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Introduction

The basic work of Hörmander [12] and a number of results of other math-
ematicians (see, e.g., Andreotti and Nacinovich [1], Boiti and Nacinovich [3],
Braun [4], Braun, Meise, and Vogt [10], Meise and Taylor [13], and Meise, Tay-
lor, and Vogt [14,16]) showed that certain solvability properties of linear partial
differential operators P (D) with constant coefficients can be characterized in
terms of conditions of Phragmén-Lindelöf type for plurisubharmonic functions
on the complex zero variety V (P ) of the symbol P . For a long time these condi-
tions could be understood in terms of the geometry of V (P ) only for very small
dimensions n. Recently, a geometric characterization of Hörmander’s condition
was derived for polynomials in four variables in [6]. It is based on new necessary
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conditions for the local Phragmén-Lindelöf condition PLloc which reflect the fact
that Phragmén-Lindelöf conditions are inherited by limit varieties. This effect
was used already in [12], but in [6] more refined limit varieties are considered.
The existence and properties of such higher order limit varieties at the origin
were derived in [5].

To extend these results for the local Phragmén-Lindelöf condition to global
conditions on algebraic varieties, one needs to know that such refined limit
varieties also exist in a global sense, approximating the given algebraic variety V
in certain areas near infinity. To formulate this in a more precise way, let V be an
algebraic variety in Cn of pure dimension k, let γ : C \ (B(0, R)∪ ]−∞, 0])→ C

be defined by γ(t) =
∑q

j=−∞ ajt
j/q as a convergent Puiseux series, and fix d ∈

]−∞, 1]. Then, as t tends to infinity, the algebraic varieties Vt := t−d(V − γ(t))
converge in the sense that the currents of integration over Vt converge to a limit
current Tγ,d[V ]. This limit current is either empty or a holomorphic k-chain, the
support of which is an algebraic variety. An explicit description of Tγ,d[V ] in
terms of algebraic equations can be derived using canonical defining functions.
The behavior of the limit varieties is quite similar to the one of those defined
in [5]. In fact, also the proofs are very similar to those in [5]. One might think that
there should be an easy way to reduce everything to the results in the local case.
However, it seems that technical problems do not make it simpler. Therefore,
we have found it necessary to reuse the arguments given in [5]. However, once
the existence of the limit varieties is proved one can obtain the limit varieties
for an algebraic variety V by considering local limit varieties of a transformed
variety Ṽ .

The results of the present paper are used in [8] and [7] as basic tools to
characterize those P ∈ C[z1, z2, z3] for which P (D) admits a continuous linear
right inverse on D′(R3), the space of all distributions on R3 or on D′

ω(R3), the
space of all ω-ultradistributions of Beurling type on R3. Also in [9], the results
are applied to characterize the algebraic surfaces in Cn on which the condition
(SPL), the analogue of the classical Pragmén-Lindelöf Theorem, holds.

1 Preliminaries about currents, k-chains, and con-
vergence

In this section we introduce the basic notions and facts which are needed to
introduce limit varieties and to investigate their properties. Most of the notions
are taken from Chirka [11].

We denote by N the set of positive integers and by Bn(z, r) the ball {w ∈
Cn : |w − z| < r}, where |·| denotes the Euclidean norm. The exponent n may
be omitted.
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1 Definition. An analytic variety in Cn is defined as a closed analytic
subset of some open set Ω in Cn. If V is of pure dimension k, its current of
integration [V ] is defined by

[V ](φ) :=

∫

V
φ,

where φ is any C∞-form of bidegree (k, k) with compact support in Ω.

2 Definition. A holomorphic k-chain in an open set Ω in Cn is a locally
finite sum

W =
∑

ni[Vi]

where ni ∈ Z and [Vi] is the current of integration over an irreducible analytic
subvariety of Ω of dimension k. Recall that the support of W is equal to the
union of those Vi for which ni 6= 0.

3 Definition. The following definitions are taken from Chirka [11], 10.1,
11.1., 12.1, 12.2, and 11.3. Fix an analytic set V ⊂ Cn of pure dimension k,
an affine plane L ⊂ Cn of dimension n − k, and an isolated point z of V ∩ L.
Then there is a neighborhood U of z such that the projection πL : U ∩ V →
πL(U ∩ L) ⊂ L⊥ along L is an analytic cover. Its sheet number in z is denoted
by µz(πL|V ).

The minimum of the sheet numbers µz(πL|V ) when L ranges over all (n−k)-
dimensional affine subspaces for which z is an isolated point of V ∩ L is the
multiplicity µz(V ) of V at z.

If D ⊂ Cn is open and D∩V ∩L is finite, then the intersection index iD(V, L)
is defined as

iD(V, L) :=
∑

w∈D∩L∩V
µw(πL|V ).

If W =
∑m

j=1 nj [Vj ] is a holomorphic k-chain and D∩L∩SuppW is finite, then

iz(W,L) :=
m∑

j=1

njµz(πL|Vj
) and iD(W,L) :=

∑

w∈D∩L∩SuppW

iw(W,L).

iz(W,L) is called sheet number of the holomorphic chain W in z.
If V is a purely k-dimensional algebraic subset or a holomorphic k-chain in

Cn with algebraic support and L ⊂ Cn is an affine (n−k)-dimensional subspace
such that V ∩L is finite and such that the projective closures of V and of L do
not have points at infinity in common, then iCn(V, L) is the degree of V .

4 Remark. Note that, in the setting of Definition 3,

µz(πL|V ) = µz(V )
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whenever L is an affine (n− k)-dimensional subspace of Cn which is transversal
to V at z (see [11], 11.2, Proposition 2).

5 Notation. Let V be an analytic variety of pure dimension k in some open
set Ω in Cn. For a ∈ Ω and ρ > 0 satisfying B(a, ρ) ⊂ Ω let vol(ρ, V, a) denote
the 2k-dimensional Hausdorff measure of V ∩B(a, ρ). If W =

∑
i ni[Vi] is a holo-

morphic k-chain with nonnegative ni, then vol(ρ,W, a) :=
∑

i ni vol(ρ, Vi, a).
We say that a sequence (Wj)j∈N of analytic varieties or holomorphic k-chains

in some open set Ω ⊂ Cn has locally uniformly bounded volume if for all a ∈ Ω
there are ρ,C > 0 such that B(a, ρ) ⊂ Ω and vol(ρ,Wj , a) ≤ C for all j ∈ N.

In order to define convergence of holomorphic k-chains, we recall first the
notion of convergence of a sequence of sets in a metric space (see Chirka [11],
15.5).

6 Definition. A sequence of sets (Vj)j∈N in a metric space is said to con-
verge to a set V if

(i) V coincides with the limit set of the sequence, i.e., consists of all points of
the form limν→∞ xν where xν ∈ Vjν for an arbitrary subsequence (jν)ν∈N

of N, and

(ii) for any compact set K ⊂ V and any ε > 0, there is an index j(ε,K) such
that K belongs to the ε neighborhood of Vj for all j > j(ε,K).

7 Definition. (a) A sequence (Tj)j∈N of currents of bidegree (n−k, n−k)
on some open set Ω in Cn is said to converge to the current T if T (φ) =
limj→∞ Tj(φ) for each C∞-form φ of bidegree (k, k) with compact support
in Ω.

