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LOCALLY CONVEX ALGEBRAS
KARL-HEINZ SCHRODER

Preface

Given an associative algebra A over the field K € {R,C} endowed with a locally convex (/¢)
topology, it is a natural question whether multiplication is continuous on A. In general, con-
tinuity of all the maps A — A, x — yx, and x — xy, respectively, (y € A) does not imply that
multiplication is (Jointly) continuous. An algebra with jointly continuous multiplication with
respect to an /c topology will be called /c algebra.

However, in view of the well-known representation of Hausdorff /c spaces as dense sub-
spaces of projective limits of Banach spaces, continuity of multiplication on an algebra A
is not a satisfying requirement. This leads to the concept of locally multiplicatively convex
(Imc) algebras which have, in addition, a zero-neighbourhood-basis (Onbhd-basis) consisting
of multiplicative sets. For an Imc algebra it is easy to see that it is topologically isomorphic
to a dense subalgebra of a projective limit of Banach algebras. Now there is a vast amount of
applications of the classical theory of Banach algebras to Imc algebras. For instance, almost
immediately one obtains that the quasiinversion map is always continuous on an /mc algebra.
In fact there are not too many examples of [c algebras which are not Imc (see e.g. [31]).
The most prominent one is due to R. Arens (see [2]). The Arens algebra 1s a Fréchet algebra
where the inversion map fails to be continuous. In chapter 1 of the thesis there will be two
examples of this type which both have continuous inversion map.

Moreover, we are going to investigate some permanence properties of /(m)c algebras in chap-
ter 1. Especially, we will discuss the question whether the algebra of polynomials with coeffi-
cients in an /¢ algebra A, A[X], has again continuous multiplication with respect to the direct
sum topology. It will turn out that multiplication is continuous on A[X], if A satisfies the
countable neihgbourhood condition. On the other hand, ®[X] is not an /¢ algebra. Moreover,
even in the scalar case K[X] = ¢ fails to be an /mc algebra. However, at the beginning of
chapter 2 a description of the characters (i.e. the linear multiplicative functionals) on A{X]
will be given for any algebra A.

It is very easy to give an example of an algebra which contains a non-trivial /(m)c ideal but
which is not /{m)c itself. Thus one faces the following three-space-problem: Given an alge-
bra A which contains an /(m)c ideal ] C A such that A/ is an I(m})c algebra we are going to
investigate conditions such that A is /(m)c. Motivated by the notion of a topological group,
which is the semudirect product of a normal subgroup and a subgroup (see [32]), which turned
out to be a rich source for examples and counterexamples, an analogous notion of a locally
convex algebra A, which 1s the semudirect product of an 1deal C and a subalgebra B will be
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introduced. In this case the quotient algebra A/~ is (topologically) isomorphic to the subal-
gebra B. It will turn out that any /c algebra which is the topological semidirect product of
an Imc ideal and an /mc subalgebra is Imc itself. Moreover, a general method of construct-
ing such semidirect products, which contains the direct products and the adjunction of a unit
element as special cases, will be presented. As an application one obtains an example of an
algebra A provided with a Banach space topology 7 and containing an ideal C such that both
(C, TNC)and (A/,T /) are Banach algebras but (A, T) is not. (For these results see also

(10].)

Moreover, chapter 1 yields that on any normal Banach sequence space A a multiplication ®
can be defined, such that (A,®) becomes a Banach algebra. In case A € {c,cp,l”} (1< p <
o), & coincides with pointwise multiplication on A.

It will turn out that for any /(m)c algebra A (A(A),®) is an /(m)c algebra. This can be gener-
alized to the projective limits of Moscatelli type. (For a close investigation of vector-valued
sequence spaces and of projective limits of Moscatelli type, respectively, see e.g. [16] and

(25].)

Chapter 2 deals with characters on Ic algebras. It is a well-known result of the classical the-
ory of Banach algebras that every character on a Banach algebra is continuous (e.g. [21, Satz
125.2]). As a consequence of this fundamental theorem we will obtain a characterization of
the characters on (A,®) for any normal Banach sequence space A containing ¢ as a dense
subspace, and of the characters on (1!, %), * : 1! x I' — I! denoting the convolution on I'.

For many years it has been an open question (the so-called Michael problem), whether the
characters on an /mc Fréchet algebra are continuous (see [28, p. 53]). Now it seems that the
Michael problem obtained a positive answer (see [35]).

However, it still seems desirable, to describe the characters on certain algebras. Now, chapter
2 gives characterizations of the hinear, multiplicative functionals on some classes of algebras.
These can still be regarded as results on automatic continuity, because the algebras under
consideration are, in general, not Fréchet algebras. Nor need they be Imc.

To begin with, there is a thorough examination of the characters on the cartesian product
of algebras provided with pointwise multiplication. We will characterize those index sets S

which admit for any family of algebras (A;)ses a description of all the charaters on [] Ay as
SES

the application of some character on A, to the projection pr; : [] A; = A, for somer € §S.
seS

We will for instance characterize the characters on vector-valued sequence spaces A(A) for
certain /¢ algebras A and normal Banach sequence spaces A containing ¢ as a dense subspace
thus generalizing the representation of the charcters on A. Moreover a description of the char-
acters on the algebra of continuous functions of a topological space to an [c algebra can be
given in some important cases. There 1s also a characterization of the characters on the alge-
bra of holomorphic functions of an open subset of the complex plane to a locally complete ¢
algebra. (For the latter results see also {11].)

The representation results for the characters on certain algebras can also be interpreted as
results on permanence properties of the properties ‘functionally continuous’ (i.e. all the char-
acters on a certain algebra are continuous) and ‘functionally bounded’ (i.e. all characters are
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bounded on bounded sets), respectively.

Chapter 3 studies conditions such that the /c inductive limit of an inductive sequence of /(m)c
algebras is again an /(m)c algebra. It has been proved in [1} that the /¢ inductive limit of an
inductive sequence (A, ) ey Of seminormed algebras is an /mc algebra. In the category of
[c algebras, the requirement each A, being a seminormed algebra can be weakened to the
countable neighbourhood condition.

In [12] the authors prove that the inductive limit of a sequence of commutative /mc algebras
each satisfying the countable neighbourhood condition is an Imc algebra thus generalizing
the result in [1] for the commutative case.

For the inductive limit of Moscatelli type A := ind(C < B, ), where C and B are [(m)c alge-
bras, we will state several conditions yielding that A is again an /{m)c algebra.

In [12] the authors give an example of a strict inductive limit of /mc Fréchet algebras on
which multiplication fails to be continuous. There 1s a whole class of such examples in chap-
ter 3. For the inductive limit of Moscatelli type A := ind(C < B), where C and B are I{m)c
algebras, we will characterize when A is an [(m)c algebra. It turns out that for this class the
inductive limit of Moscatelli type of /mc algebras is either an /mc algebra itself or multipli-
cation fails to be continuous. Moreover, there is a characterization of the /(m)c inductive
topology on ind(C < B).

Finally, I would like to express my deep gratitude to Prof. Dr. S. Dierolf, my PhD supervi-
sor, for her great support during the last nine years. Especially, I am thankful for her kind
encouragement all along this period and for many helpful suggestions and comments during
this work.

I also do thank warmly Dr. J. Wengenroth for his constant interest in my work and a lot of
inspiring discussions and useful ideas added to my thesis.

Last, but not least, my gratitude is due to Prof. Dr. J. C. Diaz, my PhD co-supervisor, for his
attention to my thesis and to the Landesgraduiertenférderung for financial support.

Chapter 0
Notations and Terminology

For any set T and any linear space E the space [T E will be denoted by E7, whereas we will
seT
refer to

@ E:={(xs)ser € E" : {s € T : x¢ # 0} is finite}
seT

as ET). If, in addition, E carries a linear topology, we will always endow E' with the
corresponding product topology, and E(T) with the direct sum topology, respectively, unless
other announcement is made.

Especially, for the scalar case, we define @ := K%, and ¢ := K™,

Given a set B C E the linear span of B will be denoted by [B], the convex hull of B by Conv(B),
the circled hull of B by Circ(B), and the absolutely convex hull of B by I'(B).
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For an F-norm ||-]| on E, x € E, and € > 0 we define
B(x,e) :={y € E:|lx—)l|l <&}

and
Blx,e] = {y € E : |lx—l| < €},

respectively.

