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p+ 2= P, IN SHORT INTERVALS
SAVERIO SALERNO, ANTONIO VITOLO

Abstract. Twin prime problem is well known in number theory. Sieve methods can only
detect almost-primes because of parity phenomenon. Switching principle allowed Chen fo
get P, . By a suitable weighted sieve, we prove that the representation p+ 2 = P, occurs
with the expected frequency in short intervals.

1. INTRODUCTION AND STATEMENT OF THE RESULT

A famous conjecture in number theory states that there exist infinitely many twin primes, that
1s primes p such that p + 2 is also prime.

Sieve methods have been developed in order to check the expected number of primes 1n
sequences having the property to be well distributed in the arithmetic progressions.

Selberg showed that, because of the so-called «parity phenomenon», sieve methods alone
are not able to detect primes. A detailed account of this question is contained in a paper about
the asymptotic sieve of Bombier [B2].

In fact, when using sieve techniques, our realistic purpose is to show the existence of
almost primes P_, that is integers with at most r prime factors, counted according to multi-
plicity.

By using the «switching principle» together with a weighted sieve, Chen [C] succeeded
in proving that p + 2 = P, for infinitely many pnmes p, and more precisely that for large z

T
1.1 > C :
(1.1) Z - lﬂgzm

zSpsls
pt+2=Py

It is also to be remarked that an improvement of the constant ¢ has been obtained by Fouvry-
Grupp [FG] by using the bilinear form of the error term in the linear sieve due to Iwaniec and
the recent results of Bombieri-Friedlander-Iwaniec [BFI] on the distribution of the primes in
the arithmetic pragressions.

In this paper we study the same question in short intervals with the aim of proving an
analogous result, 1.e.

1.'1
I
1.2 1>
ILPOIHE
p+2=Py

for 4 < 1. In order to deal with this problem we put

A=Ag={p+2;z<p<z+ I'?,pprimf:}



310 S. Salemo, A. Vitolo
(1.3) B ={p > 2; pprime}

P(z) =]~

where z > 2.
Then we denote by k(n) the well known Kuhn’s weights, i.e.

(1.4) k(m)=1-Xx ) 1,

ZSPSY
pnpeD

where A > 0 and 2 < z < y.
In the case ¥ = 1 the idea of Chen was to consider the weighted sum

(1.5) > {ke(m) —se(m},

nEA
(nP(1))=1

where the parameters in k(n) were chosen in order to have
ko(n) >0 = n= P,

whilst

kc(n) Un=ppp;
1.6 =4 C ! .
(1.6) sc(m) { 0 otherwise

Hence, if k,(n) — so(n) > 0, then n = P,. Moreover, since kp(n) — sg(n) < 1,a
positive lower bound of the right magnitude order for the sum (1.5) yields the result (1.1).
By continuity the above argument also provides estimates of the type (1.2), at least when

Jiscloseto 1.
However an improvement is to be expected if we choose parameters A,z and y in k(n)

such that
k(n) >0 =n=P,.

In this case we have to consider the sum

(1.7) Y {k(n) = s(n) —r(m)},

(nP(2))=1
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where s(n) is again a weight of type (1.6), whilst

(18) r(n) = {"‘(“) n=pipapsps
0 otherwise

We observe that, for instance, if n = p, p, p3p, , W€ have by construction
ko(n) — so(n) < 0, whilst k(n) — s(n) —r(n) =0,

and so we take advantage on the integers with exactly four prime factors by considering sum
(1.7) instead of (1.5).

Really, by choosing suitable values for the parameters in k(n) and estimating the
weighted sum in (1.7), we get the following

Theorem. If J > 00,9729 , we have

2. THE WEIGHTS

We are concerned with the sequence A of (1.3).
Let u, v be posiuve real numbers with u < v, and put

I
(2.1) z=:1:F,y=Iilf.

