finite measure space, where µ is a measure on M and
B is the set of measurable subsets ofM. A weight w is a function onM which is
positive and finite almost everywhere. The Orlicz space with weight w (denoted
by Lφ(w)) is the space of measurable functions f : M → R such that there

exists λ > 0 with
∫
M
φ
(
f(x)
λ

)
w(x)dµ(x) ≤ 1.

The norm of f in Lφ(w) (denoted by ‖f‖φ,w) is the infimum over all such λ.
We will simply denote by Lφ the Orlicz space with weight the constant

function 1 and the norm is then denoted by ‖ · ‖φ.
For f ∈ Lφ(w), one can also define

‖f‖?φ,w = sup

{∣∣∣∣
∫

M
f(x)g(x)w(x)dµ(x)

∣∣∣∣ ;
∫

M
ψ(g(x))w(x)dµ(x) ≤ 1

}
.

Then ‖ · ‖?φ,w is a norm which is equivalent to ‖ · ‖φ,w.
We also have Hölder inequality for Orlicz spaces, that is:

∣∣∣∣
∫

M
f(x)g(x)w(x)dµ(x)

∣∣∣∣ ≤ C‖f‖φ,w‖g‖ψ,w.

Let us also remark that if φ and ψ satisfy the ∆2-condition then the space Lφ(w)
is reflexive and for all f in Lφ(w),

∫
M φ(f(x))w(x)dµ(x) is finite.
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2 Transfer principles

2.1 R. Coifman – G. Weiss transfer principle

Let us recall this principle. In what follows G will be a locally compact
amenable group, that is: given a compact set K ⊂ G and ε > 0 there exists an
open neighborhood V of the identity having finite left (or right) Haar measure
ν(V ) such that:

ν(V K−1)/ν(V ) ≤ 1 + ε. (1)

Any compact group and any locally compact abelian group is amenable (for
more details about topological amenable groups, see [8,10]).

Let (M,B, µ) be a σ-finite measure space and R be a representation of G
acting on Lp(M) (1 ≤ p <∞). That is R : u→ Ru is continuous as a mapping
from G into the space of bounded operators on Lp(M) and Ruv = RuRv, for all
u, v ∈ G.

We suppose Re, e the identity of G, is the identity operator and the family
{Ru} is uniformly bounded, that is: there is a constant C > 0 such that for all
u ∈ G, for all F ∈ Lp(M),

‖RuF‖p ≤ C‖F‖p.
Let k ∈ L1(G) have compact support and Np(k) be the operator norm of the
convolution operator Hk : f → k ? f on Lp(G). R. Coifman and G. Weiss [5]
proved that the transfered operator

H#
k F =

∫

G
k(u)Ru−1Fdu

is defined on Lp(M), maps into Lp(M) and is bounded with an operator norm
not exceding C2Np(k).

We will extend this result to Orlicz spaces Lφ(w) with weight w. We suppose
that the family {Ru} is uniformly bounded in the following sense: there exists
a constant C > 0 such that for all u ∈ G, for all F ∈ Lφ(w),

∫

M
φ(RuF (x))w(x)dµ(x) ≤

∫

M
φ(CF (x))w(x)dµ(x). (2)

Let us remark that this integral inequality is not equivalent to the norm in-
equality

‖RuF‖φ,w ≤ C‖F‖φ,w.
The norm inequality is weaker than the integral one. The integral inequality is
equivalent to uniform boundedness of a family of norm inequalities. This result
is proved in Orlicz spaces (see [2,3]) and it is still true in Orlicz spaces with
weight. More precisely, we have:



Transfer principles and ergodic theory in Orlicz spaces 171

1 Proposition. Let (M,B, µ) be a σ-finite measure space, L(M) be the
measurable functions on M and T be a quasi-linear operator on L(M). Then,

∫

M
φ(Tf(x))w(x)dµ(x) ≤

∫

M
φ(Cf(x))w(x)dµ(x) (1’)

if and only if, for all ε > 0,

‖Tf‖φ,wεdµ ≤ C‖f‖φ,wεdµ,

where

‖f‖φ,wεdµ = inf

{
λ > 0,

∫

M
φ

(
f(x)

λ

)
w(x)εdµ(x) ≤ 1

}
.

Let k ∈ L1(G), we denote by Nφ(k) the infimum of C > 0 such that for all
F ∈ Lφ(G) ∫

G
φ(k ? F (g))dg ≤

∫

G
φ(CF (g))dg.

And more generally we denote, for a sequence {kj} in L1(G), by Nφ({kj}) the
smallest constant C > 0 such that for all F ∈ Lφ(G),

∫

G
φ(sup

j
|kj ? F |(g))dg ≤

∫

G
φ(CF (g))dg.