Considering any sequence space such as ®, @, E™N_ or a normal Banach sequence space
A, it does not matter, whether one takes either N or INU {0} as index set. For convenience
sake, there will be deliberate shifting from IV to INU {0} as corresponding index set without

explicit mentioning. Especially, this will be so, whenever convolution is considered on such
a space.

In abbreviation of ‘n € INU {0}’ we will use the notation ‘n > 0’.

Moreover, ‘topologogical vector space’ and ‘locally convex space’ will be abbreviated to
‘tvs’ and to ‘lcs’, respectively.

Given a tvs E its algebraic dual (i.e. the space of all linear functionals on E) will be denoted
by E*, and its dual (i.e. the space of all continuous linear functionals on E) by E’.

For a topological space X and any element x € X the nbhd-filter of x will be denoted by
U (X).

The closure of any subset 7 C X will be denoted by T, and its open kernel by T .

Chapter 1
Locally Convex Algebras

In this section we are going to investigate (semi)normed, locally convex (I/¢), and locally m—

convex (Imc) algebras. An algebra A = (A, +,-) is a linear space A over the field K € {R,(}
with an associative and bilinear map

AXA— A, (x,y) — xyi=x-Y,

called multiplication (on A). An algebra A is called commutative, if xy = yx for all x,y € A.
B C A 1s called a subalgebra of A, if B is a subspace of the linear space A and B-B C B. If,
in addition, (B-A)U(A-B) C B,B is called an ideal (in A). For a subspace B C A and the
corresponding quotient map g: A — A/p tf.a.e.

i) A/p is an algebra and g is multiplicative.

ii) Bis an ideal in A.

e € A 1s called a unit (in A), if ex = xe = x for all x € A. Obviously, there can be at most
one unit in A. An element x € A is called quasiinvertible, if there is a so-called quasiinverse
(element) % € A such that xX = #x = x+X. G(A) denotes the set of all quasiinvertible elements
of A. Immediately, one verifies that an element of an ideal I C A is quasiinvertible in 7, iff it
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1s quasiinvertible in A.
x € A is called invertible, if A has a unit e and there is a so-called inverse (element) x~! € A

such that xx~! = x~'x = e. G(A) denotes the set of all invertible elements in A. It is easy

to see that (G(A),-) is a group, if A has a unit. Hence the inverse element x~! is uniquely
determined. If /N G(A) # 0 for an ideal ] C A, then / = A,
For x € A the spectrum of x in A is denoted by 64 (x) which is defined as

Ca(x):={A€K:x—re¢d G(A)}

if A has a unit and
1
calx) :={0}uU {l € K\ {0}: 7 is not quasiinvertible in A} :

if A has no unit. In the latter case, G4(x) and 64,((x,0)) coincide (A, denoting the algebra
A x K provided with the multiplication ((x, A}, (£,A)) — (x& + A% + Ax,AA) which has the
unit (0,1) and contains A = A x {0} as an ideal). In both cases, the following holds:

1
Calx) = {?L e K\ {0}: 2 is not quasiinvertible in A} ,
if x 1s invertible in A, and
1
ca(x) ={0}U {l € K\ {0}: 7 is not quasiinvertible in A} :

if x is not invertible. Again, in the latter case, 4 (x) and G4 (x) coincide.
As quasiinvertibility of an element x € A with quasiinverse ¥ € A is the same as invertibility
of x—e in A, with inverse element X — e, also the quasiinverse X is uniquely determined.

Definition 1.1 Let A be an algebra and || - || be a (semi)norm on A such that
i) ||-|] is submultiplicative, i.e. ||x-y|| < ||x|| - ||y|| for all x,y € A and

ii) |lel| =1, if e is a unit in A,

then (A, || -1|) is called a (semi)normed algebra.

Remarks: (For the sequel see e.g. [17, p. 64ff].) Let A be an algebra and || - || a (semi)norm
on A. Let us denote by B the closed unit ball of A with respect to || - ||.

1. T.fae.;

i) ||-]| is submultiplicative.
ii) €B). €B). CeBy, foralle € (0,1].
iii) By - By C By.
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Moreover, in case of i), i), or iii) multiplication

A < A — (AL () — xy

1S continuous.

Proof: i) = ii) & iii) is obvious. It is also clear that ii) implies continuity of
(A1) x (AL D) = (AL] 1) at (0,0). Now, by [22, proposition 5.1.3], a bilin-
ear map is continuous, if it is continuous at (0,0).

X . ]

r3 m” <1If

¥l - [[¥ll = 0, then x € {0} or y € {0}. Hence x-y € {0}, i.e. ||x-y|| = 0. O

It only remains to prove iii) = i). Let x,y € A. If ||x{| - |l¥]| # 0O, then

Observation: In the above proof one makes use of (separate) continuity in the follow-
ing way: Continuity of A — A,x — xy implies {0}y C {0}. In other words: If for all
y € A the linear maps A — A, x — xy and x — yx are continuous with respect to a linear

topology 7 on A, then mT 1s an ideal in A.

. Let, on the other hand, A be different from {0}, such that multiplication - : (4, ]| - [|) X

(A, |- I) = (A,]l-]]) is continuous, then one can find a (semi)norm ||| - ||| on A which is
equivalent to || - ||, such that (A, ||| - |||} is a (semi)normed algebra.

Proof: One can find € > 0 such that By - B, C By ||| - ||| := &7 !|| - || is equivalent
to || - || and submultiplicative. If A has no unit, we are finished.

Let us now assume that A has a unit e. Since A is different from {0},]|le||| # 0. Thus
p:A— [0,00),x — sup{||[xul|| : u € A, |[Jul[| = 1} (< |[Ix]]])

is well-defined. p is a (semi)norm on A satisfying p(e) = 1 and |||x||| < |||e||| - p(x) for
all x € A. Thus, p is equivalent to || - ||.
Let now x,y,u € A be given such that |||ul|| = 1. If |||yu|l| = 0, then |||xyu|]| =0 <

px)p(y). If ||| yul[| # O, then ]|[.r“|_::" [i| < p(x), hence [{[xyu[| < p(x)p(y). Thus p is
submultiplicative. O

Examples 1.1.

1. Let A € {co,c,I”} be given. Then (A,||-||~) is a normed algebra with respect to

componentwise multiplication (see proposition 1.7). As a normed space (A, ||+ ||e)
1s a Banach space. Such algebras are called Banach algebras. ¢p is an ideal in . But
¢ is not an ideal in I, As for A € {c,!”},A has a unit (namely the sequence (1),>0),
whereas cg has none. x = (x,),>0 € A is invertible, iff there is € > 0 such that |x,| > €
tor all n > 0. Hence

oy (x) = {x, :n >0}

fﬂl‘ Hll X = (xﬂ)ﬂ‘fﬂ 'E l-
Anelement x = (x,)n>0 € cp is quasiinvertible, iff x,, # 1 forall n > 0. Then (ﬁi—l )n>0 €
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cp is the quasiinverse of x. Thus, we have

O (X) = {0} U{xn : n 2 0} = 0y (x),
for all x = (xn)n>0 € co.

2. Let p € [1,90), then (I7,|| - || ;) becomes a Banach algebra by componentwise multipli-
cation, as well (see proposition 1.7). Clearly, (/?,]|-||,) has no unit. It is easy to see
that x = (x,,)n>0 € I? is quasiinvertible, iff x, 7% 1 for all » > 0. Then (f‘;—])n;u €l is
the quasiinverse of x.

3. On{! also the multiplication

s x ' — 1Y (xn)n>0, On)n>0) (E-’:RJ’H ) ;
n>{

which is called convolution, is well-defined and makes (/!,]| -||;) a Banach algebra
with the unit (8p,)n>0. (See e.g. [20, p. 24].)

4. Each of the above mentioned algebras contains ¢ as an ideal with the exception of
(I',%). However, @ is a subalgebra of (I',*) which contains the unit.
Clearly, G({@,*)) = (K \ {0}) x {0}*". However, an element x € ¢\ G((¢, *)) may be
invertible in (I', %) (take e.g. x = (1, %,{}, ...) € @, which has the inverse ((‘-%)")Hgﬂ €
I'; whereas y = {%,1,0,+.+) is not invertible in I!, because invertibility of y would
require y~' = ((—1)"2"*1),50 € @\ I").
On (|- |l-), both

Ry:p—@xr—rxx*xy and L,:Q — Qx> y*x
are continuous for all y € ¢, whereas

2@ 1] llee) X (@, lleo) — (@, ] - [le), (x,) = Xy

18 not continuous.