Then consider k(n) in(1.4) with A > 0.
[f we denote by Q(n) the number of prime factors of an integer n, counted with multi-
plicity, we recall that in general, since the subset of not-squarefree integers is negligible,

(2.2) k(n) >0 = Q(n) < [;H + [u],

where [t] ist —1 if t € N, theintegerpartof t ift e R* — N,
We also recall that Chen’s result (¥ = 1) was obtained by means of the weights k(n) =
k~(n), coresponding to the following choice of the parameters:

1
(2.3) A=)c=,u=ug=3,v=1vs= 10,
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whence, by (2.2),
(2.4) ko(n) >0 =Q(n) <3.

Now, by definition of k(=) , in view of the choice of A\, and u,, it tumns out that

- : L
(*) an integer n € A cannot have 3 prime factors greatest than z % ;

1 1
(**) ifaninteger n € A has at least 2 prime factors between z V¢ and z % , then ko(n) <

0.
Therefore an integer n € A having exactly 3 prime factors, say n= p;p,p3, P < Py <
p; » 1s counted with a positive weight k,(n) if and only if

1 1
(2.5) z%¢ < p <z¥% <py <p3,

whence the contribution, to be subtracted in (1.5) in order to save only P, s, is more precisely

s (1) = { ko(n) ifn=p;p,p; asin(2.5)
C ﬂ-) — ) .
0 otherwise

As anticipated 1n the previous section, our argument leads to choose parameters A and u In
order to relax condition (2.4), by only requiring that

(2.6) k(n) >0 =Q(n) <4.

This allows to take a smaller A and a larger u, with respect to A, and u,, provided that the
right hand side of the implied inequality in (2.2) does not exceed 4. Then, in order to detect
P; s, we shall subtract the contribution of the integers with exactly 3 or 4 prime factors.
First, we discuss the behaviour of (1.7) withrespectto (1.5) whenwe take A < A, u = ug,
and v = v, in (1.4). Since k(n) is a decreasing function of X, then we gain in estimating
Y k(mn) instead of ) k~(n) . On the other hand, we loose in the estimate of the switching
term, due to following facts: since we need an upper bound, this time the monotony of k(n)
as function of A works in the opposite sense; there is no analogous of ) r(n) to be subtracted

in (1.5); in substituting )" 3o(m) with Y s(m),anew contribution arises from those integers

1 1 : :
n € A with exactly 2 prime factors between z¥% and z ¥c , counted with k,(n) = 0 in(1.5),

but k(n) > 0 in (1.7), whence, together with the integers n = p;p,p; € A as in (2.5), in
) s(n) we also have to take account of the integers n= p;p,p; € A such that

1 1
(2.7) % < p, <p, < 1% < ps.
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Analogously, if we take u > ug, A = A and v = v, in (1.5), the above considerations

can be likewise repeated, but now in )~ s(n) we have to take account of the integers n =

PP, P3 € A such that
1
T e {pl {pl {pE:

whose cardinality is certainly less than the cardinality of the integers of the type (2.7): so the

present choice of the parameters is convenient with respect to the previous one.
For our purpose (¢ < 1) the above discussion (¥ = 1) suggests the following weighted

sum

(2.8) E 1_-;-21 —Es(n)—zr(n)

{m;ﬁ:] =1 pllf.:f; neA neA
where we assume
1 3
(2.9) 3<u<d, —-<1-=,
v ti

s{n)#0 = n=p,p,p; and

1
(2.10) s(n) =4 1
2

0 otherwise

r(n) #0 = n=p;p,p3p, and

2
0 otherwise

1 . \
(2.11) T(@:{‘ ifzv <p, <zv<p, <py <py.

Hence, from the above discussion, we shall have

\
Ellj E 1—%21 Zs(n)—zr(n).

nC A rSpSy A A
n=FPy (nP(z))=l pinpe8 / ne ne

So, in order to get our result, we have to show a positive lower bound of the correct magnitude
order for the weighted sum on the right hand side.
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We point out that a result can also be achieved when the second condition in (2.9) is not
satisfied, as in the case r(n) = 0 and we reduce to the Chen’s method different parameters.