(b) A sequence (Wj)j∈N of holomorphic k-chains in Ω converges to a holomor-
phic k-chain W if

(i) the supports of Wj converge to V := SuppW as subsets of Ω in the
sense of Definition 6, and

(ii) for each regular point a ∈ V and each (n − k)-dimensional plane L
through a, transversal to V at a, there is a neighborhood U of a such
that V ∩ L ∩ U = {a} and such that iU (Wj , L) = ia(W,L) for all
sufficiently large j.

2 Existence of limit varieties

In this section we show that for algebraic varieties V in Cn of pure dimension k,
d ≤ 1, and curves γ which tend to infinity and are given by certain Puiseux
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series, there exist limit currents. They are holomorphic k-chains for which the
support is an algebraic variety in Cn. To do this, we will use the following
notions.

8 Definition. (a) A simple curve γ in Cn is a map γ : C \ (B(0, R) ∪
]−∞, 0])→ Cn for some R > 0 which, for some q ∈ N, admits a convergent
Puiseux series expansion

γ(t) = ξ0t+

q−1∑

j=−∞
ξjt

j/q, |ξ0| = 1,

where for a real number d ≤ 1, td denotes the principal branch of the
power function, i.e., td = |t|d exp (id arg(t)), where −π < arg(t) < π for
t ∈ C\]−∞, 0]. The vector ξ0 will be called the limit vector to γ at infinity.

(b) For a pure k-dimensional algebraic variety V in Cn, a simple curve γ, and
a real number d ≤ 1 we let

Vt := Vγ,d,t := {w ∈ Cn : γ(t) + tdw ∈ V }, t ∈ C \ (B(0, ε) ∪ ]−∞, 0]) .

9 Remark. Note that Vt is a pure k-dimensional algebraic variety in Cn.
The following theorem shows that the currents [Vt] have a limit.

10 Theorem. Let V be a purely k-dimensional algebraic variety in Cn, let γ
be a simple curve, and let d ≤ 1. For the varieties Vt defined in Definition 8(b),
the currents [Vt] converge to a limit current W as t tends to infinity in C \
]−∞, 0]. W is a holomorphic k-chain the support of which is an algebraic variety
in Cn.

Most of this section will be devoted to the proof of Theorem 10.

11 Definition. Under the hypotheses of Theorem 10 we define

Tγ,d[V ] := lim
t→∞

[Vt]

and call it the limit current of order d along the simple curve γ. Furthermore,

Tγ,dV := SuppTγ,d[V ]

will be called the limit variety of V of order d along γ.

To prove the theorem, we will show that the varieties Vt have locally bounded
volume, so that they form a relatively compact family of varieties. Therefore,
the family of varieties will converge if we can prove that there is a unique limit
variety in Cn. This will be shown by studying the convergence of associated
canonical defining functions for Vt. Lastly, it will be clear that the volume of
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the limit variety in a ball of radius r is O(r2k), so that the limit is algebraic by
Stoll’s theorem. The first step is to find a bound for the volumes of the Vt. The
bound is given in the following lemma, which can be proved in the same way as
Lemma 3.4 in [5].

12 Lemma. Let V ⊂ Cn be an algebraic variety of pure dimension k. Then
there are constants C,R > 0 such that

vol(ρ, V, a) ≤ Cρ2k, |a| − ρ > R, a ∈ Cn.

Moreover, there are R0, r0 > 0 such that for each simple curve γ and each d ≤ 1

vol(r, Vt, 0) ≤ Cr2k

whenever t ∈ C \ ]−∞, 0] and |t| > r0.

As in [5], Corollary 3.5, we get from Lemma 3.4, [5], Theorem 2.8, and the
Bishop-Stoll Theorem (see [2], [17]) the following corollary.

13 Corollary. For V , γ, and d ≤ 1 as in Theorem 10 let (tj)j∈N be a
sequence in C \ ]−∞, 0] that tends to ∞.

(1) There exists a subsequence (tjν )ν∈N for which [Vtjν
] converges.

(2) If liml→∞[Vtl ] = W for some holomorphic k-chain W then SuppW is
either empty or an algebraic variety of dimension k. Further, the degree
of W is at most equal to the degree of V .

In the sequel we will complete the proof of Theorem 10 by showing that
there is a unique limit for the convergent subsequences of (Vtj )j∈N. That is,
there exists a holomorphic k-chain W0 such that liml→∞[Vtl ] = W0 whenever
liml→∞[Vtl ] exists for some sequence (tl)l∈N in C \ ]−∞, 0] tending to ∞. To
prove this, fix V as in Theorem 10 and such a sequence (tl)l∈N and assume that
W = liml→∞[Vtl ] exists. To describe W in a way which shows that it does not
depend on the sequence (tl)l∈N we will study the canonical defining function
of V as defined in Whitney [18], Appendix V, Section 7 (see also Chirka [11],
4.2). For that purpose we choose excellent coordinates for the varieties V and W
in the sense of [18], 7.7. This means that we assume that for Cn = Cn−k × Ck

the projection π : z = (z′′, z′) 7→ (0, z′) is proper when restricted to V and W
and satisfies

|z| ≤ C(1 + |π(z)|), z ∈ V,
|z| ≤ C(1 + |π(z)|), z ∈ SuppW.

(1)

In the remainder of this section we will assume these hypotheses, even when
they are not mentioned explicitly.
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Note that in the above situation the (n−k)-dimensional subspace Cn−k×{0}
is transverse to V and SuppW . The existence of such a subspace L follows
from [11], 7.4 Theorem 2.

If B is the branch locus of π : V → Ck, then B and π(B) are algebraic
varieties of dimension at most k − 1 and

π : V \B → Ck \ π(B)

is a covering map. The number of points in a fiber over z ′ ∈ Cn \ π(B) is the
degree of V . We denote it by m. Then we can write

π−1(z′) = {(αi(z′), z′) : 1 ≤ i ≤ m}

where the αi(z
′) = αi(z

′;V ) are all distinct. We will also use the same notation
for z′ ∈ π(B) by repeating each αi(z

′) as many times as indicated by the sheet
number iz(V, L), where z := (αi(z

′), z′) and L := Cn−k × {z′}.
For u,w ∈ Cn−k, let 〈u,w〉 = u1w1 + · · · + un−kwn−k denote the standard

bilinear form. Then the canonical defining function for V is defined as

P (z, ξ;V, π) =
m∏

i=1

〈
z′′ − αi(z′), ξ

〉
. (2)

We will write

P (z, ξ) = P (z, ξ;V ) = P (z, ξ;V, π)

when the missing data are clear from the context. A point z belongs to V if and
only if

P (z, ξ) = 0 for all ξ ∈ Cn−k.

Equivalently, one can expand P as a homogeneous polynomial in ξ,

P (z, ξ) =
∑

|β|=m
Pβ(z)ξβ

and then z ∈ V if and only if Pβ(z) = 0 for all β.

Note that P is a polynomial of degreem in z′′ and a homogeneous polynomial
of degree m in ξ ∈ Cn−k. It is defined at first for z′ 6∈ π(B) but extends, by
the Riemann removable singularity theorem, to be analytic on all of Cn−k ×
Ck × Cn−k. With the convention made about counting the points αi(z

′) with
multiplicity when z′ ∈ π(B), the formula (2) is still valid.



