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ORDER AND SYMMETRY OF SIMPLE GAMES
AXEL OSTMANN

SUMMARY. The aim of the paper is to use some known results of the theory of boolean
functions and of the theory of finite groups for the classification and construction of simple
games. Simple games can be seen as monotone boolean functions. In the introductory part
the properties defining Post’s classes are translated to game-theoretical properties. The second
part gives a complete analysis of the non-Postian game-theoretical classes of half-half games,
dual-equivalent games, ordered and weighted majority games with respect to set-inclusion and
intersection. Symmeftric boolean functions and symmetric games can be classified according
to their symmetry group. In the third part the conditions of the existence of multiple-transitive
games that are not fully symmetric are discussed. The last part gives a construction for those
exceptional games that are sharply multiple-transitive without being trivial. The paper closes
with an explicit construction of the family of the 13 most complex games, the corresponding
automorphism groups are Mathieu groups.

1. NOTATION

Let me call (simple) game a monotonic non-constant boolean function v for some finite set
N ={1,2,...,n},ie. ¢:2¥ - 2:={0,1}, v(0,...,0) =0, v(1,...,1) = 1 and for
all subset S and T’ S < T implies v(S) < v(T).

Let us identfy n-vectors and subsets of N ; the subsets S, T of N are called «coalitions»
elements of N /coordinates are called players.

Let V denote the set of all games.

A game can be (uniquely) represented by

— the set of «winning coalitions» W = W (v) = v*(1);

— the set of «minimal winning coalitions» M = M(v) = {SeW;T<S—-v(T)=0};

~ the «incidence matrix» X = X(v) with rows § € W ordered lexicographically/
according to their binary number;

— the «minimal polynomiab» p(z,,...,z,) = E Hzi ()_ for union, ][] for inter-
SeEM ie§
section).

Example. The game maj is defined as follows
n=#N=3,v(S)=1Uf #§5 > 2

Now W = {123,12,13,23}, M = {12,12,23},p = =z,2, + T,73 + 7,7, and
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1 1 O
z=|1 0 1
0 1 1)

(We drop the brackets and commata for coalitions).

2. POST’S CLASSES

In 1941 Post classified all classes of boolean functions that are closed with respect to four
basic operations. As the set of monotonic non-constant boolean functions, i.e. of games is
closed, we can use the corresponding part of the classification as classification of games. Post
uses the following operations:

a) Permutations of N induce isomorphic games (nwv)(S) = v(#S)

b) Adding a dummy (dv)(S,,...,S,.;) =v(S5,;,...,S,)

c) Aggregation (av)(Sy,...,S5,_1) =v(S5,...,5,_1,5,-1)

d) Composition v, v,,..., v, are games with players sets N, N,,...,N_

¢{v,,...,v,] is the game with players set ) N, (disjoint union) defined by
(vlvy,...,v. ) (S) = v(v;(SN,),...,v,(SN,)) (product = intersection)

Operations a), b), d) are often discussed in game theory. Operation ¢) is also relevant for
applications on committees when two parties join.

In the following parts permutations # = (ay,...,a,) are defined as usual (mwa; =
8;,1mod , and mb = b for b notelement of {a;;4=0,...,7}).

Let us denote the complementary set of S by —S, and define the dual game *v of v by

(Cv)(S) =1 —v(~S5)

*

Lemma. V is closed under operations a) - d) and under

Easy calculations show that the generated boolean functions are monotone and not con-
stant. Let K be a subset of V. « K » be the set of all games generated by repeated use of
operations a) - d).

We define some more games by their incidence matrix:

- id =(1)
,1 0_
-et=(11), vel =
( 0O 1
1 1 0
- Velo =
1 0 1

Calculations: a et=id=a vel, a? veto= a et=id, a* maj=a(12)d id = id
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Theorem. (Post 1941): Every closed class K = « K » is one of the following list

—~ «1d»

— P=«et» and its dual P, = «vel»

— D=«maj»

— F®=«veto» and its dual F°

~ F* = {v € V; any k-setof W has nonempty intersection }, £k = 2,3,..., and their
duals F*

Remarks. «id» is known as the class of «dictator games».