We will prove the following transfered theorem:

2 Theorem. The transfered operator H#
k is defined on Lφ(w), maps into

Lφ(w) and satisfies the following inequality:

∫

M
φ(H#

k F (x))w(x)dµ(x) ≤
∫

M
φ(C2Nφ(k)F (x))w(x)dµ(x) (3)

In particular,

‖H#
k ‖φ,w ≤ C2Nφ(k).

Before starting the proof, let us mention that we do not assume any more
that k has compact support. Since following [1] we get a general lemma (for a
sequence {kj} in L1(G)) that will be also useful later.

3 Lemma. Let {kj}nj=1 be a finite sequence in L1(G) and (kj,p)
∞
p=1 be a

sequence in L1(G) for each j such that ‖kj,p − kj‖1p→∞−→ 0 then,

Nφ({kj,p})p→∞−→Nφ({kj}).
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Suppose we have proved (3) for k ∈ L1(G) with compact support. Take an
arbitrary k ∈ L1(G). Then there is a sequence {kp} with compact support that

tends to k in L1(G). By Lemma 3, we also have Nφ(kp)
p→∞−→Nφ(k). For each p

we have the corresponding inequality (3). Or equivalently, for all ε > 0,

‖H#
kp
F‖φ,wεdµ ≤ C2Nφ(kp)‖F‖φ,wεdµ

≤ C2Nφ({kp})‖F‖φ,wεdµ
Then, if we prove that the norm ‖H#

kp
F −H#

k F‖φ,wεdµ tends to zero, we have

done. We will show that the equivalent norm ‖H#
kp
F −H#

k ‖?φ,wεdµ tends to zero.
By definition of this norm, we have

‖H#
kp
F −H#

k F‖?φ,wεdµ

= sup

{∣∣∣∣
∫

M

(
H#
kp
−H#

k

)
(F )gwεdµ

∣∣∣∣ ,
∫

M
ψ(g)wεdµ ≤ 1

}

= sup

{∣∣∣∣
∫

M

[∫

G
(kp − k)(u)Ru−1F (x)du

]
g(x)w(x)εdµ(x)

∣∣∣∣ ,
∫

M
ψ(g)wεdµ ≤ 1

}

sup

{∫

G
|(kp − k)(u)|

[∫

M
|Ru−1F (x)| |g(x)|w(x)εdµ(x)

]
du,

∫

M
ψ(g)wεdµ ≤ 1

}

≤
∫

G
|(kp − k)(u)| · ‖Ru−1F‖?φ,wεdµdu

≤ A‖kp − k‖1‖F‖?φ,wεdµ
And we then get the inequality (3) for k ∈ L1(G).

We now give the proof of Theorem2. This proof follows the one of [5].

Proof. Let k ∈ L1(G) with compact support K. Let us mention as, for
F ∈ Lφ(w), ∫

G
‖k(u)Ru−1F‖φ,wdu ≤ C‖k‖1‖F‖φ,w,

the function u→ k(u)Ru−1F is Bochner integrable and

‖H#
k F‖φ,w ≤ C‖k‖1‖F‖φ,w.

Let V be an open neighborhood satisfying (1). If we take in (2), RuH
#
k F instead

of F and u−1 instead of u, we get
∫

M
φ(H#

k F (x))w(x)dµ(x) ≤
∫

M
φ(CRuH

#
k F (x))w(x)dµ(x).
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Integration on V gives :

ν(V )

∫

M
φ(H#

k F (x))w(x)dµ(x) ≤
∫

V

[∫

M
φ(CRuH

#
k F (x))w(x)dµ(x)

]
du.

In fact, RuH
#
k F (x) =

∫
G k(g)Rug−1F (x)dg. Put χ the characteristic function

of the set V C−1, then the second member of the preceding inequality is by
permuting integrations,

∫

M

[∫

G
φ

(
C

∫

G
k(g)Rug−1F (x)χ(ug−1)dg

)
du

]
w(x)dµ(x)

≤
∫

M

[∫

G
φ (CNφ(k)RgF (x)χ(g)dg)

]
w(x)dµ(x)

≤ ν(V C−1)

∫

M
φ
(
C2Nφ(k)F (x)

)
w(x)dµ(x)

And we then get the inequality (3). QED

2.2 N. Asmar, E. Berkson, T.A. Gillepsie transfer of strong type
maximal inequalities

N. Asmar, E. Berkson, P.A. Gillepsie [1] do not consider only one single
operator but a sequence of operators in Lp, see [1]. We will recall the situation
they consider. Let us consider (M,B, µ) an arbitrary measure space.

Let us recall two definitions. An operator T in Lp(M) is separation-preser-
ving (respectively, positivity-preserving) provided that whenever f, g ∈ Lp(M)
and f · g = 0 µ a.e. (respectively, f ∈ Lp(M) and f ≥ 0 µ a.e.) we have
(Tf)(Tg) = 0 µ a.e. (respectively, Tf ≥ 0 µ a.e.).

