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WHAT IS THE SHAPE OF A TRIANGLE?
DANA N. MACKENZIE

Abstract. We consider the problem of describing the shape of a tnangle ANABC by a single
complex number oc( AABC), which we call the shape invariant of the triangle. After giving
a simple algebraic definition of o, we prove a surprising geometric description: modulo a
symmeltry group of order 6, o Is the location of the orthocenter of the triangle, afier it is
rescaled so that the vertices lie on the unit circle and rotated so that an altitude of its Morley
triangle points in the direction of the positive x-axis. We find the set of all possible values of
o, and discuss how the value of o determines the «scaleneness» and «acuteness» of NABC.

Finally, we give formulas for the «scaleneness» and «acuteness» in terms of the side lengths
or angles of NABC, and compute some numerical examples where the angles are «unusual»
rational multiples of .

In high-school geometry, we learn that two triangles have the same shape if and only if
they are similar to each other. Hence the question in the title of this article could be answered
very succinctly: the «shape» of a triangle may be defined as the equivalence class of all similar
triangles. The more precise question I would like to address in this article 1s: how can we give
a numerical measure of the shape of a triangle?

There are three requirements I would like to make of this numerical measure. First, it
should treat the data describing the triangle (which may be the three side lenghts, the three
angles, or the coordinates of the three vertices) symmetrically. Second, it should not contain
redundant information. Finally, it should be «geometrically meaningful»: more than merely
identifying the shape, it should actually tell us something about the trnangle. This requirement
1s somewhat vague, but it is the real reason for being interested in the problem.

Perhaps the simplest solution to the problem of giving a numerical measure of shape is
to list the three angles in increasing order. However, this fails the second test: it uses three
parameters to describe the shape, when two would suffice. We could remedy this by listing
the two smallest angles, /A and /B, since /C can then be found from the equation /C =
m — LA — [B. But this solution does not treat the three angles symmetrically.

The «shape invariant» I will propose below is certainly not the only one that meets the
above requirements, but I hope the reader will agree that it passes the test of «geometric
meaningfulness» especially well.

DERIVATION OF THE SHAPE INVARIANT

We begin by observing that any triangle AABC can be mapped by a dilation to a triangle
Nz} z5 25 whose three vertices lie on the unit circle |z] = 1. If we think of 2], 2;,2; as

complex numbers, then |z} 252;| = 1, hence 2} 252} = € for some angle §. Next, by
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rotating A\z] 2; z; by the angle —8/3 about the origin, we obtain a new triangle ANz, z, 24

1=i/3

such that z,2,2z, = 1 (since 2, = 2
following lemma.

). We codify what we have done so far in the

Lemma 1. Any triangle NABC is similar to some triangle \z,z, zy such that each z; lies

on the unit circle and z,2,24 = 1. Moreover, there are at most six such triangles which are
similar to NABC.

Proof. The first sentence has already been proved. To prove the second sentence, note that any
other triangle Aw, w, w; ~ AABC satisfying the two properties stated in the first sentence
must also be similar to Az, 2,2z,. The similarity 7° which maps Az, 2,2, 10 Aw, w, w,
must map the circumcenter of the former to the circumcenter of the latter. Hence T°(0) = 0.
Since |2, = 0| =1=|T(zy) — 0| =|T(z,) — T(0)|, the magnification factor of T is 1, so
T" 1s an 1someltry. Itis easy to verify that the only isometries which fix the origin and preserve
the property z,2,23 = 1 are the elements of the dihedral group of 6 elements, generated by
complex conjugation (i.e. reflection about the z-axis) and rotation by 27 /3. O

Recall that we wanted our «shape measure» to treat the data of our triangle symmetrically.
The simplest function which is symmetric with respect to z,, z,, and 2z; is the sum 2z, + 2, +
2.

Definition 1. The complex number a is a shape invariant of AABC if a = 2, + 2y + 25,
where [\z, 2,24 is one of the (at most six) triangles constructed in Lemma 1. We write this
relation as follows: a = c(NABCQC).

The somewhat clumsy nature of this definition is caused by the fact that c(AABQC) is
not uniquely defined — in general, it has 6 possible values. From the proof of Lemma 1, it

is easy to see that if a is one of those values, then the others are e2™/3q e47/34 7, e2™/37,
and e*™/3@. While this non-uniqueness is annoying, it is a price that is worth paying because
of the geometric interest of o( AABC), which will be explored in the next section.

To obtain a shape invariant which 1s uniquely defined, we start by observing that there
are in general only two possible values for o> (namely o® and @*), and only one of these
lies in the upper half-plane. We denote this value of o by Z(AABC). In particular, the
imaginary part and norm of Z seem to convey the most important information about the shape

of AABC, and this motivates the following definition.