P is known as the set of «unanimity games», 1.e. v € P fulfills v = up, up(S) = 1
iff T < §. D ="D is known as the set of «constants-sum games», i.e. v € D fulfills
v(—=S) + v(S) = 1. By definition of the dual game we can characterize D as «selfdual
games», 1.e. ‘v =v,

F is known as «veto games», i.e. v € F*® fulfills N{S;S € V' } not empty.

F? is known as «superadditive games», i.e. v € F? fulfills [ST =0 - v(S+T) >
v(S) + v(T)].

I shall write [p] for the set of all games with property p, sometimes I use [s.a.] instead
of F2 and [c.s.] instead of D.

Shapley 1962 contains a list of all simple games for n < 4 (up to an 1somorphism and
dropping dummies).

1 1 0 0
Example. Game (1)of thelist. |1 0 1 0 | = (1234)a(15432)maj[id,id,veto) € F>
0 1 1 1

By multiple use of permutations, aggregation and composition we can generate every
nondisjoint composition, for example game (1)= maj[[id, , id, ,veto,,, 1] if you allow for the
nondisjoint composition [[...]].

Proposition 2.1. ve [s.a] iff v<*v

This statement is a simple consequence of the definitions of * and s.a.; the above formula
and its dual formula v €*[s.a.] iff *v < v can be seen as a weakening of the folling property
stated above: v € [c.s.] iff *v = v. Observe that [c.s.] = [s.a.]*[s.a.] ; remember: product
means intersection.

Post’s Theorem and Sharpley’s list can be summarized in the diagrams figure 1 and 2.

The numbers given in the following two diagrams mean the number of games in Shapley’s
list contained in the respective class but not in a lower one. Shapley listed games without
dummies up to an isomorphism. Only three games are elements of

— ([s.a.] +1s.a.]) for n < 4, namely
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Vv
[s.a]
<maj>
<veto>
<vel> <et>
<id>
Figure 1
o 1 1 0 0 et e
— game (0)= = vel[et, et
& O 0 1 1
1 0 1 O]
1 0 0 1
— 1its dual (* 0)= = et[vel,vel]
0O 1 1 O
0 1 0 1]
‘1 1 0 O
—and(p=]10 1 1 O
0 0 1 1
Observe: *(p) = (12)(34) (p), (p) is isomorphic to its dual.

Lemma 2.2. The number of winning coalitions is equal to the number of coalitions not win-
ning in the dual game, formally: #W(v) =#-W(*v).
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[n=3]

255

[n=4]
3= {0, p, * 0}
2 2
1 1
5 5
3 3

Figure 2

Games v that are isomorphic to their dual
that *v = mv) are called «dual-equivalent»;

s (i.e. there exists a permutation m of N such
write d.e. and [d.e.]. Constant-sum games are

d.c., but not all d.e. games are c.s., see game (p).

Games v that fulfill #WW =#-W are cal

led «half-half games»; write h.h. and [h.h.].

Dual-equivalent games are half-half, but not a
later, n= 6).

1 h.h. games are d.e. (an example will be given

3. WEIGHTED MAJORITIES AND ORDERED GAMES

A weighted majority game v (write v € [w.m.] ) is a game such that exist a measure m and

a level u such that

v(S) =1 iff m(S) > u

For v € [w.m.] we use the notation v = (g; my,...,m_).
All games of the list except the three games (o), (*o), and (p) are w.m..
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The notion of «ordered games» is based on the (following) desirability relation on the
players set N :
1 -7 iff [j €S —v((1))S) > v(5)]

Remember: (17) is the permutation exchanging players ¢ and ;.
Let 1 » ;7 and 1 ~ j be the asymmetric resp. the symmetric part of the relation.
The desirability relation is transitive but generally not complete (Maschler/Peleg 1966,
Th. 9.2); thus define
i||7 iff [not1 > j]and[not j > 1]

A game v is ordered (write v € [ord] iff || 1s empty (desirability is complete).
Lemma 3.1. /w.m.] is a proper subset of [ord].

a) A player + with a higher weight as ; is a substitute for ;j in any winning coalition,

b) upto n = 5 all ordered games are w.m., for n = 6 there are many ordered non-
w.m. games (see Ostmann 1987); one of these is the game e4k («the parents and there four
children»: losing means «staying at home», winning means «travelling around»): M (edk) =
{two parents and one child} + {one parent and two children} .