LetG be a locally compact abelian group andR : u→ Ru be a representation
of G in Lp(M) (1 ≤ p < ∞) such that the family {Ru} is uniformly bounded
and let us put C = sup{‖Ru‖, u ∈ G}. Suppose that, for each u ∈ G, Ru is
separation-preserving.

Let {kj} be any (finite or infinite) sequence in L1(G) such that Np({kj}) is
finite, whereNp({kj}) is the smallest constant a > 0 such that, for all f ∈ Lp(G),

‖ sup
j
|kj ? f | ‖p ≤ a‖f‖p.

Let us denote by H# the maximal operator corresponding to the operators

{H#
kj
}. That is H# = sup

j

∣∣∣H#
kj

∣∣∣.
With these notations and conditions, N. Asmar, E. Berkson, T.A. Gillepsie

got the following result:
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4 Theorem ( [1]). The maximal operator H# has a norm satisfying:
∥∥∥H#

∥∥∥
Lp(M)

≤ C2Np({kj}).

Let us mention that this theorem ceases to be true without separation-pre-
serving assumption, see [1] for an example.

Let us consider the Lφ-extension. Our conditions will be the following: G
is a locally compact abelian group, {kj} is a sequence in L1(G), (M,B, µ) is a
σ-finite measure space and for each u ∈ G, Ru is positivity-preserving in Lφ(w)
and the family {Ru} satisfies the condition of uniform boundedness (2). We get:

5 Theorem. The maximal operator H# satisfies the following integral in-
equality:

∫

M
φ
(
H#F (x)

)
w(x)dµ(x) ≤

∫

M
φ
(
C2Nφ({kj})F (x)

)
w(x)dµ(x). (4)

And in particular,
‖H#‖φ,w ≤ C2Nφ({kj}).

Proof. We only give the beginning of the proof, the rest follows the proof
of Theorem 2 and [1]. By monotone convergence we need only to consider a
finite sequence {kj}nj=1. We can also suppose that kj has compact support: let

kj ∈ L1(G), then there exists kj,p ∈ L1(G) with compact support tending to kj
in L1(G). By Lemma 3, we also have:

Nφ({kj,p})p→∞−→Nφ({kj}).

Suppose we have for each p the inequality (4).
We have, for all ε > 0:
∥∥∥∥ max

1≤j≤n
H#
kj ,p

F − max
1≤j≤n

H#
kj
F

∥∥∥∥
φ,wεdµ

≤
n∑

j=1

∥∥∥H#
kj ,p

F −H#
kj
F
∥∥∥
φ,wεdµ

And as we did previously, we get :
∥∥∥H#

kj ,p
F −H#

kj
F
∥∥∥
φ,wεdµ

p→+∞−→ 0.

And we get the inequality (4) for k.
Let now kj be arbitrary in L1(G).

H#
kj
R−uF =

∫

G
kj(v)R−v−uF dv

=R−u

[∫

G
kj(v)R−vF dv

]
.
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As by positivity-preserving of Ru,

|RuF | =
∣∣Ru(F+ − F−)

∣∣ ≤ RuF+ +RuF
− = Ru|F |.

∣∣∣H#
kj
R−uF

∣∣∣ ≤ R−u
∣∣∣H#

kj
F
∣∣∣. And again by positivity-preserving:

max
1≤j≤n

∣∣∣H#
kj
R−uF

∣∣∣ ≤ R−u

(
max

1≤j≤n

∣∣∣H#
kj
F
∣∣∣
)
.

Take RuF instead of F to get :

∫

M
φ

(
max

1≤j≤n

∣∣∣H#
kj
F (x)

∣∣∣
)
w(x)dµ(x)

≤
∫

M
φ

(
R−u

(
max

1≤j≤n

∣∣∣H#
kj
RuF (x)

∣∣∣
))

w(x)dµ(x)

≤
∫

M
φ

(
C max

1≤j≤n

(
H#
kj
RuF (x)

))
w(x)dµ(x).

And then follow the proof of [1] to get the required inequality. QED

6 Remark. We suppose here that Ru is positivity-preserving. Then fol-
lowing [1], Ru is also separation-preserving. If we only suppose Ru separation-
preserving, we then need the ∆2-condition for the Orlicz function φ. Under this
condition we get the density of the simple functions in Lφ(w) and we then get
(as in [11]) that if T is a separation-preserving operator in Lφ(w) then there is
a positivity-preserving operator |T | in Lφ(w) such that

∀f ∈ Lφ, |Tf | = |T |(|f |)µa.e.

It suffices to follow the proof of [1] to get (4).