Proof: Lety = (yu)n>0 € @\ {0} and € > 0. There is # > 0 such that y; = 0 for all
k > n. Defining p := ||y||e and & := we obtain

E
(n+1)p
<(n+1)pd=¢

2 YjXk—j

for all x = (x,)n>0 € By|0,9]. On the other hand,

Ly (x)||oe = ||Ry(x)|]ee = max

k>0

Pl

x = Y (€8u)is0 € Bol0,¢]
k=0

for all € > 0 and for all n > 0. But
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||I,.{:"] *,l:éﬂ}ﬂﬁ = (n+1)g* = o (n — o0). n

A multiplication - : A x A — A, (x,y) — xy on an algebra A which is endowed with a
linear topology is called separately continuous, if for all y € A both R, and L, are con-
tinuous. So we have seen that separate continuity of multiplication on an algebra does
not imply continuity.

However, by [36, p. 112], on an algebra with a metrizable Baire topology multipli-
cation 18 continuous, iff it is separately continuous (see also [22, propostion 5.1.4]).
Thus, by Baire’s theorem (see e.g. {22, theorem 5.1.1]), on an algebra with a Fréchet
topology continuity and separate continuity of multiplication coincide.

More generally, if E is a Baire tvs, and F is a metrizable rvs, then for any tvs G a

bilinear map b : E X F — G is continuous, iff it is separately continuous (see [36, p.
112]).

Definition-Remark 1.1. Let A be an algebra and X,Y C A.

1. X will be called multiplicative or idempotent, if X* ==X -X C X.

2. As arbitrary intersections of multiplicative sets are again multiplicative and,
especially, A is multiplicative,

M(Y) :=ﬂ{ZCA:YLJZECZ}

is the smallest multiplicative subset of A containing Y and equal to Y¥, where
kelN

yk+! .= YY* is defined inductively for all k € N.

Remarks: LetA,X, and Y be given as above. Let, furthermore, 7 be any topology on A.

1. Ttis easy to see that Circ(X) Circ(Y) C Circ(XY), and Conv(X) Conv(Y) C Conv(XY),
and I'(X)I'(Y) C I'(XY). Hence, if X is multiplicative, so will be Circ(X), Conv(X),
and I'(X) (see e.g. [28, lemma 1.3]).

Moreover, if X is multiplicative, then [X] is a subalgebra of A. Thus,

<Z>:=[M(Z)]
is the smallest subalgebra of A containing Z for any subset Z C A.

2. If multiplication is separately continuous on (A, 7T), then XY C X Y, hence the clo-
sure of a multiplicative set is again multiplicative. This generalizes [28, lemma 1.4,

b)].
Proof: Since Ly : A — A,y + xy is continuous for all x € X, we obtain XY C XY.
Now, continuity of Ry : A = A,x— xy forall y € ¥ yields X -Y C XY C XY. U
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3. If U C A is an absorbant, absolutey convex, idempotent subset, then the Minkowski
functional py 1s a submultiplicative seminorm on A (see e.g. [17, p. 61], and [28,
lemma 1.2]). We have already mentioned that, on the other hand, the closed unit ball
of a submultiplicative seminorm || - || on A is an idempotent subset of A.

Definition 1.2 Let A be an algebra and ‘T be an lc or a linear topology on A. A = (A, T)
will be called

1. anlc or a topological (top) algebra, respectively, if - : A X A — A is continuous.

2. an Ilmc or an m-topological (mtop) algebra, respectively, if A has a Onbhd-basis con-
sisting of multiplicative sets.

In the sequel a Onbhd-basis consisting of multiplicative sets will be called an m—basis.

Note that in literature often ‘rop (Ic) algebra’ means that multiplication 1s separately con-
tinuous only.

Remarks:

1. Clearly, the existence of an m—basis implies continuity of - : A x A — A at {0,0), hence,
by [22, proposition 5.1.3] continuity.

2. For an algebra A and a linear topology on A t.f.a.e.

i) Aisanmtop algebra.

i) YU € Up(A) IV € Up(A) 3> 0: aV>CV CU.
iii) YU € Up(A) IV € Up(A): M(V)CU.

v) YU € Up(A) IV € Up(A) Fo > 0: aM (V) CU.

v

The equivalence of i) — iv) will still hold, if we replace TUy(A) by any Onbhd-basis 1/
of A.

Moreover, the sets of an m—Dbasis 1n an mtop algebra A can be assumed as circled and
closed or as absolutely convex and closed, respectively, 1f A 1s 1n fact Imc (see remark
1.1.1 and 1.1.2). In the sequel a multiplicative and (absolutely) convex set will be
called (absolutely) m-convex

3. Immediately, one checks, that A, is an (m)top algebra, if A is an (m)top algebra.

4. Note that, in general, multiplication on a (commutative) top algebra 1s not uniformly
continuous (cf. [26, p. 23], where the contrary is claimed). Even in the scalar case
multiplication

K x K — K, (o,p) — o

fails to be uniformly continuous, as can be verified easily (see also [22, p. 56ff]).
However, our first proposition yields that the completion of a Hausdorff (m)rop algebra
is an (m)top algebra again.
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5. Given algebras A and B, and a multiplicative map f: A — B, and subsets X,Y,Z of A or

of B, respectively, the relation XY C Z will be preserved under the formation of images
and preimages of f (see e.g. [28, lemma 1.4, a)]). Thus, an algebra provided with the
initial topology with respect to an arbitrary family of linear, multiplicative maps into
(m)top algebras is again an (m)top algebra. Now we may conclude that subalgebras
and products of (m)top algebras (the latter with respect to pointwise multiplication)
are (m)top algebras.

It is also obvious that the projective limit of a projective spectrum

((ﬂs}.rET: (Frx LA — As}mET,rgs) y

where (T, <) is a directed set, Ay is an algebra for all s € T', and p,; : A, = A is a

linear, multiplicative map for all r,s € T,r > s, is a subalgebra of [] A;. Thus, if, in
SES

addition, each Ay is an (m)fop algebra and each p, is continuous, then the projective
limit is (m)top as well.

For inductive topologies, the situation is much more complicated (see chapter 3). How-
ever, if A is an (m)top algebra and I C A is an ideal, then it is quite clear that A/ is an
(m)top algebra.

Examples 1.2.

1. There are always most trivial examples of mtop, and of Imc algebras, namely the alge-

bra E,; (1. e. E provided with zero-multiplication) which is an mtop algebra for any
tvs E.
In case A = E,;;; we have ¥ = —x and 64(x) = {0} for all x € A.

. Each seminormed algebra (A, || - ||) is an Imc algebra with the m—basis

{eB):0<e<1}

(see e.g. [28, proposition 2.4, a)] or [26, p. 13]).
More generally, a locally bounded top algebra is mrop and has an m-basis of the form
{eB :e € (0,1]}, where B is a bounded and circled Onbhd.

Proof: Let B be a bounded and circled Onbhd. Continuity of multiplication implies
that there is 8 > 0 such that 88% C B. Now, B := 88 is the desired bounded. circled,
and idempotent Onbhd. O

. @ 1s an /mc algebra which is not a normed algebra. As an lcs, @ is a Fréchet space.

Such algebras are called /mc Fréchet algebras. An algebra with a Fréchet topology and
continuous multiplication will be called Fréchet algebra.

. Let A be a top algebra. On ANV} convolution is well-defined and {A”U{G},*) is an

algebra. Let U € Uy(A) be given. Then

(HUKHA) ) (ﬁmna) c TIS =T

k>n k=0 k>n k=0 j=0 k>n
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Hence (AM10} %) is a top algebra. If A is even an Imc algebra, then (ANU10} ) is
Imc, because U € Uy(A) can be assumed as absolutely m-convex and one obtains

(H”+]U}<HA) x (f]nlIUx]'[A) C HH+]U:~{HA

k>=n k=(} k>n k>n

5. Letpe (0,1). 17 := {(x,,),,;_;.n cEW: Y jx|P < m} 1s a complete, metrizable tvs which
n=()
is not [¢, its topology being defined by the F-norm

|- : 17 — [Oam)a (In)ngﬂ — Z x| P

n=>0

(see [22, example 6.10 F]). Now we claim that componentwise multiplication ’-" as
well as convolution 'x’ are well-defined on /P and both ({/”,-) and (I”,*) are mtop
algebras. (Note that /7 is locally bounded.)