For ordered games an easy representation is common use: players are numbered with de-
creasing desiderability (strongest first). edk is represented by <110001,010011> - this means
that by shifting the two coalitions to the left - player by player - M 1s generated.

Theorem 3.2. The only Post-classes fully contained in [w.m.] (resp. in [ord]) are the class
of unanimity games, the class of their duals and the class of dictator games.

It1s enough to construct a game w € [c.s.]—[ord], because et[id, w] € <veto> and its dual
1S element of *<veto>. Such a game is proj7, the game with 7 players and the 7 projective
lines as minimal winning coalitions.

Proposition 3.3. [w.m.] and [ord] are closed with respect to *, and [w.m.] is a subset of
[s.a]+*[sa.].

Itisknown that *(u; m) = (m(N)+ 1 —pu;m) and that > of v and > of *v are identical
(cf. Ostmann 1985, 4.2 and 3.8).

Proposition 3.4. [w.m.] is closedw.r.t. a, but [ord] is not; moreover [ord] is not a subset of
[sa.]+*[s.a.].

- m_(av) = m_(v) + m_, (v)

— consider Aumann’s game <10011001,01100110> and an aggregate player 34; in the
new game we get 1| 34; 110 0 110 is winning but 010 1 110 is not (i.e. non 3> 1), 011 1
000 1s winning but 111 0 000 is not (i.e. non 1> 3).

Aumann’s game, call it au8, is neither s.a. nor dual s.a.
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Proposition 3.5. [ord][c.s.] is not a subset of [w.m.].
Two examples (n = 13 ), call them 0s13, , were given in Ostmann 1985.

Lemma 3.6. (ford.e. games): If *v = wv,a player 1+ and his image ws are either equivalent
(1 ~ m1) orincomparable.

Proof. i » j induces ni > 7j (i € S,4 € -8 : v(7nS) = (*v)(S) > (*v)((i))S) =

v(m(1j)S) = v((mi wj)nS)) because the dual game has an identical desiderability relation.
Soi>mi > mwi>...>1iand i~ mi ori||mi foralli € N.

Proposition 3.7. [h.h.][w.m.] and [d.e.][ord] are subsets of [c.5.].

Proof, first part. According to Prop. 3.3 weighted majority games are either s.a. or dual s.a.;
such games fulfill v <*v resp. v >*v (Prop. 2.1); Lemma 2.2 gives # W (v) =#-W(*v) ;
since v € [h.h.], 1e. #W (v) =# -W(v), we get v ="v.

Second part. Let *v = #v, T = #8; v(T) + v(-T) = v(xwS) + v(mS)
= (*v)(S) — (CvV)(~S) =2 —v(S) —v(=8);if § =T (this includes the cases S = =N
or § = N) v(S) + v(~S) = 1; since all players are equivalent to their image we get
v(T) = v(8S) and v(-T) = v(=S) . It follows that v(S) + v(~8§) = 1, and we get *v = v,

3.8 The following game is element of [h.h.]ford]— [c.5.]
- <101001,010110>

The game is ordered by construction. To count the winning coalitions, define * = {0, 1}
andobserve W = 111*"**+1101™+ 11001*+ 110001+ 1011**+ 10101*+ 101001+ 10011* +
0111** + 01101*+ 01011*. Thus #W =8+4+ 2+ 1+4+ 2+ 1+ 2+ 4+ 2+ 2 =32 . But
both 100110 and 011001 are winning, and the game is not constant sum. {All other six-person
ordered h.h. not-c.s. games have more shift-minimal winning coalitions. These games are
reported in Ostmann 1987).

3.9 The following game is element of [h.h.]— [ord]— [d.e.]

Dcfine the game ho by use of the octahedron; the players are the six vertices, minimal
winning coalitions have size thre¢ and M contains all non-faces minus two coalitions that
form a partition of N .

With the conventional numbering 1+ 7 = 7 for an antipodal pair, we can get the following
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incidence matrices for ho and * ho:

110010
101100
101001
100101
100011
011100
011010
010110
010011
001101

111000

110100

110001 « is not a face
101101 « contains 4 players
101010

100110

011001

010101

001110 « is not a face
001011

000111

A. Ostmann

The game ho is not dual equivalent (consider the incidence matrix). An easy calculation shows
that ho and * ho are not ordered, but they are half-half.

diagram are games in the respective set but not in a lower/smaller one):

edk

ho q [h.h.] (0s6, 1987)

[ord]

some
Pe¢ldel] (0s6, 1987)

proj7 [w.m.]
[C.S.] et
0s13. . H

1

2
(1985)

Figure 3

We summarize the findings in the following diagram (the example games given in the
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4. SYMMETRY

Let us define the full automorphism group of a game v by
' = Autv:={y€S,,y = v}

S,, denotes the permutations of the player set N; A denotes a subgroup of I .
Orbits I"1 of players 1 € N are called types. If 7 € I'1 then write 1 = ;.