We also remark that the 1dea of Chen can be carried on with the Richert’s weights instead
of Kuhn’s ones, but with a worse result. This is essentially the approach of Ross [R2], but the
result, contained in his paper, seems to be affected by computational errors, whilst the method
actually leads to an exponent ¥ very close to 1, as pointed out by J. Wu in a recent paper
[W].

In fact J. Wu [W] considers the problem of the distribution of the primes in the arithmetic
progressions in short intervals, generalizing a result of Perelli-Pintz-Salerno [PPS1], and an-
nounces that, as an application, he will be concemed with the representation of P, in short
intervals 1n a forthcoming paper, anticipatng that he can obtain the exponent ¥ = 0,974 .

Anyway, the use of P, In place of P; seems to give an improvement. In principle this
method can be iterated further on, but with increasing technical complications.

For a more detailed description of the weights, we remark that, according to the above
notations, we can obviously suppose

T 7 .
Py < (p—) if s(n) >0
1

1

(m)’ z \? £ r(n) > 0
Dy, < | — , g( ) it r(n) > U.
2= \p %= \nn,

So we have for n=p,p,p, € A

z T+ T
120 2N Y )

and

.1 ]
1 ifze <p <z3,p, <p,

VAN
AN
3| s
~—

L

s(n) =4 1 1 1 1 T :
— fzv<p <z, zv <p, < | —
lz P
0 otherwise

whilst for n=p,p,p3p, € A

T T+ I
P\PP3 T P1\P2Ps
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and

1

o1 3 1 T\’ r \?
r(n): 5 lqu{plgml “:I"{ng(_> ,pZ{p3<_i<—-——-) .

0 otherwise

3. AUXILIARY LEMMAS AND NOTATIONS

Set
L = log z,

™Y dt
li(y) = f s
, logt

Wz, X) = E X(p), n(z;q,0) = E 1.

p<z,p prime p<z.p prime
p=a(mod gq)

First we quote a large sieve inequality following from Lemma 2.4 of Gallagher [G] by partial
summation.

Lemma3.l. Leto >0,s=0+1t,T >0.If {a,} is a sequence of complex numbers such

that
E la, |
< +00
2ag-=1 '
n Tl y

then
2

g e [T a, X(n) _ ( ol f_)
2 ol 2 f 2= min (kg )

X'mod q -T| »

2
Q _
<y’ ) ‘n;c', (ky™'n+ Q* log(T + 2)),

where * denotes the restriction of the sum to primitive characters.

Next we recall a Siegel-Walfisz type theorem in short intervals, which follows frol zero-
density estimates and informations about zero-free regions for {(s) (e.g., see Davenport [D]),
as improved by means of a result of Huxley [H].

Lemma 3.2. Let § and N be positive constants, Q < LN 9 < 1. Then there is a positive
constants C,, such that

» —_ L:‘ T
E E max lm(x + y,X)—ﬂ(z,X)|<§:3:’iexp( Cy }_)+:r_:ﬁ”"'5.
Y< I

g<Q Xmod ¢ "~
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Finally, we need a Bombieri’s theorem for short intervals, which we state in the form
proved by Perelli-Pintz-Salerno [PPS 1] on using Heath-Brown extension of Vaughan identity.

Lemma 3.3. Let 2 < 9 < 1. For every A there exists B = B(A) such that

li(y)

gy —A
Lz L™,
w(q)

ﬂ(I+ U;QIE) - ﬂ(I;QIﬂ')

ifQ <z fLB.