2.3 Applications

2.3.1 Hilbert transforms

For a function f ∈ Lp(T), 1 < p < ∞, let us consider the following Hilbert
transforms:

(a) the truncated Hilbert transform

(
H(N)f

)
(x) =

∫

1
N
≤|t|≤N

f(x− t)
t

dt = (k ? f)(x),

with the kernel k(t) = 1
tχ{ 1

N
≤|s|≤N}(t),
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(b) the maximal Hilbert transform

(H#f)(x) = sup
N>0

∣∣(H(N)f
)

(x)
∣∣ ,

(c) the conjugate function operator

f̃(x) = P.V.

∫ 1

0
f(x− s) cotg(πs)ds.

All these operators are bounded in Lp(T), for all p (1 < p < ∞) and of weak
type (1, 1) [5]. Using interpolation, when Lφ(T) is reflexive we can deduce that
all these operators are then bounded in Lφ(T). We transfer them and using the
different transfer principles we get the expected inequalities for the correspond-
ing transfered operators. To be more precise: let φ be an Orlicz function. We
denote by Rφ an Orlicz function generating an Orlicz space LRφ

such that

Rφ(u) = u

∫ u

1
t−2φ(t)dt, u ≥ 1.

(In what follows the definition of Rφ, 0 ≤ u < 1 does not play any role). Suppose
the function φ satisfies the ∆2-condition, then Rφ also satisfies the ∆2-condition
and LRφ

⊂ Lφ ( [7,16]). Let us recall the following Marcinkiewicz’s interpolation
type theorem

7 Theorem ( [16]). Let G be of finite measure and T be a quasi-linear
operator which is bounded in Lp(G), for all 1 < p <∞ and of weak-type (1,1).
Let φ satisfy the ∆2-condition. Then T is defined on LRφ

and T is bounded as
an operator from LRφ

to Lφ.

It can be showed that in fact
(
Lφ(G) = LRφ

(G)
)

if and only if (Lφ(G) is
reflexive) [7]. Then if Lφ(G) is reflexive the operator T is bounded in Lφ(G).

2.3.2 Integral transform with radial kernels

A function is said to be radial if it is invariant under the action of rotations of
Rn. Let k be a continuous radial function in Rn (n ≥ 3) with compact support.
In particular k has the form k(y) = k0(|y|), where k0 is a function defined on
the non negative reals. Let Hk be the operator mapping f ∈ Lφ(Rn) into k ? f .
It can be shown [5] that

Hkf(x) =
ωn−1

ωn−2

∫

SO(n)
du

[∫

Rn−1

|y|k(y)f(x− uy)dy

]
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where SO(n) is the group of rotations of Rn, ωn−1 is the “surface area” of the
unit sphere Σn−1 ⊂ Rn.

The locally compact abelian group G is Rn−1, the representation of G de-
pends on u ∈ SO(n) and is given by (Ruyf)(x) = f(x+uy), when f is a function
defined on M = Rn. The inequality (2) is satisfied. If the kernel h(y) = |y|k(y)
induces an operator f → h ? f on Lφ(G) satisfying: ∃C > 0 ∀f ∈ Lφ(Rn−1),

∫

Rn−1

φ(h ? f(g))dg ≤
∫

Rn−1

φ(Cf(g))dg.

Then

∫

Rn

φ(Hkf(x))dx =
ωn−1

ωn−2

∫

Rn

φ

[∫

SO(n)
du

[∫

Rn−1

h(y)f(x− uy)dy

]]
dx

As
∫
SO(n) du = 1, by Jensen’s inequality and Fubini’s theorem,

∫

Rn

φ (Hkf(x)) dx ≤ ωn−1

ωn−2

∫

SO(n)

[∫

Rn

φ

[∫

Rn−1

h(y)f(x− uy)dy

]
dx

]
du.

Applying Theorem 2, we get

∫

Rn

φ (Hkf(x)) dx ≤ ωn−1

ωn−2

∫

Rn

φ(Cf(x))dx.

We have therefore established

8 Theorem. Suppose k0 is a continuous function on R+ having compact
support. If h(y) = |y|k0(|y|) satisfies, for all f ∈ Lφ(Rn−1):

∫

Rn−1

φ

[∫

Rn−1

h(y)f(z − y)dy

]
dz ≤

∫

Rn−1

φ(Cf(y))dy.