Proof: [7 has a Onbhd-basis consisting of all sets
Bl0,e) = {xe”: x| <€} (0<e<1).
Now, for all x = (Xx)n>0,Y = (¥n)n>0 € B[0,€] we have

lx-yll = 2 [xayal” < min{|lxil, {y]l},

n=0

because € < 1. Thus, we obtain B[0,€] - B[0,g] C B[0,€].
As for *+’, one easily computes that (e + [3)? < of + 7 for all o, 3 > 0.
Thus, for all x = (x,)n>0,¥ = (Vn)n>0 € [P we have

[yl = 3

n>0

E Xk¥n—k

k=

<X E xeynk]? = |lxll]I¥]l-

n>0k=0

That is to say || - || is submultiplicative and we get

B|[0,€] = B[0,€] C BJ0,€].

Now, we are going to introduce an example of a fop algebra which is not mrop.

]
6. For a measurable space (X,S), and a trop algebra C we call a map
f:X — C S—simple (or ‘simple’, in abbreviation), 1f there are pairwise disjoint sets
Sty €5, and vy, ...,7Y, € C for some natural number n such that

Elgmskux and f = szﬁk

k=1
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It is easy to see that the set of all simple maps f : X — C, which will be denoted by
S(X,C), is an algebra with respect to pointwise operations.

Now, we call f: X — C S-measurable (or ‘measurable’, for short), if it is the point-
wise limit of a sequence of simple maps (fu)nenw € S(X, O, A:={f:X > C:
f measurable} is an algebra with respect to pointwise operations, because addition,
and multiplication, and scalar multiplication are continuous on C.

Let us now denote by B the Borel G-algebra on C, generated by 1ts linear topology
T. Furthermore, we assume that each open subset T of C is is the union of countably
many open sets such that the closure of each is contained in 7. We will refer to this
property as (£). Then f~!(B) C S, if f: X — C is measurable. Indeed, it suffices to
prove f~1{(T) C . This is obvious for f € §(X,C). Let

f - Hlll—:rn::f”'-' (ﬁ'j”ENES(X-C}N

Foreach T = i’f C C one can find a sequence (7, ), of open subsets of C, such that

T = U T,and T, C T for all n € IN. Now we can conclude for any x € X:
nelN

flx) T < dImeN: f(x)eT, <

<=> dmeNIneNVYk>n: filx) €T,.

rim= 4 Y rmes

Note that each semimetrizable topological space has property (ff). The above consid-
erations could as well have been undertaken for any topological space instead of a
topological algebra (see [13, p. 94]).

That 1s to say

. Let C be a rop algebra with property (1) and A the algebra of all measurable functions

f:10,1) = C. A Onbhd-basis of a linear topology on A (the so-called topology of con-
vergence in measure) can be defined by 7/ 1= {U{V,E} V=VeW(lC),0<e<l},
where

U(V.g) := {fEA:l(f'I(C\V)) EE}?

A denoting the Lebesgue-measure on [0, 1). The topology thus achieved is the coarsest
topology, iff C carries the coarsest topology.

It is well known for the case C = K that A’ = {0} (see [22, example 6.10 J]). Now,
the same reasoning as in the scalar case yields Conv(U(V,g)) = A for all closed sets
V € Uy(C) and for all € > 0.

Indeed, let fE A, e>0,andV =V € Up(C) be given. Choose n € IN such that ﬁ < E,

Moreover, for all 0 < j < n we sett; := ﬁ and

@, el
fif’)'*{ 0, L€ [0, D)\ [tj-1,t5)
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n
forall 1 < j<n. Clearly,nf; € U(V,e) and f = 3 f;.
j=1
Now we claim that A is a rop algebra with respect to pointwise multiplication.

Proof: Let a closed Onbhd V € Uy(C) and € > 0 be given. Since multiplication is
continuous on C, we can choose a closed set W € U (C) satisfying W* C U. But this
yields

(fe)H(C\V) C fHC\W)UgT (C\W),

forall f,g € A. Hence
£

(U (W,E))z CU(Ve).

Now we claim that A is not mrop if C has a unit e and C # m We prove
MU (V,e)) = A
for all V € Uy(C) and forall € > 0.

Proof: One can find 8 > O suchthatd-e€ V. For f € Achoosen € N and 0 =y <
o <ty =1,suchthatt; —t;,_) <g forall 1 <j<n Now, we set

o ﬁﬁ', IE[U,I)\[I_;_],I_;)
f}(f} o { 5_"+1f(f), I e [Ij_l,fj}l

for all 1 < j < n. Then, clearly, f; € U(V,€) and ] fi=1r. U
. =

The requirement C having a unit e is indeed necessary, because in case C = Cpy we
obtain A = A,,;;, which is an mtop algebra.

8. Let now C be any top algebra satisfying (f) with a unit e. Then (f, : [0,1) = C,x —
e) € 8([0,1),C) is a unit in A. Invertibility of f € A implies that all its values are
invertible. We claim that inversion is continuous in A, if it is continuous in C. (See

also {38, p. 731], where continuity of the inversion map is proved for the special case
C=K.)

Proof: Note that for multiplicative groups (G, -}, (H,-) each provided with a topology
making multiplication separately continuous, continuity of a map ¢ : G — H which is
multiplicative or antimultiplicative, respectively, is the same as continuity of ¢ at the
unit of G.

Let now V =V € Uy(C) be given. We can find W =W € Up(C), such thatx™! € e+V
for all x € (e+W)NG(C). Now for any f € G(A) we obtain

{xe0,):(f—fx)eWrc{xe[0,1):(f ' = fi)x) €V}.
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Hence

AM{xe[0,1):(f " = f)x) eC\V}) <
<SA({xe[0,1): (f - fe)(x) € C\W}).

Proposition 1.1 Let Hausdorff tv-spaces E, E, F, F, and G be given such that E is a dense
subspace of E, and F is a dense subspace of F, respectively, and such that G is complete.
Then any continuous, bilinear map

b:ExF — G,(x,y) —> b(x,y)
has a unique continuous and bilinear extension

b:ExF — G,(x,y) —> b(x,y).
(See also [6, chap. 3, p. 50], where the assertion is proved for complete topological
groups E, F', G, and dense subgroups E C E, and F C F, respectively.)

Proof: First observe that it suffices to prove that there is a unique, bilinear extension b :
ExF = G,(x,y) = b(x,y).

Since b, : E = G,x+ b(x,y) is a linear, continuous map to a complete Hausdorff #vs for all
y € F and E is a dense subspace of E, there is by [22, theorem 3.4.2] a unique extension of
b, to a linear, continuous map by : E — G,x — by(x). Now we claim that

b:E X F — G,(x,y) — by(x)

satisfies the above requirements.

b is bilinear, because pBF + b, is a linear, continuous extension of by, for all y,z € F and
u € IK which yields uby + b, = byy..

It remains to prove that b is continuous. Let therefore U = U € Uy{(G) be given. Since b is

continuous, one can find V € Up(E) and W € Up(F) satisfying b(V x W) C U. Now, Ve s
a Onbhd in E. We show that b (TFE X W) C U. For all w € W we obtain

b (Ff,w) = by (?E) Chy(V)=by(V)CU
because b,, is continuous on E for each w. O

As a corollary, we obtain an impotant permanence property of (m)rop algebras:

Corollary 1.1 Let A be a Hausdorff (m)top algebra. Then there is a unique extension of
multiplication on A to a multiplication on the completion of A, A, such that A is an (m)top
algebra. Moreover, A is commutative, if A is commutative.
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Proof: Multiplication on A can be extended to a uniquely determined continuous, bilinear
map
@:AXA— A, (x,y) — xy 1= x@Y.