In the estimate of our weighted sum (2.8) we shall use Selberg’s linear sieve.
Let A be a sequence (finite) of integers, and X = |A]. We set

w(d)x

A;j={n€ Ala=0(mod d)}, R, = |A,] d )

where w(d) is a multiplicative function.
If B is a sequence of primes, we also set

w(p))
3.2 P(z)=]]p V(2 =T](1-—=).
(3.2) (2) p, V(2) ( >

p<s p<x
pel peB

In order to estimate the sifting function

(3.3) S(A4,B,z)= Y 1,

n A
(nP(x))=1

we quote the following classical result (see [FG], Theorem 8.3).

Lemma 3.4. Suppose that
(3.4) 0<——<K1——

for some constant A, > 1, and that

(3.5) > P logp—log 2| < 4,

ll.l'ﬂr.llgj:
p prime
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with A, independent of w and z.
For z K DP (p > 0) we have

1
S(A, B,2) < f—%xvu){ (;ggf) + By (p) (o8 D)ﬁ_} > 3¥“mIR, |
P2
and
log D A
a5 2 52 xven [ (B2) -, ) 3 s
P

where I and f are the continuous functions, resp. monotonically decreasing and increasing
towards 1 at infinity, such that

2e
(3.6) F(s) = ,f(s)-O 0<s<K2,
and
(3.7) (sF(s))' = f(s—1),(sf(s)) =F(s—-1),8>2.

4. THE STANDARD TERMS

In this section we are concerned with the estimate of the sum

Y k(m),

nEA
(nP(2))=1

2| -

where A, B and P(z) are defined in (1.3), k(n) in (1.4) with )\ =

with u and v subject to conditions (2.9).
First we apply Lemma 3.4 with

X > li(z?), w(p) = ——,
p— 1

and so

2 |
(4.1) Viz) ¥ =2
log x
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where

1
g = g (l (p—1)2>*

p prime

Let € > 0. By standard calculations, there exists 8 > 0 such that

(4.2) E k(n)}{f(av)-—f av - 2) %—%}
{EF(I}}I
Eau(tﬂlﬁdlu E E3u(tﬂ|de|

aSpsy pd<D
dIPfr] PEB  d|P(2)
with D = 229 where
(4.3) R,=n(z+z%d -2) —n(z;d, —2) i(z’)
| ¢ T T o(d)

1
Leta=4d— 5 - By using Cauchy-Schwarz inequality, Brun-Titchmarsh theorem and Lemma

3.3 with a suitable A, we get

7 7
Y (D)3 9R < (E ﬁz(d)‘:’"{d}lﬁdl) (2 IRdl)

d<D d< D d< D
2 gvid}
<z} (Eﬁ (d) EIRdI {IﬂL—SI
d< D d<D

and similarly

D 2 3 OIRul € )i (93" Pu(g)|R,| < "L,

s<p<y pd<D D
pcB  d|P(s) 9=

Then, if we choose v such that

(4 .4) 4 <av<6,

— e —

by means of the last inequalitics, from (4.2), by (3.6) and (3.7), we gct

¢

4oz 5
(4.5) D km > = (kB u,v) = =),

(nP(s))=1
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with

av — 1

(4.6) k(9;u,v) =log(av—1) — —log

2 au — 1

av — 1 di
1+¢ t

(av—D(av—1-1t) dt
1+t t

av—2
+f log(t — 1) log
2

1

av—2
——/ log(t — 1) log
2 ),

5. THE SWITCHING TERMS

In this section we are concermned with sieving subsequences of squarefree integers of A, which
all have the same number of prime factors.
Let & be the set of the integers n=p, ...p,(h > 3), with p,,...,p, primes such that

Ip{ pl g IH: al(msplj < p‘z < b](Itpl):
'!ﬂ'hHZ(Ilpli*"Iph—Z) {:ph—l < bh—Z(mlpll"‘lph—Z)l

1
where — gp{ o and P;ﬂ ﬂi(Iipl!"*sPi) < bi(I:pl!"'lpi) iphl!i: ll'”ih_z'
v
Then, by switching,

Y 1= Y 1<8(%,B,zt) + 0(z}),

(mP()1 "ED’:ffpf::Lz
where
(5.2) % ={mp—2/mpe Z,plm=2>p <pz+2<mp<Lz+ z° + 2}.