110 R. W. Braun, R. Meise, B. A. Taylor

To express the canonical functions of Vt in a useful form, write γ(t) =
(γ1(t), γ2(t)) where γ2(t) = π(γ(t)) and then

P (γ(t) + tdw, ξ) =
m∏

j=1

〈
γ1(t) + tdw′′ − αj(γ2(t) + tdw′), ξ

〉

= tmd
m∏

j=1

〈
w′′ − βj(w′, t), ξ

〉
, (3)

where

βj(w
′, t) =

αj(γ2(t) + tdw′)− γ1(t)

td
. (4)

The last formula gives the canonical functions for the varieties Vt with respect
to the projection π onto the z′ coordinates up to the scale factor tmd.

The limit chain W of a sequence ([Vtj ])j∈N is not necessarily a current of
integration over an analytic set, so its associated canonical defining function
must take account of multiplicities. To fix the notation, let us suppose that

W = n1[W1] + · · ·+ np[Wp] (5)

where the Wj are the irreducible components of SuppW , and

Wj = {(βj,i(w′), w′) : w′ ∈ Ck, 1 ≤ i ≤ mj} (6)

where mj is the degree of Wj . Then

ν := n1m1 + · · ·+ npmp (7)

is the degree of W , so ν ≤ m by Corollary 13. The canonical defining function
of W is then

P (w, ξ;W ) := P (w, ξ;W,π) :=

p∏

j=1

mj∏

i=1

〈
w′′ − βj,i(w′), ξ

〉nj . (8)

14 Lemma. The canonical defining functions P (z, ξ;V, π) and P (w, ξ;W,π)
are polynomials. The total degrees of P (z, ξ;V, π) and P (w, ξ;W,π) are m and ν,
respectively.

Proof. The function P (z, ξ;V, π) grows at the polynomial rate O(|z, ξ|m)
since by (1) each of the factors grows linearly. Therefore, the claim follows from
Liouville’s theorem. The proof for P (w, ξ;W,π) is completely analogous. QED
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The degree of a limit chain will frequently be smaller than that of Vt. This
occurs when some of the βj(w

′, t) go to infinity while the others converge to
points in SuppW .

The following lemma can be proved literally by the same arguments that
we used in the proof of [5], Lemma 3.7. The main tool is Chirka [11], 12.2,
Proposition 2, which establishes the continuous dependence of the intersection
index of intersecting chains.

15 Lemma. Suppose liml→∞[Vtl ] = W for some holomorphic k-chain W
in Cn.

(i) For all R, ε > 0 there is l0 such that for each l > l0 and each w′ ∈ Ck with
|w′| ≤ R there are exactly ν values of j for which the point (βj(w

′, tl), w′)
lies in the ε-neighborhood of SuppW .

(ii) For each R > 0 there is M(R) > 0 such that for each M > M(R) there
is l0 such that for each l > l0 and each w′ ∈ Ck with |w′| ≤ R there are
exactly m− ν values of j for which the |βj(w′, tl)| ≥M .

(iii) For each w = (w′′, w′) ∈ Cn there is ε0 such that for each 0 < ε < ε0 there
is l0 such that for each l > l0 the number of j with |βj(w′) − w′′| < ε is
exactly equal to the sheet number of W in w, i.e.,

∣∣{j : |βj(w′, tl)− w′′| < ε
}∣∣ =

p∑

j=1

nj
∣∣{i : βj,i(w

′) = w′′}∣∣ for l > l0.

This implies that for fixed w′ the βj can be numbered in such a way that
liml→∞ βj(w

′, tl) exists for 1 ≤ j ≤ ν and |liml→∞ βj(w
′, tl)| = ∞ for j > ν.

The sequence of functions w′ 7→ βj(w
′, tl) converges uniformly on compact sets

(although they may have discontinuities).

In order to derive a description of W from the canonical defining function
P (·, -;V, π) of V we will use the following notation.

16 Definition. For d ≤ 1, q ∈ N, and l ∈ N0 let p be a Laurent series in
the variable t1/q with coefficients in C[w1, . . . , wn, ξ1, . . . , ξl]. Then p is called
d-quasihomogeneous in w and t of d-degree ω if

p(λdw, λt, ξ) = λωp(w, t, ξ), λ > 0.

It is easy to check that p is d-quasihomogeneous of d-degree ω if and only if p
has the form

p(w, t, ξ) =
∑

j+d|β|=ω

∑

α∈Nl
0

aj,β,αw
βtjξα,
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where β runs through Nn
0 and j through a subset of 1

qZ which is bounded from
above.

17 Remark. For P as in (2), γ as in Theorem 10, and d ≤ 1, let

F (w, t, ξ) := P (γ(t) + w, ξ;V, π) =
∑

j,β,α

aj,β,αt
jwβξα (9)

where the sum is the Laurent series expansion of the holomorphic function
F (w, sq, ξ) in s = t1/q, w, ξ, where s runs through a neighborhood of ∞ and
w through a neighborhood of the origin. Collecting all terms in (9) which have
the same d-degree, we can regroup the series as

F (w, t, ξ) = Fω0(w, t, ξ) +
∑

ω<ω0

Fω(w, t, ξ), (10)

where Fω is the d-quasihomogeneous part of d-degree ω of the series and

ω0 = ω0(d, V, π) = max{ω : Fω does not vanish identically}. (11)

Now note that for t ∈ C \
(
B(0, R) ∪ ]−∞, 0]

)
the quasihomogeneity property

implies F (tdw, t, ξ) = tω0Fω0(w, 1, ξ) +
∑

ω<ω0
tωFω(w, 1, ξ) and hence

lim
t→∞

t−ω0P (γ(t) + tdw, ξ;V, π) = lim
t→∞

t−ω0F (tdw, t, ξ) = Fω0(w, 1, ξ), (12)

where the convergence is uniform on compact subsets of Cn × Cn−k.

The following two lemmas can be proved in the same way as Lemma 3.10
and 3.11 in [5].

18 Lemma. Suppose that liml→∞[Vtl ] = W for a holomorphic k-chain W .
Then there is a polynomial Φ on Ck × Cn−k such that

Fω0(ζ ′′, ζ ′, 1, ξ) = P (ζ ′′, ζ ′, ξ;W )Φ(ζ ′, ξ)

for all ζ = (ζ ′′, ζ ′) ∈ Cn−k × Ck, ξ ∈ Cn−k.

19 Lemma. Suppose that liml→∞[Vtl ] = W for a holomorphic k-chain W .
For each w′ ∈ Ck the set {ξ ∈ Cn−k : Φ(w′, ξ) 6= 0} is open and dense in Cn−k.

20 Remark. We do not know any examples where the function Φ actually
depends upon the variable w′.

The following proposition allows us to recover P (·, -;W ) from Fω0 . Hence
it shows the independence of liml→∞[Vtl ] from the sequence (tl)l∈N and thus
completes the proof of the Main Theorem 10.
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21 Proposition. Suppose that liml→∞[Vtl ] = W for some holomorphic k-
chain W . Let

Fω0(w, 1, ξ) =

A∏

a=1

Fa(w, ξ)
λa

be the decomposition of Fω0 into powers of mutually nonproportional irreducible
factors. Let I be the set of all a for which there is w ∈ Cn with Fa(w, ξ) = 0 for
all ξ. Then there is c 6= 0 such that

P (w, ξ;W ) = c
∏

a∈I
Fa(w, ξ)

λa , w ∈ Cn, ξ ∈ Cn−k.