Definition 2. The X —,Y —, and R-invariants of AABC are defined as follows:

(1) X =R(%), Y =|")], R=|o) =(X*+Y*)'/
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The Y -invariant will also be called the scaleneness and the R-invariant will be called the
obtuseness of NABC.

In the next sections we will explore the geometric and algebraic meaning of the invariants
o,X,Y and R.

FOUR EQUIVALENT PROBLEMS

A major step towards understanding o is to answer the following question:

Problem 1. What are all the possible values of o?

Perhaps the first point to be made is that not all complex numbers are possible values of
o. For example, since |z,| = |2,| = |23| = 1, we cannot have 2z, + z, + 2; = 4. Readers
who want to know right away what the answer to Problem 1 1s may refer to Figure 2.

There are several interesting ways to rephrase Problem 1. We will proceed in a sequence
from the more algebraic to the more geometric.

To begin, we note that any three complex numbers z,, 2, , z; are roots of a complex poly-
nomial:

P(z) =(z—2)(z—25)(2 — 2z,7).

If z,, z,, 2, satisfy the conclusions of Lemma 1, then the constant term of P(2) equals —1.

The z? coefficient is —(z; + 2, + 2;), which we recognize as the negative of the shape
invariant o. The z coefficient is the second symmetric function

0,(21,25,23) = 2,25 + 2527 + 2324

Since z,2,2, = 1 and |2,)* = 2,Z; = 1, we have

0,(2y,29,23) =(1/2) + (1/2)) + (1/23) =2 + Z; + Z;.
Thus P(z) has the following form:
(2) P(z)=z3—crzz+ﬁz—1.

However, not all polynomials of the form (2) have all their roots on the unit circle. Hence one
may think of Problem 1 as a converse to formula (2):

Problem 2. For which values of o docs the cubic polynomial P(2) = 2° — g2 + 5z — 1
have all its roots on the unit circle?
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It seems very unlikely that Problem 2 is new; in fact, a sufficient condition for all the roots
of a quartic to lie on the unit circle is given in [7], and the corresponding sufficient condition
for cubics can be derived as a special case. However, the solution to Problem 2 given below
seems somewhat more enlightening.

To obtain a slightly more geometric phrasing of the Problems 1 and 2, we invoke the
following lemma:

Lemma2. If |2,| = |2,| = |23], thenthe orthocenter of Nz, z, z, isthe point z = z,+2,+2,.

A proof of this lemma, which is not all difficult, can be found in [3]. Thus another way to
phrase Problem 1 is

Problem 3. Describe the locus of the orthocenters of all triangles Az, 2, 2, such that the
vertices lie on the unit circle and 2, 2,2, = 1.

B

%

LM

C A

_..—---""'I

Figure 1. Morley’s Theorem and Lemma 3. D, E, F are the intersection points of
«adjacent» trisectors of /A4, /B, /C.
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Unfortunately, this version is still not «fully geometric», since it involves the curious hy-
pothesis that z, 2,2, = 1. A surprising geometric interpretation of the meaning of this hy-
pothesis is given in the next lemma,

Lemma 3. If |z,| = |2,| = |2;|, then the altitudes of the Morley triangle of Nz, z, zy are in
the directions of the three cube roots of z,2,2z,.

Here a little explanation is in order. The Morley triangle of NABC is the triangle formed
by the intersection points of the adjacent angle trisectors of LA, LB, (C. Morley’s theorem
(see [8], [9]; the former contains a bibliography of 150 articles pertaining to this theorem!)
asserts that the Morley triangle (ADEF' in Figure 1) is equilateral. In fact, Morley’s theorem
would be a corollary of Lemma 3 if we proved Lemma 3 first (since any triangle whose
altitudes make angles of 2x/3 with each other must be equilateral). However, it will be
more convenient for us to assume Morley s theorem and make use of the calculations in the
proof published by J. Hofmann [3]. (C. Lubin [6] has the identical formulas).

A second word of clarification: in Lemma 3, the altitudes should be understood as the rays
from a vertex perpendicular to the opposite side and intersecting the line containing that side.
We adopt this convention so that the direction of the altitudes will be unambiguously defined.