By applying Lemma 3.4 to sieve % , we get
(5.3)

S(%,B,zt) < |%|V(zh) {F ( log D

log 71

1 3u(d)
>+Bz( )(logD)i‘} 3> 3R,

ﬂF{ D)

where V(z) is given by (3.2) and

(54) R= Y o= 3L

x+2 5mp£:+:d'+1.mps'2[mtﬂ d) x+3 5mp5:+:‘+2.
mpeD ¢ |m=g <p mpe D g’ Im=2p’ <p

First we deal with the main term.
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Lemma 5.1. We have

9
T -
%] = n——(1+ O(L™)),
0g

where

-/‘531':-51) dS /'ﬁh—ltalr“l"h—zj dSh-—l

f 51 oy (9;) 92 ap_2(8),.,85_2) Sh—l(l — 8] T e Sh—l)

with

loga.(z,z*,...,z%) _ log b(z,z™,...,2%)

ﬂi(Sl,i;-‘Si)- lOgI ’ﬁi(sli-“’si)_ l{}gI w
Proof. By the prime numbers theorem we have
%)= ) 2
PrrnPhs Fixt'-& 1£F“{Hll
1
(14 0(L) D ——
GgI Py v-Pp-1 P11+ Phr-l (1 o Dg!ljgngfh_l)
Then, using the fact that
1 log w
Y = =log +0(log™'t),2 <t < w,
P log ¢t
t<p<w
by partial summation we get the result. m
Hence, by (3.6) and (4.1), we have the upper bound
| 4 oz’ 1 V(d)
(5.5) S(%,B,z7) < ——5—(1+O(L™%)) + )  3*9|R,],
o log® z v
d|P( D)
where D = z% .
1

QOur aim is to show that the error term is negligible forany of < 9 — 5 For this purpose

we make the following assumption:

(56) ifmpePandz+2<mp<z+z’+2 thenz! "< mgg¥?5¢
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forsome e > 0.
As 1n the previous section, by Cauchy-Schwarz inequality and Brun-Titchmarsh theorem,

we get

1

(5.7) > 349|Ry| < (s°L°)? (Epz(dnml) |

d<D
4P(D) d<D

Then we express R, by means of the multiplicative characters mod d, setting

(5.8) v(X)= ) X(mp).

r+2 Smp5=+ :1’ +2
mpe D,p/ |m=¢/ <p

By separating the contribution of the principal character X, , we have

. 2
(5.9) 3 2 (d)|R..i|<E“ > X[+ YLD
d<D d< D fg‘;::’ﬂ‘ d< D L
) l=8, +35,, say.
z+2Emp<s+3¥+2

mpe D¢/ |m=p/ <p(mp.d)>]

Lemma 5.2. We have
S, <« max (:1:""*“1:'?‘“'3) L.

Proof. We observe that

\

2(d
Szﬂzﬁ;((d)) E 1+ E 1

d< D x+2<mp<z+a¥ +2 s+2<mp<z+39+2 /
mp€E D g/ Im=p' <p.(m.d)>1 mpE D p |m=sg’ <ppld

Since mp > z+ 2 and mp has h prime factors such that p'|m = p' < p, we have

5'2{(2 E E E {p(d) E @_(15

¢ d<D d<D
242 Tz +2 ™ d=(mod p') d=0(mod p)

p ="=""p
1
Em*

< Y (ST amE

i I+2<: <I+I;+2 *:D/p’

p>zh

‘P( q)