Proof. Recall that Fω0(w, 1, ξ) = P (w, ξ;W )Φ(w′, ξ) by Lemma 18. If a ∈
I, then Fa must be a factor of P , since by Lemma 19 it cannot be a factor of Φ.

For the proof of the other direction fix a such that Fa is a factor of P . Choose
w = (w′′, w′) ∈ Cn and ξ0 ∈ Cn−k with Fa(w, ξ0) 6= 0. Consider Fa(ζ

′′, w′, ξ) as
a polynomial in C[ζ ′′, ξ]. Then it is a factor of

P (ζ ′′, w′, ξ) =

p∏

j=1

mj∏

i=1

〈ζ ′′ − βj,i(w′), ξ〉nj .

In particular, there is a pair (j, i) such that 〈ζ ′′−βj,i(w′), ξ〉 divides Fa(ζ
′′, w′, ξ)

in C[ζ ′′, ξ]. Then Fa(βj,i(w
′), w′, ξ) = 0 for all ξ ∈ Cn−k and hence a ∈ I. QED

Proof of Theorem 10. For each sequence (tl)l∈N in C\
(
B(0, R)∪]−∞, 0]

)

with liml→∞ tl = ∞ the sequence ([Vtl ])l∈N has an accumulation point W by
Corollary 13(a). This accumulation point is unique and does not depend on the
sequence (tl)l∈N by Proposition 21. Hence W is the limit. Its support is either
empty or algebraic of pure dimension k by Corollary 13(b). QED

In [8] we will apply the following corollary of Theorem 10, which is obvious
from the proof of this theorem.

22 Corollary. Let V ⊂ Cn be an algebraic variety of pure dimension k,
let γ be a simple curve, and let d ≤ 1, R > 0, and a sequence (tj)j∈N in
C \

(
B(0, R) ∪ ]−∞, 0]

)
satisfying limj→∞ tj = ∞ be given. Then the varieties

Vtj converge to Tγ,dV in the sense of Meise, Taylor, and Vogt [15], 4.3, as j
tends to infinity.

It is possible to determine the sheet number of Tγ,d[V ] at each point. This
provides a purely geometric description of Tγ,d[V ]. If p is a polynomial in one
variable, we denote by ord0 p the vanishing order of p at the origin.
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23 Proposition. Let w = (w′′, w′) be excellent coordinates for V and for
Tγ,dV as in (1). For w′ ∈ Ck set Lw′ := Cn−k×{w′}. For w ∈ Cn and ξ ∈ Cn−k

consider the polynomial pw,ξ : τ 7→ Fω0(w′′ + τξ, w′, 1, ξ), τ ∈ C. Then

iw(Tγ,d[V ], Lw′) = min{ord0 pw,ξ : ξ ∈ Cn−k}.

Proof. We start with the proof of “≤”.

Choose ξ0 ∈ Cn−k with min{ord0 pw,ξ} = ord0 pw,ξ0 . Assume for convenience
ξ0 = (1, 0, . . . , 0). By Proposition 21, pw,ξ0 is a multiple of

P (w1 + τ, w2, . . . , wn, ξ0;W ) =

p∏

j=1

mj∏

i=1

(w1 + τ − β(1)
j,i (w′))nj ,

where β
(1)
j,i denotes the first coordinate of βj,i as in (8). The definition of βj,i

implies that the order of this polynomial is not smaller than iw(Tγ,d[V ], Lw′).

To prove the converse inequality, use Lemma 19 to choose ξ0 ∈ Cn−k such
that Φ(w′, ξ0) 6= 0 and such that 〈ζ ′′, ξ0〉 6= 〈w′′, ξ0〉 whenever (ζ ′′, w′) ∈ W and
ζ ′′ 6= w′′. Again, we may assume ξ0 = (1, 0, . . . , 0). Then

pw,ξ0(τ) = P (w1 + τ, w2, . . . , wn, ξ0;W ) =

p∏

j=1

mj∏

i=1

(w1 + τ − β(1)
j,i (w′))nj Φ(w′, ξ0).

This shows that ord0 pw,ξ0 = iw(Tγ,d[V ], Lw′) for the special choice of ξ0. The
proposition is proved. QED

Proposition 23 holds under the general hypothesis that the coordinates are
excellent for V and for Tγ,dV (see (1)). When investigating examples, one wants
to be able to see from Fω0 that a given system of coordinates is excellent. So
let us assume that the standard coordinate system is excellent for V , i.e., the
first inequality in (1) is valid. Then it is possible to define the canonical defining
function P (z, ξ;V, π) as in (2) and, for a given simple curve γ and some d ≤ 1,
the expansion of P (γ(t) + z, ξ;V, π) into d-quasihomogeneous terms as in (10)
exists. Hence

Z := {w ∈ Cn : Fω0(w, 1, ξ) = 0 for all ξ ∈ Cn−k}

is defined, and the following holds:

24 Proposition. Assume that dimZ = k and that the standard coordinate
system is excellent for V and for Z. Then it is excellent for Tγ,dV . In particular,
Z = Tγ,dV and Proposition 23 holds in these coordinates.
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Proof. Since(1) is inherited by subvarieties of the same dimension, it suf-
fices to show Tγ,dV ⊂ Z. So fix w ∈ Tγ,dV and an arbitrary sequence (tn)n∈N

with liml→∞ tl = ∞. By Definition 6 there is a sequence (zn)n∈N such that
zn ∈ Vγ,d,tn and limn→∞ zn = w. Fix ξ ∈ Cn−k. Then

0 = t−ω0
n P (γ(tn) + tdnzn, ξ;V, π)

= Fω0(zn, 1, ξ) +
∑

ω<ω0

tω−ω0
n Fω(zn, 1, ξ)

n→∞−−−→ Fω0(w, 1, ξ).

Hence w ∈ Z, and the claim is shown. QED

25 Definition. Let h be a Laurent series in t1/q with coefficients in the
polynomial ring C[w1, . . . , wn]. Fix d ≤ 1 and expand h into a convergent series

h(w, t) =
∑

ω∈Z/q+dZ

hω(w, t)

such that hω is zero or d-quasihomogeneous of d-degree ω in w and t. Then for
ω0 := max{ω : hω 6= 0} the term hω0 is called the d-quasihomogeneous principal
part of h.

If h does not depend on t then the d-quasihomogeneous principal part of h
coincides with the principal part in the classical sense.

In the case of a hypersurface the vanishing ideal is principal, and its generator
replaces the canonical defining function as indicated in the next statement. Since
its proof is the same as the one of [5], Corollary 3.16, we omit it.

26 Corollary. Let p ∈ C[z1, . . . , zn] and let V := {z ∈ Cn : p(z) = 0}.
Furthermore, assume that there is a dense open subset A of V with grad p(z) 6= 0
for all z ∈ A. Let γ be a simple curve and set f(w, t) := p(γ(t) +w). For d ≤ 1
let fω0 be the d-quasihomogeneous principal part of f . Then Tγ,dV = {w ∈ Cn :
fω0(w, 1) = 0}. Let W1, . . . ,WN be the irreducible components of Tγ,dV , and let
nj denote the multiplicity of fω0 at an arbitrary regular point of Wj. Then

Tγ,d[V ] =
N∑

j=1

nj [Wj ].

If f defines the hypersurface V geometrically without generating the corre-
sponding ideal (i.e., if f is not square-free), then it is still possible to determine
the limit variety Tγ,dV .