Lemma 4.1.
1 ~ 7 induces 1 & J

1 & jinduces 1 ~ jor i||j
i~ jiff (1) €T

Let N7 the set of all T-vectors of players corresponding to T-sets (i.e. no two components
are equal).

A permutation group (] [, X ) is called transitive if [[z = X for some z € X. A game
is called 7- transitive if (I', N(™) is transitive. «Transitive» be short for 1-transitive.

Let us denote the corresponding classes of games by [t] resp. [2t], [3t],...,[Tt].

Observe: [(T+ 1)t] is asubset of [71].

Corollary 4.2. Players in transitive games are either incomparable or equivalent.
Proof. Letm e ,theniy> mi > w%i > ... =1 and ¢ ~ wi or i||wi forall i € N.

The games (o) and (*o) are transitive. The 7 Pythagoraian games ( N = vertices, M = faces
of a P’n polyhedron; including the 5 Platonic games) are transitive but - except the tetrahedron
game - notelements of [2¢]. The game maj[maj,maj,maj] iselementof [t ] -[2¢]—[ord]. The
game proj7 1s 2-transitive and not ordered.

Theorem 4.3. v € [t]{ord] iff v=(u;1,...,1).

Proof. Corollary 4.2 + ord: there i1s only one type. By lemma 4.1, for all ¢, 7 the permutation
(1j) € I' ,thus I" = §_ and v is a game with all sets with more elements than some number
4 winning.

Let B(1) :={S € B;ie€ S}, B(4,j)) :={S € B;i;j € S}, B(®»)) :={S€ B;1 €
S,7 € °§}.

Define 1 > 7 iff W () is a proper subsct of W (1) . Note that 1 > 7 induces 1 » .

Proposition 4.4. If v is transitive the following holds for B = M and B =W . # B(1) =
#B(j) and # B(1,—~j) = # B(J, 1) .

Proof. The first statement follows directly by transitivity. For the second statcment consider
the formulas B(1,—j) + B(1,7) = B(1) and B(j, 1) + B(1,7) = B(J).
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Corollary 4.5. If M(1,—)) isemptyand v € [t], then 1 ~ J.
Proof by Prop. 4.4 and W (1) = W(j). In this case M «does not separate» ¢ and ;.

Proposition 4.6. v € [t] implies constant size of the equivalence classes of the desirability
relation.

Proof. For y € T : qk = {vyi;i ~ k} = {j;i ~ 4k} = (qk)™ (because of: i ~ k iff
i ~ k)

Remember (4.3). v € [t] and one equivalence class is a w.m. game, namely (g 1,...,1).
Inthiscase wehave I' = §, and v € [n].

Proposition 4.7. v € [2t] implies one or n equivalence classes, for v € [2t]-[nt] all
players are incomparable.

Example: proj7.

Proposition 4.8. v € [2t] implies for B= W and B = M : # B(1,—J) = constant, and
# B(1,7) = constant.

Proposition 4.9. v € [2t]—~{u,} implies # M(1,—j) > 0.

This mean all players are separated by M . It is well known that c.s. games exhibit the
same property.

Proposition 4.10. (Orbits of minimal winning coalitions): for v € [t]~{u J..,,.]i there is no
fixed element of M (under the action of T' on M ); furthermore every orbit of some element
of M contains all players.

Let —v the game with M(—v) = {S;-S € M(v)}. Since S C T iff =T C —8S, the
game 1s well-defined.

Proposition 4.11. Aut *v=Aut v=Aut—v

Proof. For y € T" : v(8) = v(1S),4(=8) = -8, insert into the definition of the dual
game.