Proof of Lemma 3. By applying a dilation, we may assume that |z| = 1, so that we may write

z, = €% for k = 1,2,3. Further, we may assume that 0, < 6; < 6, < 6, + 2x/3. This
amounts to the assumption that z,, z,, z; are labeled clockwise, with z, assumed to have
the smallest argument. This convention agrees with Figure 12 of [3]. As in that article, we
let u, v, w denote the coordinates of the vertices of the Morley triangle, viewed as complex
numbers, and let a = % b = ¢'% % Hofmann calculates that

u = —ebc(eb+ ¢) + a(e?b® + ebc+ ),
v = —eca(ec+ a) + eb(e’c* + eac + a%),
w=—ab(a+b) +c(a® + ab+ bz),

. 1
where € = e2/"/3 _ Onc of the altitudes of ADEF is represented by the vector 5 (utv) —w.

A straightforward calculation shows that

%(u.+ v) —w = '“\?“(b— c)(a—c)(e ™ a+ e ™).

Because 8, < 6, < 0, + 27/3, the argument of (e"/®a + e~*"/®b) is the same as the
argument of a + b. Hence

1

Arg [5(u+ v) —w] = Arg(b—c)(a—c)(a+Db).
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We claim that (b — ¢)(a — ¢)(a + b) has the same argument as abc, which will finish the
proof, since abc 1s a cube root of z, z, z,. Indeed,

(b—c)(a—c)(a+ b)abc= —2R(a — ¢)(b - 7),

and the right-hand side is real and positive because the angle between the vectors a — ¢ and
b — c is greater than 27/3. O

Thanks to Lemma 3, we can restate Problem 1 in completely geometric terms.

Problem 4. Given a triangle with vertices on the unit circle, oriented so that one of the
altitudes of the Morley triangle is in the direction of the positive z-axis, describe the region
in which its orthocenter must lie.

THE SOLUTION TO PROBLEMS 1-4

Problem 2, being the most algebraic version, is the easiest to solve.,

Theorem 4. For all complex numbers o, the discriminant of P(z) = 2> — 02> + Gz — 1 is
real. One root of P(z) always lies on the unit circle. All three roots lie on the unit circle if

and only if the discriminant is negative.

For the definition of the discriminant of a cubic polynomial, see¢ [4, p. 259]. The facts we
will need can be stated very briefly. First, if the roots of the polynomial are 2, , 2,, and z,, the

discriminant A is defined to be (z; — 2,)% (2, — 23)% (23 — 2,)?%. Second, if the polynomial

3

is given by P(z2) = 2° — ¢, 2* + ¢,z — ¢, the discriminant can be computed directly from

the following equation:
(3) A=—4cicy+cics + 18cicyc3 — 4 —27¢2.

Finally, if c,,c,, c, are real, then all three roots of the polynomial are real if and only if the
discriminant is positive.

Proof of Theorem 4. Using formula (3), we can compute

(4) disc P = —45 —40° + |o|* + 180]* - 27,
which is obviously real.

From complex analysis, the linear fractional transformation f(w) = (iw+ 1) /(1w — 1)
Is one-to-one and maps the extended real axis onto the unit circle. Hence the roots of P( 2)
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lie on the unit circle if and only if the solutions to the equation P( f(w)) = 0 lie on the
extended real axis. By a straightforward computation, if we set o = = + 1y, then

2ywd + 2z -6)w? -2yw+ (2z + 2)
(iw—-1)3

(5) P(f(w)) =

Since the numerator of (5) is a real cubic polynomial, it must have a real root w,, and hence
zy = f(w,) is aroot of P lying on the unit circle (if y = 0, then w; = oo and 2, = 1).
Assuming that y# 0, all the roots of P(2) lie on the unit circle if and only if all the roots

of
y y

are real. Using equation (3) again, we have

A y* + 2zt + 122+ 9 y? + (z+ 1)(z—-3)° _ . disc P

(6) disc Q = " (S0t

Hence the roots of P(z) lie on the unit circle if and only if disc P < 0.
If y = 0 itis clear that the numerator of (5) has real roots if and only if —1 < z < 3,

which is the same conclusion we get by setting disc P < 0. o

Corollary 5. The roots of P(z) lie on the unit circle if and only if o = T + 1y lies in the
region

(7) W E 2+ 1224+DYP 4+ (z+ D(z-3)3 0.

This region is the union of a deltoid and its interior.

Proof. This follows immediately from the expansion of disc P in equation (6). The fact
that the boundary of this region is a deltoid can be verified by consulting the reference [5, p.
132]. 0

Remark. There is one other well-known appearance of deltoids in the geometry of triangles:
the thecorem that the envelope of the Simson lines of a given triangle is a deltoid (see (2,
Example 9.14.34.3D}). That dcltoid, however, is circumscribed about the nine-point circle of
a triangle, rather than about the circumcircle.