27 Corollary. Let A ∈ C[z1, . . . , zn] and let V := {z ∈ Cn : A(z) = 0}. Let
γ be a simple curve and define f(w, t) = A(γ(t)+w). For d ≤ 1 let fω0 be the d-
quasihomogeneous principal part of f . Then Tγ,dV = {w ∈ Cn : fω0(w, 1) = 0}.
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Proof. Decompose A in C[z1, . . . , zn]. Thus A = Am1
1 · · ·Aml

l with mutually
nonproportional irreducible polynomials Aj . Then r := A1 · · ·Al satisfies the
hypotheses of Corollary 26, hence Tγ,dV = {w ∈ Cn : gσ0(w) = 0} where gσ0

is the d-homogeneous principal part of g(w, t) := r(γ(t) + w). Let fj,ωj
be the

d-homogeneous principal part of fj(w, t) := Aj(γ(t) + w). It is easy to see that
d-homogeneous principal parts are multiplicative, hence gσ0 = f1,ω1 · · · fl,ωl

and
fω0 = fm1

1,ω1
· · · fml

l,ωl
. Thus the zero sets of gσ0 and of fω0 coincide. QED

3 Properties of the limit varieties

It is convenient to record some simple properties of the limit varieties before
studying specific examples in Section 4. Invariance properties of Tγ,d[V ] are
studied in Proposition 29, while in Proposition 31 the influence of d is discussed.
The main tool in the proof of the latter is the Newton polygon.

In Proposition 35 we show how limit varieties can be interpreted as approx-
imations in conoids.

28 Definition. For an algebraic variety V ⊂ Cn let Vh denote the limit
cone at infinity, i.e., if V denotes the closure of V in Pn, then

Vh =
{
z ∈ Cn : (0 : z1 : · · · : zn) ∈ V

}
.

Here, homogeneous coordinates on Pn are written in the form (z0 : z1 : · · · : zn)
with the understanding that z ∈ Cn corresponds to (1 : z1 : · · · : zn).

29 Proposition. Let V be an algebraic variety in Cn. Let γ be a simple
curve as in Definition 8 with ξ0 as a limit vector at infinity, d ≤ 1, and Tγ,d[V ]
the limit current defined in Definition 11.

(i) If γ̃(t) is another simple curve and if γ̃(t) = γ(t) + o(|t|d), then Tγ,d[V ] =
Tγ̃,d[V ].

(ii) If d = 1, then Tγ,1V = Vh − ξ0; more precisely, if j(w) = ξ0 + w, then
j∗(Tγ,1[V ]) = [Vh].

(iii) If d < 1 and λ ∈ C, then w ∈ Tγ,dV if and only if w + λξ0 ∈ Tγ,dV ; or in
terms of the currents, if j(w) = w + λξ0, then j∗(Tγ,d[V ]) = Tγ,d[V ].

(iv) Tγ,dV is empty if and only if for every relatively compact open set Ω b Cn

there exists r0 > 0 so small that the conoid with core γ, opening expo-
nent d, and profile Ω, with tip truncated at r0, then

Γ(γ, d,Ω, r0) =
⋃

t>r0

(γ(t) + tdΩ) (13)

has empty intersection with V .
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(v) If γ̃ is another simple curve such that γ(]R1,∞[) = γ̃(]R2,∞[) for some
constants R1, R2 > 0, then Tγ,d[V ] = Tγ̃,d[V ] for each d ≤ 1.

Proof. Choose coordinates as in Section 2 and recall the canonical defining
function P (w, ξ) = P (w, ξ;V, π) associated to this choice of coordinates along
with the functions F and Fω0 as in (9) and (11). It follows from the hypotheses
about γ and γ̃, (10), and the quasihomogeneity property of the Fω that

lim
t→∞

t−ω0P (γ̃(t) + tdw, ξ) = lim
t→∞

t−ω0P (γ(t) + td(w + o(1)), ξ)

= lim
t→∞

Fω0((w+o(1)), 1, ξ)+ lim
t→∞

∑

ω<ω0

tω−ω0Fω((w+o(1)), 1, ξ) = Fω0(w, 1, ξ).

Therefore, under the hypothesis of (i), ω0 and the function Fω0 are unchanged
if γ is replaced by γ̃. By Proposition 21 this yields (i).

To prove (ii), we can assume that γ(t) = ξ0t because of part (i). Then
Vt = {w ∈ Cn : ξ0 + w ∈ 1

tV }, so [Vt] is the translate of the current [ 1
tV ] by

−ξ0. Consequently, the same is true of the limit varieties.
To prove (iii), Proposition 21 implies that it suffices to show that Fω0(w +

λξ0, 1, ξ) = Fω0(w, 1, ξ). By analytic continuation, it is enough to prove this
equation for λ > 0. Set t̃ = t+λtd so that t = t̃−λt̃d + o(t̃d). Then since d < 1,

Fω0(w, 1, ξ) = lim
t̃→∞

t̃−ω0P (γ(t̃) + t̃dw, ξ)

= lim
t→∞

(t+ o(t))−ω0P (γ(t) + tdλξ0 + o(td) + (t+ o(t))dw, ξ)

= lim
t→∞

t−ω0P (γ(t) + td(w + λξ0 + o(1)), ξ) + o(1)

= lim
t→∞

Fω0(w + λξ0 + o(1), 1, ξ) + o(1)

= Fω0(w + λξ0, 1, ξ)

so part (iii) is proved.
Part (iv) is a consequence of Lemma 15. The same Lemma and Proposi-

tion 21 show that Tγ,dV is nonempty except when all the points (βj(w
′, t), w′) ∈

Vt diverge to ∞ as t→∞. From the definition of the β’s in (4) we see that this
means exactly that Vt has no points in any conoid Γ(γ, d,Ω, r0) with relatively
compact profile when r0 is sufficiently large.

For the proof of part (v) let ξ0 denote the limit vector to γ at infinity. Since

ξ0 = lim
t→∞

γ(t)

|γ(t)| ,

the limit vectors of γ and γ̃ coincide. We may assume ξ0 = (0, . . . , 0, 1). Let
γn and γ̃n denote the last component of γ and γ̃, respectively. Since both are
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injective, we can define ρ := γ−1
n ◦ γ̃n. Then γ̃ = γ ◦ ρ. Both have the same limit

vector, so it is immediate that limt→∞ ρ(t)/t = 1. Set F̃ (w, t, ξ) := P (γ̃(t)+w, ξ),
and let ω̃0 be defined by (11), but with F replaced by F̃ . Then

F̃ω0(w, 1, ξ) = lim
t→∞

t−ω0P (γ̃(t), ξ)

= lim
t→∞

(
t

ρ(t)

)−ω0

ρ(t)−ω0P (γ(ρ(t), ξ) = Fω0(w, 1, ξ). (14)

Since the right hand side does not vanish, this shows that ω̃0 ≥ ω0. Interchang-
ing γ and γ̃ in the preceding argument, we conclude that ω0 = ω̃0. Now (14)
completes the proof. QED

30 Remark. Part (iv) of Proposition 29 implies that Tγ,1V is never empty
and that Tγ,dV is empty whenever d < 1 and the limit vector of γ at infinity is
not in Vh.

31 Proposition. Let V be an algebraic variety in Cn. Let m be its degree,
let γ(t) be a simple curve as in 8, d ≤ 1, and Tγ,d[V ] the limit current defined
in Definition 11.