P>z
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and therefore, since p'|m = p' > z°,

whence our lemma. o
Next we restrict to primitive characters.
It is known that every non-principal character X’(mod d) is induced by a primitive cha-

racter X*(mod q) where g|d, and X'(n) = X*(n) if (n, f) =1.
We set

(5.10) S, = Y X ()X |

X mod d

Lemma 5.3. Let ¢ > 0. We have
Sl < .LS3 + Max (Iﬂ_p+5,$ﬂ_:-‘+s) :

Proof. From (5.9), as remarked above when paésing to primitive characters, we get

2
Sy gZ‘;((j A DIEILCT7ENS

d< D 1<q|d | X mod ¢

#z(d) Y2 X
+Z@(d) Y Y X ) (mp)

d< D I{t','ld X mod q :+I£mp§:+:d+1
mpE D¢ Im=p <p(mp,d/g)>]

Putting d = gr, by recalling definition (5.10), we have

2 2
S, i:ZP" (q) E*-’f(l)u’)(&’) z J-:D((:))

w(g) X o oy

DI ((jr’;) 3 3 "X(2) X (mp)

qr< D z+2<mpz+ 9 +2 X mod ¢
mpC D.p'|m=sp’ <p (mp,r)>]

‘@LS:&"'E”Z(T) E EH (f;’) mp—2.q).

r<D w('r) LmplT- =42 Q‘:LJ {’Q(q)

MFED v Lo mpr)>l
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where
*(q) ®(q)
2“(q)(mp—2,q)= ‘“(‘*’) Y k)
o<D P9 e<D P Y o2 kg
2(q)
- Y Bwen Y B«
klmp—2 g<D,q=0(mod k) PL
Hence, from (5.9) and Lemma 5.2 we get the proof. =

Now we are in position to estimate small moduli.

Lemma 5.4. Assume that (5.6) holds. Then for every N > O there exists a positive constant
Cy Such that

E .UE(Q) E*Ii.f)(x)l“@imﬁ“p (—CNL%).

foryt p(g) X e

Proof. By definition of w( 2, X)) (cf. Section 3) and ¥(X') (see (5.8)) we have

+ 2%+ 2 + 2
'rr(I ad ,X)—ﬂ(m ,?c’)|,
™ ™m

WX < >

mSIJ%ﬂ-%—:

in view of assumption (5.6).

7 J
Since (E> 2 < r , from Lemma 3.2 we deduce that
T Tri
1
p(g) ¥ L7
(X)) ] < — exp (—CN )
g<LN a2 X% m(xg%‘ m (log L)+
+&
D DI = L
™m
mdrl}#"f_'
whence, by (5.6), our lemma. =

Finally, we consider large moduli.
For this purposc we define

1 if mp € & for some prime p such thatp'lm = p' < p
0 otherwise

A(m) = {

and observe that the characteristic function of & is the convolution product of A(m) with
the characteristic function I1(p) of the prime numbers.
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Hence, by (5.8), we have
(5.11) YX)= ) X(m(ITxA)(n).
z+2<nz+z¥+2
Then we set

2
E(w) =E“w((§ S )], 1< w< o't
d<w

X mod d

In the next lemma, in order to estimate E(w) , we shall use the Dirichlet series defined in the
complex half-plane ¢ > 1 by
(5.12)

H(s) =Y X(p)I(p)p™®, I(s) = ) X(p)I(p)p~®, J(s) = ) _ X(m)A(m)m™®,

p<§ p>§

where £ = w?z' Y,
Lemma 5.5. Suppose that (5.6) holds. We have
Flw) < Lix? + L2 fw+ LPxTw?.