Theorem 6. If o satisfies inequality (7), then the roots of P(z) form an acute triangle if and
only if |o| < 1, aright triangle if and only if |o| = 1, and an obtuse triangle if and onli if
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lo| > 1. They form an isosceles triangle if and only if Arg(o) = kw/3 for aninteger k, and
an equilateral triangle if and only if c = 0.

Proof. If Az, z,2, is acute, the orthocenter lies in the interior of the triangle, hence in the
interior of the circumcircle |z| = 1. If Az, 2, 2z, is right, the orthocenter is the vertex of the
right angle, which lies on |z| = 1. If Az, 2, 2, is obtuse, the orthocenter lies in the exterior
of the circumcircle (we leave this to the reader to prove).

If A\z, 2,2, is isosceles, we can write the three vertices as €', e*%*®)  and e*®~*) . Then

i 27 47 a
2/2,23 = €% s0 0 = 0, =, or —=. Moreover, z; + 2, + 23 = e?(1 + 2 cos @), so

2w 27w 4 7 47
+ M, — Of — — .

3 3

Arg(z, + 2p + 23) = 0,0+ m, T3

(-312, 3/312)

/\
42
Obtuse

Acute

\

Obtuse

(3,00~
7

(372, -3/312) \/

Figure 2. The deltoid described in Corollary S. The shape invariant s(AABQC)
always lies in the interior of the deltoid; it lies in the unit disk if AABC is acute,
and in the region labeled «Obtuse» if AABC is obtuse.
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Conversely, if o has one of the arguments listed above, we can write o = e'?(1+2 cos a)
for some a, and for some 6 = 0,2#/3 or 4w /3. Then P(z) factors as

(Z . Eiﬂ’)(z _ Ei(ﬂ+u))(z _ Ei(ﬂ—u))’

hence the roots form an isosceles triangle.

Finally, we leave it to the reader to prove that Az, 2, z5 is equilateral if and only if its
circumcenter and orthocenter coincide, hence o = 0. D

Figure 2 illustrates the region described by inequality (7), along with the results of Theo-
rem 7. As discussed in the previous section, these theorems answer all the other versions of
Problems 1-4. Figure 3 illustrates, in particular, a triangle with its Morley triangle oriented as
in Problem 4, showing that the orthocenter does indeed lie in the interior of the deltoid.

Figure 3. An obtuse triangle AABC, its Morley triangle, and its ortho-
center AH. Note that onc altitude of the Morley triangle points in the

positive z-direction, and that H lies in the region labeled «Obtuse» in
Figure 2.
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= 0 225
R=2 3 ) S/ T~ &
Y = /> /Hﬁ\ ) 26T

Figure 4. The triangles 1-6 listed in Table 1, along with their obtuseness R and scaleneness Y (to
three decimal places).

Theorem 7 explains our choice of terminology for the K-invariant and Y -invariant di-
scussed earlier. Since Az, 2,2z, becomes increasingly obtuse as R increases, it is natural
to call R the obtuseness; similarly we call Y the scaleness because ¥ = 0 if Az,2,2, 1S
1sosceles and Y > O 1if it 1s scalene. To give an intuitive sense of the meaning of these inva-
riants, we illustrate various triangles along with their obtuseness and scaleneness in Figure 4.
The angles of these triangles are given in Table 1.

The geometry of the invariant Z = o3 ( Nz, z,2,) 1S nOt quite as nice as the geometry of
o. It turns out that the region of possible values of Z 1s also described by a quartic inequality:

Y4+ 2(X?2+216X +3645) Y2 + (X + )(X -27)% <O.
The curve which bounds this region is described more easily by the parametric formula

(X, Y)=(12+ 14 cos @+ cos 20,2 sin @ — sin 20).

Table 1. Some triangles with rational angles and their shape invariants.

Number in Fig. 4 Angles (in degrees) R Y

1. 36 -72 -T2 $=2 0

2.* 42 — 60 — 78 $2 p—3/251/4 12

3.* 36 —42 — 102 2 317242 /2

180 360 720
: —_—— — — — 2 712 12

4 7 7 7 /

5. 15 — 60 — 105 2 2

6.* 6 — 66 — 108 2 31/242 /2
Note: An asterisk (*) indicates those triangles for which R and ¥ have been calcu-
lated only by computer. ¢ denotes the number (1 + v/5)/2.
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(-50),

Figure 5. The curve obtained by applying the transformation f(z) = 2> to
the deltoid in Figure 2. The shape invariant Z( AABC) always lies in the
interior of this curve.

This curve is sketched in Figure 5; to the best of my knowledge it is not a «<named curve»
(in particular, 1t is not congruent to a piriform, though it resembles one).