Since A is dense in A, and @ : A x A — A is a continuous extension of - : A x A — A, and since
1A XA - A 1s associative, @ is associative as well. The same reasoning yields that (A, ®)
1s commutative, if A 1s commutative.

Let finally 1/ be an m-basis in A. Then, naturally, {?ﬁ Ve ‘V} is an m-basis in A. O

In analogy to the theory of [c spaces there is a well-known representation of /mc algebras
as dense subalgebras of projective limits of Banach algebras (see [28, p. 19f], also [22, p.

421)).

Definition-Remark 1.2. A projective system

E = ((Ej):;ET-,(P]‘,F . Er — E.'i]hiET,FEJ)

of tv-spaces E; with linear, continuous linking maps p,; and projective limit

proj E = {{I,t)SET e []E:VrseT,r>s: prlx,) = rs}
seT

is called reduced, if the canonical projections p, : projE — A;, (Xs)seT — X; have dense range
forallteT.

Clearly, p; = p,s o p, implies range(p;) C range(pys) (r,s € T,r > 5). Thus, all the linking
maps prs have dense range, if the projective system is reduced. The converse is, in general,
not true (see [3, example 2.4]).

The following proposition sums up the various representation theorems for /mc algebras
stated 1n literature (e.g. [28, theorem 5.1], [17, theorem 3.3.7)).

Proposition 1.2 Let A be an algebra and T a Hausdor{f linear topology on A. Then in 1)-3)
i) and ii) are equivalent:

[) i) Aislme.

iit) A= (A, T) is isomorphic to a dense subalgebra of the projective limit of a re-
duced projective system ((Ag)ser, (Prs : Ar = Ag)rseT r>s) of Banach algebras Ay,
where (T,<) is a directed set, and p,s : A, = Ay is a linear, multiplicative, and
continuous map forall r,s € T, r > s.

2) 1) Aisacomplete Imc algebra,

i) A =(A,T) is isomorphic to the projective limit of a reduced projective system
((As)seT, (Prs : Ar = Ag)rset.r>s) of Banach algebras A;, where (T,<) is a di-
rected set, and p,s : A, — A is a linear, multiplicative, and continuous map for
allrnseT, r>s.
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3) i) Aisanlmc Fréchet algebra.

ii) A =(A,T) is isomorphic to the projective limit of a reduced projective sequence
((An)nenvs (Pnt1n t Anv1 = An)nen) of Banach algebras An, where ppiy p: Aps) =
A, is a linear, multiplicative, and continuous map for all n € IN.

Proof:

1) It only remains to prove i) = ii). Let v/ be a Onbhd-basis in A consisting of abso-
lutely m-convex sets. For each U € 1 the Minkowski functional p is a submultiplica-
tive seminorm on A and the kernel kern(py ) is an ideal in A. The completion Ay of
A/Xern(py) 1S @ Banach algebra and for all U,V € 9,U C V the linking map

quv :A/kem(puj — Ay, x+ kemn(py) — x+ kern(py)

is linear, multiplicative, and continuous and has a unique continuous extension gy y to
Ay which is again linear and multiplicative. From the theory of /¢ spaces one knows
that A is (linearly) topologically isomorphic to a dense subspace (which is in fact a
subalgebra) of the projective limit of the reducedx projective spectrum

((AU)UEq;, {@'UV)U,FE*F,UCF) (which is an /mc algebra) and one easily checks that the
canonical (linear) isomorphism is also multiplicative.

2) Thus 1s a direct consequence of 1), because the projective limit in 1) is a completion of
A.

3) This is obvious, because we may assume ‘ in 1) as countable, i.e.

V={U,:neN}.

Note that every projective system of rop algebras

((As)sEl"v (F"rs A — As)r.sET.rl‘_*.i] 3

where every p,s 1s linear, multiplicative, and continuous, is equivalent to a reduced one,
namely the projective system

({Fs (A} )sET& (F'rs Ipr(ﬂ))r,sET,rgs) ’

ps : A = Ay denoting the canonical projection. This means, that the corresponding projective
limits
A= pmj {[AS}SET*. [Pr.r A — AS}I‘,EET,FEI}

and

A= proj ((puA))ser (prpr M) rserrs
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are topologically isomorphic. The corresponding isomorphism is in fact the identity map.
(See e.g. [22, proposition 2.6.2].)

It is well known that in a Banach algebra A which has a unit G(A) is an open subset of A
and that the inversion map

1 G(A) — G(A),x — x 7!

is a homeomorphism (see e.g. [27, Satz 17.3]). Hence also G(A) is an open subset of A and

the quasiinversion map
TTGA) — GlA),x—> ¥

1s a homeomorphism as well, because A — A,,x — x— ¢ is a homeomorphism onto its range.
On the other hand, i1f A 1s an arbitrary topological algebra with a unit e, continuity of the
quasiinversion map 1s equivalent to continuity of the inversion map, because quasiinvertibil-
ity of an element x € A with quasiinverse X is the same as invertibility of x — e with inverse
i—e.

We will now see that the quasiinversion map is always continuous on [/mc algebras (see also
{28, proposition 2.8]). For this purpose we prove the next lemma, which generalizes [28,
theorem 5.2]

Lemma 1.1 Let ((Ag)ser, (prs 1 Ar = Ag)rseTr>s) be a projective spectrum of algebras with
linear and multiplicative linking maps, and denote by A its projective limit.

1. An element x = (x;)ser of A is quasiinvertible in A, iff it is quasiinvertible in ] As, iff
sl

T i

each x; is quasiinvertible in A;. In this case (x;)ser = (X5 )ser holds.

2. Let now each A; be an algebra with a Hausdorff linear topology such that multiplica-
tion 1s separately continuous on A for all s € T and let p,s be continuous for all r > s
and let us assume that the projective system is reduced. Then A has a unit e, iff each
Ag has a unit e;. In this case e = (e5)ser and py|G(A)) : G(A;) = G(A;) is a group
homomorphism for all r,s € T, r > 5. Consequently, x = (x;)ser € A is invertible in A,

-1

iff x; is invertible in A for all s € T, in which case we have ((IS)EET)_] = (.:-:j )SET.

Proof:

1. Let (xg)ser € A be given. Quasiinvertibility of (x;)ser in [] A; means that one can find
s€T
(vi)ser € [1 A, such that x,v, = yex; = x; + v, for all s € T. Now, p,, is linear and
seT
multiplicative for all r,s € T with r > 5. This implies

Prs(yr) = (Frs{-xr))h: X5 = Ys-

Le |ps(A) = Re,|ps(A) = idy () = Le |As = Re |As = idy, .
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Let now e, be a unit in A for all s € T and x; = p,;(x,) € range(p,,) for some x, € A,.
Then

prsler)xs = prslerx,) = x; and I.-rprs(fr) = X;g.

As p,s has dense range, p,.(e,) is a unit in A;, hence p.(e,) = e;.

The next corollary generalizes [28, corollary 5.3, a)].

Corollary 1.2 Let ((As)ser,(Prs 1 Ar = Ag)rseTr>s) be a projective spectrum of algebras
with linear and multiplicative linking maps and A denote its projective limit. Then we have

i) ca(x)U{0} = LEJT G4, (x;) U {0} for all x = (x;)ser € A.

ii) If each A; carries a Hausdorff linear topology such that multiplication is separately

continous on A;, and if the projective spectrum is reduced, then G4(x) = LJ_ Oa, (x;)
forall x = (x;)ser € A. "
The proof i1s an immediate a konsequence of lemma 2.1,
Corollary 1.3 Let A be a Hausdorff Imc algebra, then the quasiinversion map
T:G(A) — G(A),x — ¥
1§ CONtinUOUS.

Proof: (For an alternative proof see [28, proposition 2.8].) There is a projective spectrum of
Banach algebras

A= ((As)sers (Prs : Ar — Ag)rseTrzs)

such that A is a subalgebra of proj4. Now, an element (x;);e7 of the projective limit is
quasiinvertible, iff x; 1s quasiinvertible in A; with quasiinverse X; € A, for all s € T. Hence
(quasi)inversion is continuous, because G(A;) — G(A; ), x; ++ X is continuous forall s € T. [J

Corollary 1.4 (See [28, proposition 2.9, a)].) For a Hausdor{f Imc algebra A over the field
of complex numbers and any x € A we have 64(x) # 0.