(i) There are rational numbers 1 = d1 > d2 > · · · > dp, where 1 ≤ p ≤ m+ 1,
such that Tγ,d[V ] = Tγ,d′ [V ] whenever di > d ≥ d′ > di+1 for 1 ≤ i < p or
dp > d ≥ d′.

We assume in the sequel that the set {1 = d1, . . . , dp} is minimal, i.e., that (i)
holds for no proper subset.

(ii) If di > d > di+1, 1 ≤ i < p, then Tγ,dV is homogeneous and nonvoid.

(iii) If d < dp, then Tγ,dV is homogeneous or empty.

(iv) If p = m+ 1, then Tγ,1[V ] = Tγ,d[V ] for 1 ≥ d > d2.

Proof. The proof relies on the Newton polygon for the function F defined
in (9), i.e., of the series F (w, t, ξ) =

∑
j,β,α aj,β,αw

βtjξα. Let M be the support
of that series, i.e.,

M := {(j, l) : qj ∈ Z, l ∈ N0, aj,β,α 6= 0 for some β with |β| = l and |α| = m}.

For θ ∈ R2 \ {0} and b ∈ R define the closed half plane

Hθ,b := {x ∈ R2 : 〈x, θ〉 ≤ b}.

We call it admissible if θ ∈ [0,∞[ × R and M ⊂ Hθ,b. The Newton polygon N
is the intersection of all admissible half planes. Note that all vertices of N are
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elements of M . In particular, if (j, l) is a vertex of N , then l ∈ N0 and l ≤ m by
Lemma 14. Hence N has at most m+ 1 vertices and at most m edges between
them (plus two unbounded edges).

If we use the convention that the slope of a vertical edge is −∞, then we
claim that s ∈ [−∞,−1] ∪ [0,∞[ whenever s is the slope of an edge of N . To
see this, note first that (0,m) ∈ ∂N . On the other hand, no point of N can be
strictly above the line through (0,m) and (m, 0), since the Puiseux series expan-
sion of γ admits no exponent strictly exceeding 1. Hence the slope of the edge
through (0,m) cannot exceed −1. Since among the edges with negative slope
the nonhorizontal edge through (0,m) admits the largest slope, the intermediate
claim is shown.

Note that the slope 0 is obtained at the unbounded edges only, and let
1 = d1 > d2 > · · · > dp be an enumeration of

{1} ∪
{
−1

s
: s is the slope of a bounded edge of N

}
.

Then p ≤ m+1 is obvious, and if p = m+1, then there is no edge with slope −1.
For d ≤ 1 let ω0(d) := ω0(d, V, π) be as in (11). Then the line

∂H(1,d), ω0(d) = {(j, l) : j + dl = ω0(d)}

has nonempty intersection with M . Fix i with 1 ≤ i < p. Then there is a
pair (j(i), l(i)) (a vertex of the Newton polygon) such that M ∩ ∂H(1,d), ω0(d) =
{(j(i), l(i))} for each d ∈ ]di, di+1[. Hence

Fω0(w, 1, ξ) =
∑

|β|=l(i)

∑

|α|=m
aj(d),β,αw

βξα. (15)

By Proposition 21 this shows the part of (i) dealing with d, d′ > dp. The identity
(15) also implies that Fω0(w, 1, ξ) is homogeneous and thus so is Tγ,dV . If Tγ,dV
were empty, then l(i) = 0, since otherwise 0 ∈ Tγ,dV . However, the construc-
tion of the Newton polygon shows that then Tγ,d′V = ∅ for each d′ ≤ d, thus
contradicting the minimality of the set {d1, . . . , dp}. This completes the proof
of (ii).

To show (iii) and finish the proof of (i), fix d < dp. Then again there is a ver-
tex (j(p), l(p)) of the Newton polygon such that M∩∂H(1,d), ω0(d) = {(j(p), l(p)}
for each d < dp. This shows the independence of Tγ,d[V ] on d < dp and thus
completes the proof of (i). The homogeneity of Tγ,dV follows as before.

If p = m + 1 there is no edge with slope −1, hence the proof of (ii) applies
also in this case. QED

32 Definition. For V and γ as in 31, we call the elements of the minimal
set {d1, . . . , dp} satisfying 31 (i) the critical values for γ and V .
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The following result is a partial converse to 31(iii). We do not know whether
it also holds in the case of arbitrary codimension.

33 Corollary. For A ∈ C[z1, . . . , zn] let V := {z ∈ Cn : A(z) = 0} and let
γ be a simple curve. Let d1, . . . , dp be as in Proposition 31. If 2 ≤ i ≤ p, then
Tγ,di

V is not homogeneous.

Proof. Set f(w, t) := A(γ(t) + w) and let fω0(w, t) =
∑

j+dβ=ω0
aj,βt

jwβ

be the d-quasihomogeneous principal part of f . The proof of Proposition 31
shows that it suffices to show that Tγ,dV is inhomogeneous if −1/d is the slope
of an edge of the Newton polygon. In that case, there are at least two pairs
(j1, l1) 6= (j2, l2) such that, for i = 1, 2, ji + dli = ω0 and aji,βi

6= 0 for some βi
satisfying |βi| = li. Then fω0(w, 1) contains at least the terms aji,βi

wβi , i = 1, 2.
Since they have different degrees, Corollary 27 yields the claim. QED

Finally, we show that limit varieties Tγ,dV approach V like o(|z|d) in conoids
around γ that open like |z|d, d < 1. This is analogous to the well known result
that V approaches Vh like o(|z|) when |z| → ∞.

For z ∈ Cn denote the n-th coordinate by zn and the n-th coordinate of a
simple curve γ by γn.

34 Definition. Let γ : C \
(
B(0, R) ∪ ]−∞, 0]

)
→ Cn be a simple curve

satisfying γn(t) = t for all t, and let d < 1. Define

Wγ,d :=
{
γ(t) + tda : t ∈ C \ (B(0, R) ∪ ]−∞, 0]), a ∈ Tγ,dV, an = 0

}
.

The next result, whose proof is completely analogous to the proof of Proposi-
tion 5.4 in [5], shows that Wγ,d approximates V of order d in conoids Γ(γ, d,Ω, r)
as in (13).

35 Proposition. Let V be an algebraic set in Cn, let γ be a simple curve
satisfying γn(t) = t for all t, let d < 1, and let Ω be a relatively compact open
subset of Cn.

(1) For each ε > 0 there is R > 0 such that for each z ∈ V ∩ Γ(γ, d,Ω, R)
there is w ∈Wγ,d with |z − w| < ε|z|d.

(2) For each ε > 0 there is R > 0 such that for each w ∈ Wγ,d with |w| > R
there is z ∈ V with |w − z| < ε|w|d.

The next result describes Wγ,d using the map Fω0 defined in (11). Its proof
is analogous to the one of [5], Proposition 5.3.

36 Proposition. For γ as in Definition 34 and each relatively compact open
subset Ω of Cn there is R > 0 such that Wγ,d ∩Γ(γ, d,Ω, R) is a closed analytic
subset of Γ(γ, d,Ω, R).
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More precisely, if Fω0 is as in (11) then

Wγ,d ∩ Γ(γ, d,Ω, R)

=
{
w ∈ Γ(γ, d,Ω, R) : Fω0(w − γ(wn), wn, ξ) = 0 for all ξ ∈ Cn−k

}
. (16)

4 Examples

In this section we provide examples to illustrate the results of the preceding
sections. To do this, we first indicate that the limit currents for an algebraic
variety V (P ) with respect to a given simple curve γ tending to infinity can
be obtained also as limit currents of an algebraic variety V (Q) with respect to
a curve σ tending to zero, investigated in [5]. Hence we can derive examples
from [5], Section 6.