FORMULAS FOR THE SHAPE INVARIANTS

Now that we have defined the shape invariants o, X,Y, and R and have some idea of their
geometric meaning, it is reasonable to ask how one can compute them for a given triangle. We
will discuss this question from two points of view; first, if the side lengths a, b, ¢ are given;
second, if the angles LA, LB, LC are given.

We begin by examining the case of triangles Az, z, 2, satisfying the conclusion of Lemma
1. The basic strategy is to find a formula for our invariants which is symmeltric with respect
to the squared side lengths

2 2 32 2 2
a =|32—'E3| ,b :l"ES_le y C =lzlg32|2

and 1s invariant under similaritics. From the latter fact, in particular, it will follow that the
same formula holds for arbitrary triangles.
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Using the definition o = z; + z, + 2;, 1t iS easy to verify that

(8) >+ +c?=9—|0* =9 —R,

and hence the obtuseness £ = 9 — a2 — b? — ¢%. Note that this formula is not, however,
invariant under similarity.

The computation of Y is quite tedious; hence we describe the general procedure and
omit the details. Since Y = 0 if and only if two of the numbers a?,b?,c? are equal, it
is reasonable to think that the discriminant A = (a2 — b%)2(b? — ?)?(c? — a?)? may
have something to do with Y. We can compute the discriminant by using formula (3), where
¢, =at+b?+c?, ¢y =a’b? +alc? +b%c?, and ¢; = a?b*c*. Formula (8) already gives an
expression for ¢, in terms of R. The corresponding formulas for ¢, and c; are

(9) c, =27 -9R+ 2X,
(10) c, =8X +27 — 18R — R%.
(The latter follows from Theorem 4 and equation (4)). Substituting (9) and (10) into (3), we

compute
A=4(R - X%)(8X +27 —18R— R?) =4Y2%a%p* 2.

Thus we arrive at an elegant formula for Y :

~(a? = %) (b — c*)(c? —a?)]

(1) Y 2abc

Formula (11), like (8), is not scale-invariant, which is not surprising since it was derived under
the assumption that the circumradius r» of Az, 2z, z; is 1. To obtain scale-invariant formulas,
valid for all triangles AABC, we simply multiply or divide by the appropriate power of r :

a? + b +c?
R=9 — :
2

_ [(a? = b*)(b* - ?)(? —a?)]

Y 2 aber3

Finally, using the law of sines, we obtain formulas for Y and R in terms of the angles of
NABC :

(12) R=9 — 4(sin? A + sin® B + sin’ O),

l(sin? A — sin? B)(sin? B — sin* C)(sin* C — sin* A)|
sin Asin Bsin C

(13) Y =4
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Equation (12) may also be written as
(14) R=1-8cos Acos Bcos C,

which makes the fact that £ = 1 when AABC is aright triangle much more evident.
Formulas (13) and (14) were used in generating the values in Table 1. For example, since

cos(nw/7)cos(2w/7) cos(4n/7) = u%,
the obtuseness of triangle (4) in Figure 4 1s 2. To derive similar formulas for the other triangles
requires a very good understanding of cyclotomic fields, and the reader may note that I do
not have computer-free proofs for some of the required identities. An interesting problem
for further exploration would be to determine whether there are other triangles with rational
angles (expressed in degrees) with particularly simple values of R and Y.



250 D.N. Mackenzie

REFERENCES
{1] L.V. AHLPORS, Complex Analysis, 3rd ed. New York: McGraw-Hill, 1979.
[2] M. BERGER, Geometry I, Berlin/Heidelberg/New York: Springer, 1987.

[3] J.E. HOPMANN, Zur elementaren Dreiecksgeometrie in der komplexen Ebene, Enseign. Math. 4 (1958), 178-
211.

4] N.JACOBSON, Basic Algebra I , New York: W.H. Freeman, 1985.

5] 1.D. LAWRENCE, A Catalog of Special Plane Cwrves, New York: Dover, 1972.

6) C. LUBIN, A proof of Morley's Theorem, Amer. Math. Monthly 62 (1955), 110-112.

7} A.R. MILLER (proposer), D. SECREST (solver), Problem No. 6602, Amer. Math. Monthly 98 (1991), 176-7.
8] C.O. OAxLEY, J.C. BAKER, The Morley trisector theorem, Amer. Math. Monthly 85 (1978), 737-745.

9] J.R. SMART, Modern Geometries, 3rd ed. Pacific Grove, CA: Brooks/Cole, 1988.

Received March 18, 1992 and in revised form June 20, 1992
D.N. Mackenaze

Kenyon College,

Gambier, OH 43022,

U.S.A.