Proof: By [24, p. 811], for every algebra B with a unit and with an /¢ topology such that mul-
tiplication is separately continuous and such that the inversion map is continuous the above
assertion is true. If A has no unit, then 0 € 64(x) for all x € A. O
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Examples 1.3.

1. In general, continuity of the inversion map does not imply continuity of multiplication
even on an algebra where multiplication is separately continuous. Take e.g. (@,]|-
s, %) (cf. example 1.1.4). Of course, the inversion map is continuous on (G(@,*), ||
1| G (@, %), %), since (G(9, %), [|- l=|G(9, %), %) 2 (K\ {0}, |-|,-). Furthermore, for an
Ic algebra A continuity of the inversion map does not imply that A is /mc (see example
1.4.3).

2. There are only a few examples of /¢ algebras which are not Imc. In [2] Arens presented
the Fréchet algebra

L:=L°([0,1]):= [) LP([0,1])
pE(l =)

provided with pointwise multiplication and with the initial topology on L® with respect
to (L® < L?) ,epv, which may as well be generated by the metric

o ~—p IF—28ll
d:L°xL® — 1% (f.g)— Y 277 o
pg] l+”f"'3”ﬂ

L® is an [c algebra, because Holder’s inequality implies

1£8ll5 < U712 - ig”ll2 = A3, l18ll5,

for all f,g € L® and for all p € IN (which also proves that pointwise multiplication

is well-defined on L®). The inversion map is not continuous on L®([0,1]), hence
L®([0,1]) cannot be an /mc algebra. Take

-

=4 0SS
, l<i<i

VAN

for all n € IN. This implies

fn‘l(r):={ m 0<r<a
I, 1<r<i
for all n € IN. Now
=1l = ~ (=2 50 (n->0)

for all p € IN. But
(n—1)7

—1 _
“fn o l”g_‘ n

—+ 1 (n— o0)

if p=1and
1! =115 = oo (1 — o)

if p > 1. Another example of this type will be presented in this section.
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Let us denote the algebra of polynomuials on an algebra A,

i
{Eﬂkxk:n&:ﬂ, 0o,. .., 0 EH},

k=0

which is canonically isomorphic to (ANU{0}) ), by A[X]. In the sequel A[X] will always be
endowed with the direct sum topology. We are now going to investigate conditions such that
A[X] is a rop algebra, if A is a top algebra. Later on we will see that even in the scalar case
the algebra KK[{X] = ¢ is not Imc.

Definition 1.3 Let E be a tvs. If for all (Uy)pen € Uo(E)YN there is a sequence (pn)nen of
positive real numbers such that

"El paly € ‘U{}[E]:

we will say that E satisfies the countable neighbourhood condition, which we will abbreviate
1o (cnc).

The property (cnc) 1s usually defined for Ic spaces only. Some of the results for /¢ spaces
concerning (cne) (see [8]) can easily be transferred to fv-spaces, as will be done in the sequel.

Remarks:

I. It is clear that each locally bounded tvs E satisfies (cnc). The converse 1s also true, if
E 1s, in addition, semimetrizable.

2. Moreover it is easy to check that each gDF-space E (an /c space endowed with the
finest /c topology coinciding with itself on all the sets of a fundamental sequence of
bounded sets) satisfies (cnc).

Proof: (See [8].) Let (B, ),cp be an increasing fundamental sequence of absolutely
convex, bounded sets and (U,)nenw € Up(E)YN. We can find a sequence (Pn)nen €
(0,00} such that B, C p,U, for all n € IN. Now, it suffices to prove that

By N g PnUn

is a Onbhd in B,, for every m € IN. This is obvious, because foralln >mB,, C B, C
p,Un. hence

By N rr;l Puln = BN m PrUn.

r<m
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3. If (E,)nen is a sequence of tv-spaces with (cnc) then their direct sum @ E, also
nelN

satisfies (cnc).

Proof: Let {U,Em})mEH € Uo(E,)" be a sequence of circled Onbhds for all n € IN. We

define
vm = % Uﬂmj
nelN

for all m € IN. One can find (p};m])meﬁ € (0,°)" such that
(m) ¢y (m)
[;L Pr Un " € Up(E,)

for every natural number n. Furthermore, for all m € IN we define p'™ := 111'13.'4:{135,"’}I :
n < m}. Then we obtain

Up:= gvp"’”vi’"] > N p™u™ 0 ) e U™ € Uy(E)

m<n m>n

for all n € IN and

rlr p[mjvm = @ Un.
me

nec iV

Lemma 1.2 Let E be a tvs satisfying (cnc). Then for every sequence (Up)nen € Uo(E)N
there is U € Uy(E) and a sequence (pp)nen € (0,90) such that

Y U C puU,
=1
foralln e IN.

M
Proof: Foralln € IN one can find V,, € Up(E) such that 3 V, C U,.
k=1

Now, the countable neighbourhood condition implies that there is a sequence (p,)nen €
(0,00)" such that

U:= nVn € E).
”g,p Uo(E)

Kyl
Clearly, this yields U C p,U, foralln e IV. O
k=1
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Proposition 1.3 Let A be a top algebra satisfying (cnc). For n € IN we define inductively
A[XI , ----.~XH+I] L= {A[XI ; ---an])[XH+I]*
Then A[X),...,X,) is a top algebra for alln € IN.

Proof: Remark 1.3.3 implies that it suffices to prove that A[X] is a rop algebra. Let therefore
(Un)n>o € Up(A)M1{% be given. Now, by the above lemma, there is V € Uy(A) and (py)n>0 €

(0,00)NU10} guch that i V C p,U, for all n > 0. Inductively, one finds a sequence (3,)n>0 €
k=0
(0,00)V, satisfying §;§; < pk for all X,/ > 0. Finally, take W € Up(A), W = Circ(W), such

that W2 C V. This implies

Psws Psw c P (Z(Skan_kmw) c
nz=0 n>0 n=>0 k=0

n=0

D (EP_'WW) c D (ip;‘v) c Pu.

Examples 1.4.

1. The requirement (cnc) for A is necessary in the above proposition. Take e.g. (®,-),
which is an /mc Fréchet algebra which does not satisfy (cnc). We claim that

D (@) D (0,) — D (v
n=() n={) n=0

is not continuous. (Of course, it is separately continuous.)

Proof: For all m € IN we define U, := F[ B[0, ] x T1 K € Uy(w). Now, a Onbhd-
k=0

k=m
basis in @ {®,-) is given by
n=0

{ D Ui, : (kn)nso € NN strictly mc:reaﬂmg}

n=>0

For no such Onbhd U = €D U, U? is contained in €D U,, because this would imply

n=0 n=0

fiefi)s) - (o] me)-

}}kn- m j}km
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ﬁB[ s k]x]'[y{ C "ﬁ*B[ Hm] Il k.

J=ky J=0 J=n+m

for all n > 0 and for all m > n, which is a contradiction, because n+m — oo (m — oo).
O

2. On the other hand, it is easy to see that continuity of multiplication on A[X] for a top
algebra A does not imply that A satisfies (cnc). A = @,y yields A[X] = (mENU{GH)

nil
3. We know by proposition 1.3 that (¢, *) is an /¢ algebra. We will now see that it is not
Imc.

Proof: We define U, := B[0,;] C K and e, := (8u)i>0 for all n > 0. For each
V € Uy() one can find € > 0 such that £¢) € V. Let us assume

M(V)c D u,.

n=0

This implies (€ ;)" = €"e, € U, for all n > 0 and we obtain £~ > 1 for all n > 0,
which is a contradiction. O

Nevertheless, the inversion map

-1, (G(q},*), ?; ‘]T.lﬂG({p,t), *) oy (G({p,#]} @ ‘IT_!DG(@*)} *)

n=0

is continuous, because (G{tp,*), ea T NG9, *), #) =~ (IK\{0}, |-], -).

We have already mentioned that a subalgebra of an mtop algebra is again mtop. On the

other hand, m is an /mc ideal in any algebra A. One may as well take algebras A and B,
where A is mrop and B is not. Then A x B is not mfop neither, although it contains a non-
trivial ideal, which is mtop. So we are facing the following three-space-problem: Does the
existence of an mtop ideal I C A such that A/; is mrop imply that A is itself mrop?
Now, one has to distinguish two cases, namely whether multiplication on the algebra under
consideration (endowed with a linear topology) is already continuous or not. For the first
case, there will be a partial positive result. For the second case there will be a counterexam-
ple. (These results are due to S. Dierolf, Khin Aye Aye, Schrider; see also [10].)