Proof. Using Mellin’s transform to pick out coefficients of a Dirichlet series and the well
known fact that the Dirichlet series of the convolution product of two sequences is the product
of the Dirichlet series of each sequence, from (5.11) and (5.12) we get

B(X) = —— _/MT(H + DI &S ) = s O(zLT™ V),
27 fo_iT S
witha=1+ L',
Next, H and J being regular for o > 0, we can shift the integration line from o = a 10
o= 5 for HJ(s).
Since

(z+ m’j)"—m" . s 91 I°
< min|zrzx — |,
S

2

on taking T" = z* we have

T a
P(X) <€::f |[I[J(a+ 1t)| min (z"*“‘l = ) dt

-7 , |ﬂ+ Itl

T 1 ) ) J— 1 I} 1
+f | HJ | =+ 1t ) |min| 277, —— dt + O(Lz™").
=T 2 |§'+if‘
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If we set
Z(o,K)=)_ @ ) fTu{( +it)|min(*+“-1 z )dt
a, = —_— a T ; - y
d<w fﬂ(d) X mod d -T |ﬂ+tt|
then
(5.13) F(w) <« XZ(a,IJ)+ X (%,HJ) :

By Lemma 3.1, in view of assumption (5.6) and our choice of £ in (5.12), we have
¥(a,I?) € Lz’ + L?z¢ " w? « L% 17;
¥(a,J?) € Lz’ + L?zz ' -"9y? « L2? + L2 17 ¢w?;

1
) (E,HZ) L %16+ Latuw? <« LPztw?;

2 (%, JZ) < gi-Tp¥0-3-€ 4 [ 25742 < -8 4 [2xtq?.
Therefore, by Cauchy-Schwarz inequality,
2(a,lJ) KL Liz® + L2z %y

1
) (5,}{.}') L Lz’ tw+ Lzmi'wz,

whence, by (5.13), the result. 5

From Lemma 3.5, by partial summation, we deduce that

) u*(g) S 1) | < L2V
p(g) oot ’

LN <q<x® b L-N

which, combined with Lemma 5.4, yields
S, < 2N

when D = z%-7 L=V in (5.10).



326 S. Salerno, A. Vitolo

Hence, by (5.7), (5.9), Lemma 5.2 and Lemma 5.3, it suffices to choose N > 18 to have

(5.14) Y 3" @Rl < 2L,
d<D
dP(D)
o ! ]
where D = ¢, for any « {15‘—-2—.

Let € > 0. From (5.5) and (5.14) we obtain

| 4oz E
5.15 S(% ,B,z%) < t+ 3/,
(5.15) (#%,8,54) < = (n+ 3)
. : 1
where, as like as in (4.5),::::19-—5-.

6. CONCLUSIONS
First look at the sets typified by & asin (5.1) with h = 4, If p;p,p3ps € £ N A, then
Pr<pPp<py<pandz+2 < ppp3ps < T+ z? + 2. So all that we can say is that

Dy > z% and m < z7. Hence, in order to satisfy (5.6), we must have

43
(6.1) v > Z’é‘,

and this turns out to be a limit of our argument.
From (5.5) we easily deduce the two following results.

Corollary 6.1. If (2.9) and (6.1) hold, then

d
Y r(m) < 463:2 " (T(u,v) + ;) ,

vy o log

1 1= 300 1 1 —2s5—t
= — 1 dsdt.
r(u,v) 2/‘; /1 st(1—s—1) ”g( p )

Corollary 6.2. If(2.9) and (6.1) hold, then

where

Es(n} < dgz” (S(U, v) + ;) ,

2
"y alog”® z
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where
1

oy o [Tl 12
AT -,/I._ (1—1 2 ¢

1 [+ dt
+5-/:; t(l——t)lﬂg(u_l_ut)'

Then, if (2.9), (4.4) and (6.1) are satisfied, from (4.5), (4.6), Corollary 6.1 and Corollary
6.2, we getforany € > 0

> 1 — = ) 1\ ~ ) s(m) =) r(m > 402 (c(8:u,v) — &)
y 2 +<p<y A A B (19 - %) 1031 z o |
(nFP(2))=1 p/npel / ne ne
where

c(F;,u,v) = k(9;u,v) —s(u,v) — r(u,v).

Finally, by numerical integeration we check for 4 = 0, 9729

and this concludes the proof of our Theorem.,
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