Then, for all f ∈ Lφ(Rn):

∫

Rn

φ

[∫

Rn

k0(|y|)f(x− y)dy

]
dx ≤

∫

Rn

φ(Cf(y))dy. (5)

By iteration we can reduce the question of Lφ-boundedness of radial convo-
lutions on Rn to one-dimensional problem: let k be the kernel then the operator
f → k ? f satisfies (5) in Lφ(Rn) provided h(t) = |t|n−1k0(|t|) gives us a convo-
lution on Lφ(R) satisfying the corresponding integral inequality.
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3 Maximal ergodic theorem and transference from
the integers

Let (M,B, µ) be a σ-finite measure space, and let T :M→M be a measure
preserving measurable function onM. Then we can define a linear operator on
the Orlicz space Lφ = Lφ(M), which we also denote by T , by setting for all f
in Lφ

(Tf)(x) = f(Tx).

We have, as T is measure preserving, for all f in Lφ

‖Tf‖φ = ‖f‖φ

We use the notations Anf (for n a natural number) and A∞f respectively
for the operators defined by:

Anf(x) =
1

n+ 1

n∑

k=0

f(T kx)

A∞f(x) = sup
n≥0
|Anf(x)|

We will prove that the maximal operator A∞ satisfies a strong type inequality,
i.e. there exists a constant C > 0 such that

‖A∞f‖φ ≤ C‖f‖φ.

First we will prove such an inequality in the particular case of Lφ(N). Let τ be
the translation on N i.e. τ(n) = n+ 1.

We put, for F ∈ Lφ(N) and n ∈ N:

{
αnF (i) = 1

n+1

∑n
k=0 F (i+ k)

α∞F (i) = supn≥0 |αnF (i)|

We get

9 Proposition. Suppose that φ satisfies the Dini-condition. There exists a
constant C > 0 such that, for all F in Lφ(N):

+∞∑

i=0

φ(α∞F (i)) ≤
∞∑

i=0

φ(CF (i)).

In particular,
‖α∞F‖φ ≤ C‖F‖φ.
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Proposition 9 extends to Orlicz spaces the Lp-inequality

+∞∑

i=0

(α∞F (i))p ≤
+∞∑

i=0

(CF (i))p

which can be proved using a result of Hardy and Littlewood [9] and the following
well-known inequality for p > 1:

n∑

i=0

(
a0 + a1 + · · ·+ ai

i+ 1

)p
≤
(

p

p− 1

)p n∑

i=0

api (6)

Before starting the proof, let us mention a few facts.

Let a0, . . . , an be a finite sequence of positive numbers, let s be a non de-
creasing function defined on R, and let k = k(i) be a function from N to N such
that k(i) ≤ i for all i in N. We denote

A(i, k, a) =
ak + ak+1 + · · ·+ ai

i− k + 1
,

and let a?0, a
?
1, . . . , a

?
n be the sequence a0, a1, . . . , an arranged in decreasing order.

Then following [9]

n∑

i=0

s(A(i, k, a)) ≤
n∑

i=0

s(A(i, 0, a?)).

We will prove the following result, which extend inequality (6) to Orlicz spaces.

10 Lemma. Suppose that φ satisfies the Dini-condition. There exists a con-
stant C > 0 such that for all finite sequences a0, a1, . . . , an of positive numbers:

n∑

i=0

φ

(
a0 + a1 + · · ·+ ai

i+ 1

)
≤

n∑

i=0

φ(Cai).

Proof. To simplify the notations, we denote

f : {0, . . . , n} → R+ : i→ ai

and

Mf(i) =
a0 + a1 + · · ·+ ai

i+ 1
.
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Then we have

n∑

i=0

φ(Mf(i)) =

n∑

i=0

∫ Mf(i)

0
p(t)dt (p(t) is the derivative of φ)

=
n∑

i=0

∫ +∞

0
p(t) · χ[0,Mf(i)](t)dt

=
n∑

i=0

∫ ∞

0
p(t)χ[t,+∞[(Mf(i))dt

=

∫ ∞

0
p(t)(#{0 ≤ i ≤ n : Mf(i) ≥ t})dt

But we have

# {0 ≤ i ≤ n : Mf(i) ≥ t} =

#

{
0 ≤ i ≤ n : i+ 1 ≤ 1

t

i∑

k=0

f(k)

}
≤ 1

t

n∑

k=0

f(k). (7)

For a > 0, a ∈ R, we denote

λf (a) ={0 ≤ i ≤ n : f(i) ≥ a}
λcf (a) ={0, 1, . . . , n} \ λf (a)

(f)a =fχλc
f
(a) + aχλf (a)

(f)a =(f − a)χλf (a)

and we have f = (f)a + (f)a, (f)a ≤ a and then M(f)a ≤ a.
Fix 0 < r < 1, we have

Mf(i) =M(f)rt(i) +M(f)rt(i)

≤M(f)rt(i) + rt for all t > 0.

We obtain:

#{0 ≤ i ≤ n : Mf(i) ≥ t} =#{0 ≤ i ≤ n : M(f)rt(i) ≥ (1− r)t}

≤ 1

(1− r)t
n∑

k=0

(f)rt(k) by (7)

=
1

(1− r)t
n∑

k=0
f(k)≥rt

(f(k)− rt)
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≤ 1

(1− r)t
n∑

k=0
f(k)≥rt

f(k).