If σ is a simple curve in the sense of [5], Definition 3.1, i.e., a simple curve
tending to zero, if δ ≥ 1, and if W is an analytic variety in a neighborhood of the
origin, then the limit current in the sense of [5], Definition 3.3, will be denoted
by T 0

σ,δ[W ] and its support by Tσ,δW . With this notation, we recall from [5],
Proposition 4.7 and Corollary 4.4, the following result.

37 Proposition. Let σ be a simple curve in the sense of [5], Definition 3.1,
let W be an analytic variety in some neighborhood of the origin, and let δ ∈
[1,∞[. Then there are p ∈ N and rational numbers 1 = δ1 < · · · < δp such that
the following holds:

(i) T 0
σ,δ[W ] = T 0

σ,δ′ [W ] whenever δi < δ ≤ δ′ < δi+1 for 1 ≤ i < p or δp < δ ≤
δ′.

(ii) If δi < δ < δi+1, 1 ≤ i < p, then T 0
σ,δW is homogeneous and nonvoid.

(iii) If δ > δp then T 0
σ,δW is either empty or homogeneous.

(iv) If W is a hypersurface, then T 0
σ,δi

W is not homogeneous for 2 ≤ i ≤ p.

38 Definition. (a) The numbers 1 = δ1 < δ2 < . . . < δp are called the
critical values for σ and W , provided that they are minimal with respect to
condition (i). Statements (ii)–(iv) hold if δ1, . . . , δp are the critical values.

(b) For P ∈ C[z1, . . . , zn] of degree m > 0 expand P =
∑m

j=ν Pj , with Pj
either homogeneous of degree j or identically zero and Pν 6≡ 0. Then Pν is called
the localization of P at the origin.

39 Proposition. Let P ∈ C[z1, . . . , zn] be of degree m ≥ 1, denote by Pm
its principal part, and let γ : C \ (B(0, α) ∪ ]−∞, 0]) → Cn be a simple curve
of the form (γ1(t), . . . , γn−1(t), t), where limt→∞ γj(t)/t = 0 for 1 ≤ j < n.
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Define G := {z ∈ Cn : zn 6= 0} and Φ: G → G, Φ(s) := s/s2n, as well as
Q̃(s) := s2mn P (Φ(s)) and σ(τ) := Φ(γ(1/t)), τ ∈ B(0, 1/α) \ ]−∞, 0]. Then the
following assertions hold:

(a) Φ is a biholomorphic map.

(b) Q̃ extends to a polynomial Q ∈ C[s1, . . . , sn] which has Pm as localization
at the origin.

(c) σ is a simple curve in the sense of [5], 3.1, satisfying limτ→0 σ(τ) = 0.

(d) Tγ,d[V (P )] = T 0
σ,2−δ[V (Q)] for d ∈ ]−∞, 1].

(e) If 1 = d1 > · · · > dp (resp. 1 = δ1 < δ2 < . . . < δl) denote the critical
values for γ and V (P ) (resp. σ and V (Q)) then p = l and dj + δj = 2 for
1 ≤ j ≤ p = l.

Proof. (a) This follows from Φ ◦ Φ = idG.
(b) We expand P =

∑m
j=0 Pj , where Pj is either homogeneous of degree j

or identically zero. Then

Q̃(s) = s2mn P (s/s2n) = s2mn

m∑

j=0

s−2j
n Pj(s) =

m∑

j=0

s2(m−j)
n Pj(s), s ∈ G. (17)

Therefore, Q̃ is the restriction to G of the polynomial Q defined by Q(s) :=∑m
j=0 s

2(m−j)Pj(s). If Pj 6≡ 0 then s 7→ s
2(m−j)
n Pj(s) has degree 2m− j. There-

fore, the localization of Q at the origin is Pm.
(c) This is easy to check.
(d) Note first that by (a), for each w ∈ G also z := Φ(w) is in G. This

implies
Q(z) = P (w)/w2m

n .

Next fix w ∈ G, t ∈ C, satisfying |t| > max(α, |wn|), and d < 1. Then

Φ(γ(t) + tdw)

= (t+ tdwn)−2(γ(t) + tdw)

= t−2
(

(1 + td−1wn)−2 − 1 + 1
)(

γ(t) + tdw
)

= t−2γ(t) + td−2w + t−2
(

(1 + td−1wn)−2 − 1
)

(γ(t) + tdw)

= σ(1/t) + (1/t)2−d
(
w +

(
(1 + td−1wn)−2 − 1

)(
(1/t)2−dσ(1/t) + w

))

= σ(1/t) + (1/t)2−dφ(t, w),

(18)
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where
φ(t, w) = w +

(
(1 + td−1wn)−2 − 1

)(
(1/t)2−dσ(1/t) + w

)
.

Since d is smaller than 1, it is easy to see that

lim
t→∞

φ(t, w) = w. (19)

Next assume that the curve γ admits the Puiseux series expansion γ(t) =∑∞
j=0 ajt

(q−j)/q for some q ∈ N. Then, for s ∈ B(0, 1/α) \ ]−∞, 0], we have

σ(s) =
1

s2
γ(

1

s
) =

1

s2

∞∑

j=0

aj(
1

s
)(q−j)/q =

∞∑

j=0

ajs
(q+j)/q.

Now let δ := 2− d and expand, according to [5], Corollary 3.17,

Q(σ(s) + w) =
∑

j∈Z,α∈N3
0

bj,αs
j/qwα =

∑

ω≥ω1

Gω(s, w), (20)

where

ω1 = ω1(δ) = min{j
q

+ δ|a| : bj,α 6= 0}.

Similarly, we obtain from Corollary 27 that

P (γ(t) + w) =
∑

j∈Z,α∈N3
0

cj,αt
j/qwα =

∑

ω≤ω0

Fω(t, w), (21)

where

ω0 = ω0(d) = max{j
q

+ d|α| : cj,α 6= 0}.

Next we use (17), (18), (19), and the quasihomogeneity of the functions Gω to
get

P (γ(t) + tdw) = (t+ wn)2mQ(Φ(γ(t) + tdw))

= (t+ wn)2mQ(σ(t−1) + t−δφ(t, w))

= (t+ wn)2m
∑

ω≥ω1

Gω(t−1, t−δφ(t, w))

= t−ω1(t+ wn)2m
∑

ω≥ω1

(1/t)ω−ω1Gω(1, φ(t, w)).

(22)

Using the expansion (21), we get

P (γ(t) + tdw) = tω0

(∑

ω≤ω0

tω−ω0Fω(1, w)
)
.
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Combining it with (22) and using (19), we get

Fω0(1, w) = lim
t→∞

t−ω0−ω1+2m
(

1 +
wn
t

)2m
Gω1(1, w).

Since Gω1(1, ·) 6≡ 0, this implies ω0 + ω1 = 2m and Fω0(1, ·) ≡ Gω1(1, ·). By
Proposition 23 and [5], Proposition 3.14, this implies for d < 1:

Tγ,d[V (P )] = T 0
σ,2−d[V (Q)]. (23)

For d = 1 we get from Proposition 29 (ii) that

Tγ,1V (P ) = Vh − ξ0 = V (Pm)− ξ0 for ξ0 := (0, . . . , 0, 1).