Motivated by the notion of a topological group, which is the semidirect product of a nor-
mal subgroup and a subgroup (see [32]), which turned out to be a rich source for examples
and counterexamples, an analogous notion of a locally convex algebra, which 1s the semidi-
rect product of an ideal and a subalgebra will be introduced. Moreover, a general method of
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constructing such semidirect products, which contains the direct products and the adjunction
of a unit element as special cases, will be presented. As an application one obtains an exam-
ple of an algebra A provided with a Banach space topology 7" and containing an ideal C such
that both (C, 7 NC) and (A/ ¢, T /) are Banach algebras but (A, T) is not.

Definition 1.4 Let A be an algebra containing an ideal C and a subalgebra B such that
A=C+Band CNB = {0}. Then we call A the semidirect product of C and B and use the
notation A = CxgB.

Remarks: Let A = CxqB.

I. Clearly, the quotient algebra A/ is canonically isomorphic to B, since g : A — B¢ +
b — b is an algebra-epimorphism with kern(g) = C.

2. Quasunvertibility of elements ¢ + b € A, where ¢ € C, and b € B, can be characterized
in terms of qusiinvertibility in C and in B. In fact, formal adjunction of a unit element
to A yields A, = (C x {0})»sB, which we may abbreviate to A, = Cx4B,.

Let ¢ € C and b € B be given. Then ¢ + b is quasiinvertible in A if and only if b is
quasiinvertible in B and c{e — b)~! is quasiinvertible in C. In fact, if e — (¢ + b) =
—c+{e—b) € G(A,). thene —b € G(B,) C G(A,), thus —c{e —b)"' +¢ € G(A,) and
c(e —b)~" is quasiinvertible in A, and hence in C, as C is an ideal in A,.

Conversely, if e— b € G(B,) C G(A,),and e —c(e—b)"' € G(A,), thene — (c+b) €
G(A,). Thus, ¢ + b is quasiinvertible in A, and hence also in A.

Now, consequently, a complex number A € K\ {0} belongs to 64(c+ b) iff either A €
op(b) or %b 1s quastinvertible in B with quasiinverse elementd € B and A € 6¢(c —cd).

Definition-Remark 1.3. Ler (A, T) be atop algebra, and let C C A be an ideal, and B C A
a subalgebra, such that A = CxsB. Then we call (A, T) the topological semidirect product
of C and B, if the canonical linear bijection

(C.TNC) x (B,TNB) — (A, T),(c,b) —> c+b

is a homeomorphism. In this case, the quotient algebra (A,T)/ ¢ is canonically topologically
isomorphic to the algebra (B, TN B).

Proposition 1.4 Let A be an lc algebra, which is the topological semidirect product of an
ideal C and a subalgebra B such that both C and B are Imc. Then A is also [mec.

Proof: Let U be an absolutely convex 0-nbhd in A; we may assume that (UNC)* CUNC. As
A 1s an [c algebra, there are absolutely m-convex Onbhds V and W in C and in B, respectively,
such that

(T(VUW) U(T(VUW)) cU, VCcU, WcCU.

We will show that (V UW)* C U for all k € IN, which proves that

M(TC(VUW))CU.
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Now, (VUW)* is the union of VX(C V C U),W*(C W C U) and of finite products of sets of
the form VW, WVW, WV, VWV, The latter sets are all contained in UNC and (UNC)" C U
forallme V. O

Our next aim is to present a method to construct algebras which are semidirect products.
Proposition 1.5
1. Let C and B be algebras and assume that there is a linear multiplicative map
[:B— L(C) :={f:C— Clinear},b+— 1,
and a linear antimultiplicative map
r:B— L(C),b—— 1y

such that ryoly = Il ory for all b,b € B and such that ly(ac) = ly(a)e, rplac) =
arp(c),aly(c) = rp(a)c forall b € B,a,c € C. Then the multiplication

(Cx B) % (CxB)— (CxB),

((c1,b1),(c2,02)) V= (crc2+ 1y, (c2) + 1, (1), b1 b2)

makes A ;= C X B (provided with componentwise addition and scalar multiplication) an
algebra, such that A is the semidirect product of the ideal C x {0} and the subalgebra
{0} x B. We will use the notation A = C x5 B.

2. Moreover, let T and S be linear topologies on C and on B, respectively, such that
(C,7) and (B,S) are top algebras. Then A provided with the product topology T x §
is a top algebra, iff the two bilinear maps

¢:(B,S)x(C, T)— (C,T), (b,e) — Ip(c)

and

y:(C,T)x(B,S) — (C,T), (¢;b) — rp(c)

are continuous.

Proof: One directly computes that the above multiplication is associative and distributive.
For the last assertion, (A.T x §) is a top algebra, iff

YU € Up(CYVV € Uy(B) 3U € Up(C) 3V € Up(B) : oV xU)+yw(U xV)C U,

because every such {/ and V, can be assumed to satisfy U C U and V? C V, respectively. [J
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Examples 1.5.

. LetCbeanalgebra, B:= K and forall A€ K letl; :=r) :C— C,c+ Ac. ThenC xsB
coincides with C, (formal adjunction of a unit element). If (C,T) is a top algebra, then
(CxsB,T xT9,)and (C,T), coincide.

2. Let B.C be top algebras and [or all b € B let I, := rp := O-map. Then C xg B is equal
to the direct product C x B with componentwise multiplication.

3. Let D be an algebra and let B,C C D be subalgebras such that BCUCB C C. For each
be Bletl,:cw becand ry: ¢+ ch. Then [, r satisfy the requirements of proposition
1.5, hence A = C x5 B is a well-defined algebra. Moreover. C + B is a subalgebra of D
and g: CxsB — C+ B,(c,b) = c+ b is an algebra-epimorphism.

Thus a semidirect product A = C x g B need not be commutative, even if C and B are
commutative. Take e.g.

B::{(g E):a,bEK},C:z{(g E)::‘:EIK}CME{H{).

4. Let C be an algebra with unit element e, and let 7, S be linear topologies on C such
that (C,T) and (C,S) are top algebras. Form A := C X5 C according to 3. by putting
B.=D:=C. Thentf.a.e.:

i) (A, T x.S)is atop algebra.
ii) Multiplication on (A, T x S) is separately continuous.
i) $OT.
[f in addition (C,7),(C,.S) are mtop, then i) — iii) are equivalent to

iv) (A.T x .S) is an mtop algebra,

Proof: 'ii) = iii)": As left multiplication with (e,0) on (A,7 x §) is continuous and
as (e,0)-(0,a) = (a,0) for all a € C, the identity map (C,5) — (C,7T) is continuous,

'iii) = i)’ is true by the last assertion in proposition 1.5, because multiplication as a
map (C.T) x (C,T) — (C,T) is continuous, thus also continuous on (C,T) x (C,.5)
and on (C,S) x (C. 7). The last part follows from the above proposition, as well. O

5. Let C be an algebra and let 7,.§ be Hausdorff linear topologies on C, such that S O 7
and S # 7. Then (A, R ) :=(CxsC, T xS)isatopalgebra. As A:={(—¢,c):c€C}
1s an ideal in A (A is the kernel of the algebra-epimorphism ¢ : C x5C — C,(¢y,¢3) —
1 + ¢ in example 3), we obtain that (A, K ) is the semidirect product of A and {0} x C
which are both closed, but not the topological semidirect product of A and {0} x C.
On the other hand (A, &) is topologically isomorphic as an algebra to the direct topo-

logical product of (A, X NA) and (C x {0}, R.N(C x {0})).
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Proposition 1.6 There exists an algebra A provided with a Banach space topology K_ which
contains an ideal C such that both (C,R.NC) and (A /o R/ C) are Banach algebras and
such that on (A, R ) multiplication is not continuous.