We use this last inequality to obtain

n∑

i=0

φ(Mf(i)) ≤ 1

1− r

∫ +∞

0

p(t)

t




n∑

k=0
f(k)≥rt

f(k)


 dt

=
1

1− r

∫ +∞

0

p(t)

t

(
n∑

k=0

f(k)χλf (rt)(k)

)
dt

=
1

1− r
n∑

k=0

[
f(k)

∫ +∞

0

p(t)

t
χλf (rt)(k)dt

]

=
1

1− r
n∑

k=0

[
f(k)

∫ f(k)
r

0

p(t)

t
dt

]

By the Dini-condition on φ, we get there exists C ≥ 1 such that

n∑

i=0

φ(Mf(i)) ≤ 1

1− r
n∑

k=0

[
f(k)Cp

(
f(k)

r

)]

≤ Cr

1− r
n∑

k=0

φ

(
2f(k)

r

)

as up(u) ≤ φ(2u) for all u > 0.
In particular, this last inequality is true for r = 1

2 and we obtain

n∑

i=0

φ(Mf(i)) ≤ C
n∑

k=0

φ(4f(k)) ≤
n∑

k=0

φ(4Cf(k)),

by convexity of φ. QED

Proof of Proposition 9. Let F ∈ Lφ(N). As α∞F ≤ α∞|F |, we can
suppose F ≥ 0. Without lost of generality, we can also suppose that there exists
N ∈ N such that F (n) = 0 for n > N .

First note that for n ≥ N − i, we have

αnF (i) ≤ αN−iF (i),

so we have
α∞F (i) = sup

0≤n≤N−i
αnF (i).
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Now, we have to prove

N∑

i=0

φ

(
sup

0≤n≤N−i
αnF (i)

)
≤

N∑

i=0

φ(CF (i))

for a constant C > 0 independant of the choice of F .
Following our notations, let us take ai = F (N − i) for i = 0, 1, . . . , N , s = φ

and k = k(i) the least value of the indice k such that

sup
0≤n≤N−i

AnF (i) = AkF (i).

We then obtain

N∑

i=0

φ

(
sup

0≤n≤N−i
AnF (i)

)
=

N∑

i=0

φ (A (N − i, k, a))

≤
N∑

i=0

φ (A (N − i, 0, a?))

=
N∑

i=0

φ

(
a?0 + a?1 + · · ·+ a?i

i+ 1

)

We then use Lemma 10 to obtain

N∑

i=0

φ

(
sup

0≤n≤N−i
AnF (i)

)
≤

N∑

i=0

φ(Ca?i ) =
N∑

i=0

φ(Cai) =
N∑

i=0

φ(CF (i))

where C is a constant independant of F . QED

Now we get the general result by transfering from the integers. Note that
our Transfer Principle extends to Orlicz spaces the transfer principle of Wiener
and Calderon ( [4], [15]).

11 Proposition. (Transfer Principle). Suppose that there exists C > 0 such
that for all F in Lφ(N)

+∞∑

i=0

φ (α∞F (i)) ≤
+∞∑

i=0

φ(CF (i)).

Then we have for all f in Lφ(M)

∫

M
φ (A∞f(x)) dµ(x) ≤

∫

M
φ(Cf(x))dµ(x).
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Proof. Let f ∈ Lφ. As A∞f ≤ A∞|f |, we can suppose f ≥ 0.

Fix J ∈ N, we note

MJf(x) = sup
0≤n≤J

Anf(x).

For N ∈ N, N � J , and x ∈ X, we set

F (n) =

{
f(Tnx) if n ≤ N
0 if n > N

If i ≤ N − J , we then have

sup
0≤n≤J

αnF (i) = sup
0≤n≤J

Anf(T ix) = MJf(T ix)

and

n−J∑

i=0

φ
(
MJf(T ix)

)
=

n−J∑

i=0

φ

(
sup

0≤n≤J
αnF (i)

)

≤
+∞∑

i=0

φ(CF (i)) =

N∑

i=0

φ(CF (i)) =

N∑

i=0

φ(Cf(T ix))

We integrate over M and use the T -invariance of the measure µ to obtain:

(N − J + 1)

∫

M
φ(MJf(x))dµ(x) ≤ (N + 1)

∫

M
φ(Cf(x))dµ(x)

or ∫

M
φ(MJf(x))dµ(x) ≤ N + 1

N − J + 1

∫

M
φ(Cf(x))dµ(x).

Let N → +∞, we obtain:

∫

M
φ(MJf(x))dµ(x) ≤

∫

M
φ(Cf(x))dµ(x).