This proposition has the following simple consequence:
Corollary 4.12. *[1t) = [1t] forall T

Proposition 4.13 (Principle of construction). /n order to construct a game v € [ 1], take a
T-transitive permutation group (A, N ) and a set A of coalition of N containing all players
1 < 7 (call them base blocks). The game v with W(v) = {T';T D S for some y€ A,S €
A} fulfills A C Autv and v € [11].
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Let us call the property S, T € M — #8 = #T «constant block size» (c.b.) and write
v € [c.b.] for the corresponding games v. It is easy to see that v € [7t] is a union of c.b.

games (v = ) v, v; € [c.b.][71]).

Proposition 4.14. If v € [1t] and there exists a coalition S € M such that #5 < 1 or
#S > n— 7 then the game is weigthed majority. For n < 27+ 1 the set [ t]-[w.m.] is
empty.

Proof. Let k := #S5. Observe that for £k < 7 and for £k > n— 7 the orbit of § contains all
coalitions of size k(7-transitivity of the game). To find a coalition with a nontrivial orbit is
necessarythat k > pand k <n—7;thus 27+ 1 < n.

Remarks. For n < 27+ 1 we found [7t] = [nf]. Remember that by Corollary 4.7
symmetry in the sense of 2-transitivity causes a game (o be fully symmetric or «completely
unordered» (= n equivalence classes of players). The smallest n for a game in [2¢] —[w.m.]
according to proposition 4.14 1s 6. Indeed the condition is sharp and we can find such a
game. The construction uses the permutation group (PSL(2,5),GF(5)+00). Take the base
block S = {0,1,4,00}. The set of of minimal winning coalitions is givenby M = {nS; 7 €
PSL(2,5)}. The action of = is given by

m(i) = (ai + b) /(ci+ d),

ad — bc is a square, a, b, ¢, d are elements of the Galois field GF(5), calculations with oo as
usual.

Ordering the playersby 0,1,2,3,4,5, oo we can construct the following incidence ma-
trix

O OO o D O e ik e ek e
O D bt et et D D D ek e

—t e D D mm (OO OO e OO e
O e D e e omm e (OO O
— s DO O e O o O
—_ O e = O e O = O O

The game is constant-sum,

5. ON BLOCK DESIGN GAMES AND SHARPLY 7-TRANSITIVE GAMES
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Remark. Group theoretists say they know how to get all 7-transitive permutation groups
(A, N) for 7 > 1; but construction is difficult. The construction is easy if A acts sharply
T-transitive.

We define: (A, N) is sharply rtransitive iff the only element of A fixing one element
of N(7 is the identity.

Let us call a game sharply 7-transitive if there is a subgroup A of I' that acts sharply
T-transitive on N ; write v € [sh — 7t].

A t-design (N, B) is an incidence structure with constant block size k£ such that the
number of blocks that contain a 7-set of points for every choice of the 7-set 1s constant;

Formally: (0) B C 2V, (1) #S =:k (forall S€ B),(2) #{S € B;Q C S} =: X for
all r-subsets Q of N.

A 7-design is denoted as a S, (7, k;n). Let r := #{S € B;1 € B} = # B(1) («repeti-
tions»), r is well-defined/independent of the choice of 1.

Corollary. For v € [1t] [c.b.] the game induces the T-design (N, M) .

If there is lack of constant block size transitive games do not induce 7-designs.
On the other hand 7-designs ( N, B) can lack of the «monotonicity» S,7 € B — non
(S O T) and even of transitivity.

Remark. [c.b.] and [c.b.][t] are not closed with respect to * (cxamples are the Platonic
games). Furthermore: [c.b.] and [c.b.][t] are closed w.r.t. —.

If a ~-design ( N, B) induces a game v directly, i.e. M(v) = B, then the so-called
dual design, i.e. the design with the transposed incidence matrix also directly induces a
game (otherwise the transposed incidence matrix X7 contains two rows s < t,s0 M(s) is
a proper subsct of M (t), but the number # M (.) has to be constant, because v is a design
game).

Hoffman/Richardson show that the only 2-designs with A = 1 and the transposed inducing
a c.s. game arec maj and proj7. They fulfill X = XT.

Theorem 5.1. A game v € [sh — 1t]-[w.m.] has one of the following parameter pairs

(1,m)

- (1,n),
- (2,p") or (3,p" + 1) for p" being a prime power,
- (4,11) or (5,12).

For n= 4,5 the symmctry groups arc isomorphic to the small Mathieu groups M, resp.
to My, .