By [5], Proposition 4.2 (ii) and (b), we have

T 0
σ,1V (Q) = T0V (Q)− ξ0 = V (Pm)− ξ0.

Since it is not difficult to interpret the previous equations in the sense of currents,
(23) holds for all d ≤ 1, and the proof of (d) is complete.

(e) This follows from (d) by the Propositions 37 and 31, together with Corol-
lary 33. QED

40 Example. Define P ∈ C [x, y, z] by

P (x, y, z) = y(x2 − y2)− yz + z

and let V = V (P ). Then

Vh = {(x, y, z) ∈ C3 : y(x2 − y2) = 0}

and Θ := (0, 0, 1) is a singular point of Vh. Define γ(t) := tΘ. Then we have

d1 = 1, d2 =
1

2
, d3 = 0,

and the following limit varieties:

Tγ,dV = Vh,
1

2
< d ≤ 1,

Tγ,dV = {(x, y, z) ∈ C3 : y(x2 − y2 − 1) = 0}, d =
1

2
,

Tγ,dV = {(x, y, z) ∈ C3 : y = 0}, 0 < d <
1

2
,

Tγ,dV = {(x, y, z) ∈ C3 : −y + 1 = 0}, d = 0,

Tγ,dV = ∅, d < 0.
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These statements can be obtained by constructing the corresponding Newton
polygon as described in the proof of Proposition 31. However, it is also possible
to apply Proposition 39 together with examples that we treated in [5]. Using
the notation introduced in Proposition 39, we have

Q(s, t, u) = t(s2 − t2)− tu3 + u5

and σ(τ) = (0, 0, τ). Therefore, the assertions above follow from Proposition 39
and [5], Example 6.6. Since Tγ,1/2V has (1, 0, λ) and (−1, 0, λ), λ ∈ C, as singular

points, it is reasonable to define κ(t) := (
√
t, 0, t), t ∈ C\]−∞, 0], and to consider

Tκ,dV for d ≤ 1
2 . Using Proposition 39 and [5], Example 6.6 again, we get

Tκ,dV = {(x, y, z) ∈ C3 : y((x+ 1)2 − y2 − 1) = 0}, d =
1

2
,

Tκ,dV = {(x, y, z) ∈ C3 : 2xy = 0}, 1

4
< d <

1

2
,

Tκ,dV = {(x, y, z) ∈ C3 : 2xy + 1 = 0}, d =
1

4
,

Tκ,dV = ∅, d <
1

4
.

We could perturb the curve again, but this would not lead to new insights
as Tκ,1/4V does not have any singularities left.

Applying Proposition 39, a number of further examples can be derived from
the examples in [5], Section 6. We conclude this section with two more examples
which show how the results of the present paper can be used directly to compute
limit varieties.

41 Example. Define the polynomial P by

P (x, y, z) := x(x2 − y2)(x2 − 4y2)− y(y2 − 4x2)z − z2 + 1.

Then for V := V (P ) we have

Vh = {(x, y, z) ∈ C3 : x(x2 − y2)(x2 − 4y2) = 0}

and consequently

(Vh)sing ∩ S2 = {(0, 0, 1), (0, 0,−1)}.

If we define γ±(t) := (0, 0,±t) for t > 0, then we get the following limit varieties
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in C3:

Tγ±,dV = {(x, y, z) : x(x2 − y2)(x2 − 4y2) = 0}, 1

2
< d ≤ 1,

Tγ±,dV = {(x, y, z) : x(x2 − y2)(x2 − 4y2)± y(y2 − 4x2) = 0}, d =
1

2
,

Tγ±,dV = {(x, y, z) : y(y2 − 4x2) = 0}, 1

3
< d <

1

2
,

Tγ±,dV = {(x, y, z) : y(y2 − 4x2)± 1 = 0}, d =
1

3
,

Tγ±,dV = ∅, d <
1

3
.

To prove these statements, note first that those on Vh are either obvious
or follow from a standard computation. In order to derive those on the limit
varieties, we use Corollary 27 in connection with the proof of Proposition 31. To
do so we expand P (γ±(t) +w) and get as set M in the proof of Proposition 31:

M = {(0, 5), (0, 4), (0, 2), (0, 0), (1, 3), (1, 1), (2, 0)}.

Hence the bounded edges of the Newton polygon N of M are the segments
[(0, 5), (1, 3)] and [(1, 3), (2, 0)], which have slope −2 and −3. By Proposition 31
this implies

d1 = 1, d2 =
1

2
, d3 =

1

3
.

The equations for the limit varieties are obtained from Corollary 27 by grouping
the terms in the expansion according to their d-degree.

42 Example. As an example in higher codimensions we consider the ratio-
nal normal curve

V := {(t, t2, t3) ∈ C3 : t ∈ C}.
The projection π : (x, y, z) 7→ (0, 0, z) is excellent for V . Once all calculations

are completed, it will be obvious that π is also excellent for all limit varieties.
Let λ be a primitive third root of unity and note that 1 + λ + λ2 = 0. Some
computation shows that the canonical defining function of V with respect to π
is

P (x, y, z, ξ, η;V )

=
〈

(x, y)− (z1/3, z2/3), (ξ, η)
〉〈

(x, y)− (λz1/3, λ2z2/3), (ξ, η)
〉
×

×
〈

(x, y)− (λ2z1/3, λz2/3), (ξ, η)
〉

= (x3 − z)ξ3 + 3x(xy − z)ξ2η + 3y(xy − z)ξη2 + (y3 − z2)η3.
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We choose γ(t) := (0, 0, t) and determine F as defined in (9).

F (x, y, z, t, ξ, η) = P (γ(t) + (x, y, z), (ξ, η);V )

= (x3−z− t)ξ3 +3x(xy−z− t)ξ2η+3y(xy−z− t)ξη2 +(y3−z2−2zt− t2)η3.

For M as in the proof of Proposition 31 we find

M =
{

(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (2, 0)
}
.

Hence there are only two critical values, namely d1 = 1 and d2 = 2/3. In the
case d = 2/3 we find

Fω0(x, y, z, t, ξ, η) = x3ξ3 + 3x2yξ2η + 3xy2ξη2 + (y3 − t2)η3.

For all other values of d the calculations are even simpler. We list all limit
varieties:

Tγ,dV = {(0, 0)} × C,
2

3
< d ≤ 1,

Tγ,dV = ({(0, 1)} × C) ∪ ({(0, λ)} × C) ∪ ({(0, λ2)} × C), d =
2

3
,

Tγ,dV = ∅, d <
2

3
.

For d = 2/3, the three components of Tγ,dV are all simple. In the case 2/3 <
d ≤ 1, the only component has multiplicity 3.

We could interpret this result as a resolution of the singularity of V at
infinity. There are certainly some aspects where our work is connected to the
theory of resolution of singularities. Our emphasis, however, is on analytic limit
processes as in Theorem 10 and Corollary 22.

Note added in proof: The problems stated in Remark 20 and right after
Definition 32 are both solved in R. W. Braun, R. Meise, and B. A. Taylor:
Higher order tangents to analytic varieties along curves II, to appear in Canad.
J. Math..
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