Then we let J → +∞ and apply Fatou’s lemma to obtain

∫

M
φ(A∞f(x))dµ(x) ≤

∫

M
φ(Cf(x))dµ(x).

QED

We then get
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12 Theorem. Suppose that φ satisfies the Dini-condition. Then there exists
a constant C > 0 such that, for all f in Lφ

∫

M
φ(A∞f(x))dµ(x) ≤

∫

M
φ(Cf(x))dµ(x).

In particular,

‖A∞f‖φ ≤ C‖f‖φ.
Let us mention that this result is more general than the one obtained by

interpolation. Indeed, D. Gallardo [8] proved that if φ and ψ satisfy the ∆2-
condition the every operator of weak-type (1,1) and of type p (1 < p < ∞) is
defined on Lφ, it has values in Lφ and it satisfies the integral inequality (1’).

The operator A∞ is of weak-type (1,1) and of type p (1 < p < ∞) [11].
Thus, when φ and ψ satisfy the ∆2-condition then we directly get the result by
interpolation.

4 Pointwise ergodic theorem

In this section, we will extend Birkhoff’s ergodic theorem to Orlicz spaces,
in the case where these spaces are reflexive. We use the same notations as in
the previous section.

If the Orlicz space Lφ is reflexive, then we can deduce, from the mean ergodic
theorem of Von Neumann, that the sequence of operators {An}n≥0 converges in
the strong topology of operators, as n→ +∞ [6, chapter VIII.5].

Further, we have the decomposition

Lφ = F ⊕ (I − T )(Lφ)

where F = {f ∈ Lφ : Tf = f} and (I − T )(Lφ) is the closure of the range of
I − T (I is the identity operator) [6, chapter VIII.5].

We will then prove the following result, which extend Birkhoff’s ergodic
theorem to Lφ.

13 Theorem. Suppose that φ and ψ satisfy the ∆2-condition, and let f ∈
Lφ. Then the sequence {Anf(x)}n≥0 converges almost everywhere on M.

Proof. As Lφ is reflexive, we have

Lφ = F ⊕ (I − T )(Lφ).

If f ∈ F , then Anf = f for all n ≥ 0, and the sequence {Anf(x)}n≥0 converges
trivially for all x in M.
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If f ∈ (I − T )(Lφ), we can then write

f = g − Tg where g ∈ Lφ.

Then, we have

Anf =
1

n+ 1

(
g − Tn+1g

)

and so

|Anf(x)| ≤ 1

n+ 1

(
|g(x)|+

∣∣g(Tn+1x)
∣∣) .

As φ is even, convex and increases on [0,+∞[, we have (if n ≥ 1):

φ (Anf(x)) ≤ 2

n+ 1
φ

(
1

2
|g(x)|+ 1

2

∣∣g(Tn+1x)
∣∣
)

and again by convexity of φ and the definition of T :

φ (Anf(x)) ≤ 1

n+ 1

(
(φ ◦ g)(x) +

(
Tn+1(φ ◦ g)

)
(x)
)
.

But, if φ satisfies the ∆2-condition, then we have φ ◦ f ∈ L1 for all f in Lφ.
We can then use Birkhoff’s ergodic theorem for L1 to deduce

1

n+ 1

(
(φ ◦ g)(x) +

(
Tn+1(φ ◦ g)

)
(x)
) n→+∞−→ 0

almost everywhere on M, and in particular

φ (Anf(x))
n→+∞−→ 0

almost everywhere on M.
As φ is continuous, increases on [0,+∞[ and satisfies φ(u) = 0 if and only if

u = 0, we obtain

Anf(x)
n→+∞−→ 0

almost everywhere on M.
So we have now proved that {Anf(x)}n≥0 converges almost everywhere on

M, for f in a dense subset of Lφ.
On the other hand, we also have for all n ≥ 0, and for all x in M

φ(Anf(x)) ≤ 1

n+ 1

n∑

k=0

φ (|f(x)|) .

So we have for all x in M,

sup
n≥0

φ(Anf(x)) ≤ sup
n≥0

(An(φ ◦ f))(x)
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As φ ◦ f ≥ 0 and φ ◦ f ∈ L1, we have

sup
n≥0

(An(φ ◦ f))(x) < +∞

almost everywhere on M [6, chapter VIII.5].
As φ is continuous and increases on [0,+∞[, we can deduce that

sup
n≥0
|Anf(x)| < +∞

almost everywhere on M.
We can then use a theorem of Banach (see [6, IV.11.2]) to deduce that

{Anf(x)}n≥0 converges almost everywhere on M, for all f in Lφ. QED

5 Other maximal functions

The maximal functions we will consider here involve the integrals of functions
defined on the real line, and were introduced by Hardy and Littlewood [9]. We
denote by (R,B,m) the measure space consisting of the real line R, with the
Lebesgue measure m and the measurable sets B.