The main part of this theorem is a well-known theorem on highly transitive permutation
groups: a sharply 7-transitive group is cither trivial or has the parameters given above; a
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proof of all its parts can be found in the book of Beth/ Jungnickel/Lenz: Design Theory 1985,
part V. The crucial parts go back to Jordan 1873 and Zassenhaus 1935. The trivial sharply
T-transitive groups are A_,,,S.,,S,. Itis easy to see that they generate w.m. games (S,
clear, for A, use proposition 4.13; cf. Lapidot 1970). For 7 = 1 note that every group can be
considered as acting sharply transitive on itself. The case of 7= 2 and 3 are near analogues
of the affine group AI' L(2,p") of a Galois field GF(p"), respectively of the projective
group PGL(2,p").

In the remaining part of this contribution all games for r = 4 and 7 = 5 are constructed.

Corollary 5.2. sharply S or 4-transitive games exhibit #S = 6 resp. 5 or 6.
Proof follows from Corollary 4.14. T < #S < n— .

Lemma 35.3. If the game v € [sh — 6t] then it can be constructed via
(PSL(2,11),GF(11) + o00).

Proof. We observe that (PSL(2,11), N(®) has only three orbits, namely the orbit of the
squares SQ =< 0 1 3 4 5 9 >, the orbit of the non-zero squares NZ25Q =< 001345
9 > and the cyclic family C =< 00 0 1 2 3 4 >. On N(® the group M,, has the same or-
bitsas PSL(2,11). Accordingto #A = #A #Axz and A = PSL(2,11), #A =11x10x6,
we get 132 coalitions in each of the squares families and 660 of the cyclic family/summing
up to the total of 12 over 6 = 924 coalitions. The design NSZQ is called the Witt design
51(5,6; 12) . In 1938 Witt sketched the uniqueness proof for this (and the S,(4,5; 11) Witt
design used below); a detailed proof was given by Liineburg 1969 (cf. Beth/Jungnickel/Lenz).
So we know that the games corresponding to SQ and NZSQ are isomorphic. Call the cor-
responding games rwll and wll.

Lemma 5.4. If the game v € [sh — 5t] then it can be constructed via
((M3)00, GF(11) + 00), N = GF(11). Each of ((M},).,, N®) and ((M,,),,, N®)
has three orbits induced by the above orbits SQ, NZSQ and C.

— The stabilizer (M,,)_, equalsto M, . Setsin N*) are complecmentary to sets in N(®
The following theorem gives the 13 exceptional highly symmetric games.

Theorem 35.3. [sh — 1t]-[w.m.] contains only 13 elements for T > 4 , namely (according
to the number k of members of a minimal winning coalition:
k = 06— the game w12 with M being the unique S, (5, 6; 12)
~ the game 2 w12 corresponding to SQ + NZ85Q
— the game c12 =* 2w12 corresponding to C

— the game w12 + ¢12 =* w12 correspondingto NZSQ + C
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#wl

dual game

O ve [wm]
#* #S=5 (Se M)
® #5=6 (Se M)
[J mixed M

— the game ~w1l1
— the game -2wll =* cll
— the game —cl1
— the game ~(cll + wll)
k = 5— the game w1l with M being the unique §,(4,5; 11).
— the game 2 w11 corresponding to SQ + NZSQ

— the game c11 corresponding to C
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— the game wll + cl1

both— the only game not in [c.b.]: wll + -wll

There are the following equations: wl2 = —-wl2, wl2 +* wl2 = (6;1,...,1), and
wll =* wll, ~wll +* (wll + ~wll) =(6;1,...,1).

The 11-player game w11 has 66 minimal winning coalitions and the large game w12 has
132 of them. QObserve that the set W of winning coalitions does not contain all 6-resp. all
7-person coalitions. The mixed game w1l + —w11 contains all 6-person coalitions.

The following diagram gives the sublattice of the corresponding games for n= 11,
Concluding remark. For n = 7 there exists the first non-w.m. in [sh — 2¢]. But these
games are elements of [c.b.]. The smallest »n I found for a game v € [sh — 2t]— [c.b.] is
n=11 (#S € {6,7} or {4,5},# M = 165).
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APPENDIX

The following incidences matrices of the games w;; and w,, are computed in APL.
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