Given a Lebesgue measurable function f on R, the maximal functions M+f
and M−f are defined respectively by

M+f(x) = sup

{
(u− x)−1

∣∣∣∣
∫ u

x
f(t)dt

∣∣∣∣ : u > x

}

M−f(x) = sup

{
(x− u)−1

∣∣∣∣
∫ x

u
f(t)dt

∣∣∣∣ : x > u

}

We also set

Mf(x) = max
(
M+f(x),M−f(x)

)

= sup

{∣∣∣∣(u− x)−1

∫ x

u
f(t)dt

∣∣∣∣ : u 6= x

}

Our aim is to extend Hardy-Littlewood’s result to the Orlicz space Lφ(R,B,m).
Our main result of this section is

14 Theorem. If φ satisfies the Dini-condition, then there exists a constant
A > 0 such that for all f ∈ Lφ

i)
∫
R

φ(M+f(x))dx ≤
∫

R
φ(Af(x))dx

ii)
∫
R

φ(M−f(x))dx ≤
∫

R
φ(Af(x))dx
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iii)
∫

R
φ(Mf(x))dx ≤

∫
R
φ(2Af(x))dx

In particular,

1) ‖M+f‖φ ≤ A‖f‖φ

2) ‖M−f‖φ ≤ A‖f‖φ

3) ‖Mf‖φ ≤ 2A‖f‖φ

Our proof uses ideas of the proof of theorem (5.7.5) in [14], and needs the
following two lemmas.

For a Lebesgue measurable function f , we denote, for a > 0, a ∈ R:

λf (a) = {x ∈ R : f(x) > a}.

15 Lemma ( [14], 5.2.2). Let f be a Lebesgue measurable function, and
let E ⊂ R, E ∈ B. Also, let θ be a real valued function, which is absolutely
continuous on each finite interval [0, α[, α > 0, of the real line. If θ(x) = 0 if
and only if x = 0, and if either θ′ ∈ L1(R+), where R+ = {x ∈ R : x ≥ 0}, or
θ′ ≥ 0, or θ′ ≤ 0 on R+, then

i) m(λf (a)) ≤ 1
θ(a)

∫
λf (a) θ(|f(x)|)dx for all a > 0;

ii)
∫
E θ(|f(x)|)dx =

∫∞
0 m(E ∩ λf (t))θ′(t)dt.

16 Lemma ( [14], 5.7.4). Let f be a non-negative Lebesgue measurable
function on R. Then for 0 < k < 1 and t > 0

i) mλM+f (t) ≤ t−1(1− k)−1
∫
λf (kt) f(y)dy

and similarly with M− in place of M+, and

ii) mλMf (t) ≤ 2t−1(1− k)−1
∫
λf (kt) f(y)dy

Proof of Theorem 14. Let f ∈ Lφ, without lost of generality, we assume
f ≥ 0. We apply Lemma 15 ii) to M+f with E = R and θ = φ (note that an
Orlicz function φ satisfies the conditions of Lemma 15). We obtain:

∫

R

φ(M+f(x))dx =

∫ ∞

0
m(λM+f (t))p(t)dt

(where p(t) = φ′(t)).
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For 0 < k < 1, we have, by Lemma 16:
∫

R

φ(M+f(x))dx ≤
∫ ∞

0
t−1(1− k)−1p(t)

∫

λf (kt)
f(y)dy dt

=(1− k)−1

∫ ∞

0

p(t)

t

∫

R

f(y)χλf (kt)(y)dy dt

=(1− k)−1

∫

R

f(y)

∫ ∞

0

p(t)

t
χλf (kt)(y)dt dy

=(1− k)−1

∫

R

f(y)

∫ f(y)
k

0

p(t)

t
dt dy

By the Dini-condition, there exists a constant C ≥ 1 such that

∫

R

φ(M+f(x))dx ≤C(1− k)−1

∫

R

f(y)p

(
f(y)

k

)
dy

≤Ck(1− k)−1

∫

R

φ

(
2f(y)

k

)
dy

(as up(u) ≤ φ(2u) for all u > 0).
We take k = 1

2 and we use convexity of φ to obtain finally:

∫

R

φ(M+f(x))dx ≤
∫

R

φ(4Cf(y))dy.

The results involving M− and M are proved similarly. QED

17 Remark. Q. Lai proved that the inequality (i) (of Theorem 13) implies
that ψ satisfies the ∆2-condition [13]. We thus get a new characterization of the
Dini-condition:

18 Corollary. φ satisfies the Dini-condition if and only if there exists a
constant A > 0 such that for every f in Lφ,

∫

R

φ(M+f(x))dx ≤
∫

R

φ(Af(x))dx.
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