Proof: Let X be a linear space of dimension 2%, then by [5, chap II, §5, exercise 24], X
is linearly isomorphic to {! and to /*. Consequently, there exist two different Banach space
topologies 7 and .S on X. Providing X with zero-multiplication we obtain the algebra X,;;
formal adjunction of a unit element yields the algebra C := (X,;)., which carries the two
different Banach algebra topologies .S and 7" generated by .S and 7, respectively

Now, by example 1.5.4, A := C x5C provided with T x § satisfies the requirements, as § 2 T
and (4,7 x §)/(C x {0}) is isomorphic to the Banach algebra (C,.5). O

Now we are going to examine algebra structure on vector-valued sequence spaces A(A),
where A is an /(m)c algebra and A is a normal Banach sequence space.

Definition 1.5 Let (A, |- ||;) be a Banach space with closed unit ball By, such that

I. o CACwand

2. By is normal, i.e.
By, = {(xn)nz0 € W :3(¥u)uz0 € By Vn =0 |xy| < |yal}

Then A will be called a normal Banach sequence space. For the sequel, we define p, :=
enlln,en = (Oux)i>0 denoting the nth unitvector for all n > 0.

Remarks:

I. For a normed space (.|| -]|),® C A C @ with closed unit ball B; t.f.a.e.

i) B3 1s normal,

ii) If, for any KK-valued sequence (x,),>0 € ®, there is (yn)s>0 € A such that |x,| <
yn| for all n > 0, then (xp)n>0 € A and ||(-’:n}ni_}ﬂHl < || (a)nzolla-

2. For a normal Banach sequence space A the inclusions ¢ < A < @ are continuous,
¢ being endowed with the finest /¢ topology and because pglxi| < |[{xn)n>0l; for all
(I;!Lg:_:-{] = :'l,- ElIld fDI‘ al] k 2 U

3. For a sequence of positive numbers o = (0, ),>0 the so called diagonal transformation
of A

'D:-l L= {(uﬂxﬂ]":_:-{:} . {IH)HE[] E }\:}
is a normal Banach sequence space with respect to the norm
” : ”ul DA — [{}rm);(}’:r)ngﬂ — ”(ﬂ; IJ’H)HED“J’L'

Now we can state a sharper version of 2., which 1s due to S. Dierolf and Fernandez (see
[9]), namely:
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p denoting the sequence (p,),>0. The latter inclusion has already been proved in 2.
The proof of the former inclusion requires completeness of A.
In case ¢ is dense in A, one even obtains:

Bp.l '{: B“_"'{Iil.

because for all (x,;),>0 € A and for all k > 0 we have |pexi| = |lxpex|ln = 0 (k — o).
The condition A containing ¢ as dense subspace is often refered to as (sc) (in abbrevi-
ation for ‘sectional convergence’), because it is equivalent to

D xrex = x (n o) in (A, ]]-]];)
k=()

for all x = (x,),>0 € A, which can be verified easily.

Definition-Remark 1.4. (seee.g. [16].) Let E be an lcs and ) be a normal Banach sequence
space.

{. On
ME) = { (xa)uz0 € EN):¥p € es(E) - (p(xn))o € 1}

(cs(E) denoting the set of all continuous seminorms on E) a Onbhd-basis of an lc topol-
ogy can be defined by {M(U) : U =TU € Uy(E)}, where

AMU) = {{xn)nz0 € ME) : (pu(xn))nz0 € By}

The topology thus achieved may as well be generated by the family of seminorms
(.ﬁ : ;I"'{E} — [Ozm)n [Iﬂ)HED . ”(F(-rrr)}ﬂliﬂH?J;JEL'ILE}'

2. Furthermore we define for alln > 0;

- k=n

}"-{(E)k}n} .= {{Ik)kgn S ]___[E . ((U}k{ne(ﬂ:)k@r} € ?"{E)}

and supply A(E )i>n) with the initial topology with respect to the embedding

}"(‘:Ejkgﬂ) <~ ME), {Ik}kgn — ({U]J:-::n-. [-’%)kén]*

Note that one can always change the multiplication on an algebra (A,-) in the follow-
ing way: @:AXA—= A (x,y)»x@y:=0xy, whereo € K. Incase s #0, y: (A,) =
(A, ®),x — ox is an algebra-isomorphism which is a homeomorphism if A is a top algebra.

Proposition 1.7 Let an l(m)c algebra A and a normal Banach sequence space A be given.
Then A(A)g>y) is an [(m)c algebra with respect to the multiplication

O l[(ﬂ},{zn} X l([ﬂ)%n] — }“{ (A)kl_‘-’_n)i

(X azns (k) izn) ¥ (PrXeye Jksn
for all n > 0. (Note that in case n = 0 and A = K, A(A)gsn) = M)
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Proof: It is sufficient to prove that A(A) is I(m)c, if A is [{m)c. Let U € Up(A) such that
U =TU. One can find V € Uy(A) satusfying V =TV and V2 C U. This implies py(xy) <
pv(x)pyv{v) for all x,v € A. ;From the above remark we obtain:

By ©B) = By, - By C Bj~-B; C B;.

This implies A(V) & A(V) C A{U). In case A is in fact Imc choose (w.l.o.g) V =U. O

Corollary 1.5 For any Ic algebra A and any normal Banach sequence space A
¢' : ?"(A} — ‘Fm(‘q}* [Iu)n:‘_}ﬂ — [:pnxrr)nfgﬂ

is an algebra-isomorphism onto an ideal in [”(A). in case A satisfies (sc}), ¢ is an algebra-
isomorphism onto an ideal in cy(A).

The proof is immediate.

Corollary 1.6 Let A and B be l(m)c algebras, f . B — A a linear, multiplicative, and contin-
nous map, and h a normal Banach sequence space. For all n > 0 we define

Api= H B x M(A)i=n))

O<k<n
which is an l{m)c algebra with respect to the multiplication
O :dl” X Aﬂ — Aﬂ‘.l {(Ik)kzﬂa (}'k}k::[l} — (Pklk}'k)kzm

Moreover fy : Apy1 = Ap (X0 = (X k<n f(xn), (3 )sa) is linear, multiplicative and
continuous for all n > 0. Hence

proj (B _I} Av?"') 1= proj ((AH}HEU? (ﬂl)ﬂEﬂ-’)
is an [{m)c algebra. proj (B 4 A,l) is called a projective limit of Moscatelli type (cf. [25,
p. 21]).

We do not know whether convolution is well-defined on any normal Banach sequence
space other than /'. Anyhow, we have:

Proposition 1.8 For any normal Banach sequence space A such that (A, *) is a Banach al-
gebra and any l(m)c algebra A, (MA),*) is an l(m)c algebra.

Proof: Proceed as in the proof of proposition 1.7. Let (x,)y>0. (Vn)n>0 € A(V). Then we

get:
H
FIE; z -I.‘.'.TH —k
k=0 ”:_;.ﬂ

A

<
A

(2 Pv (Ik }FV (}'n—k ))
1)

k=()
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(v (xn))nz0 % (Pv (va) Juzolla < (v (xn))uzolla - [PV (¥n ) )nzolla-
We have just shown A(V) x A(V) C A(U). O

In [25] Khin Aye Aye proved that the projective Limit of Moscatelli type proj (B =t A,l)
1s (linearly) topologically 1somorphic to

C:= {(xk)kz{_-, e g0}, (f(xk))is0 € l(f‘”}

provided with the initial topology with respect to C < BN and C — MA), (xx)i>0 —
(f(xx))kev- Obviously, C is a subalgebra of (BNVI% ), where

@t BN 5 gNOIOE —y BNVUIOY () ey O ko) > (PR o -

Immediately, one checks that the topological 1somorphism

. f (k) (k+1)
: B— A, ) — C, ( ) |—>( . )
O : proj ( — A, A C, ( Xy *'E”),:;Eﬂ X, -

1s also multiplicative.
Hence, in case B = A and f = id, we obtain proj (B 4 A,l) = AA). In the sequel we will

always identify proj (B 4 A, l) and C without explicit mentioning.

We are now going to conclude this chapter with a sharper version of propostion 1.4, which 1s
in fact a corollary of proposition 1.4 and proposition 1.5 (cf. example 1.5.3).

Proposition 1.9 Ler A = (A, T) be an Ic algebra containing subalgebras C and B satisfving
BCUCB C C such that both (C, T NC) and (B, T NB) are Imc algebras. Then (C+ B, TN
(C+ B)) is an Imc algebra.

This proposition is a slight improvement of what is stated in proposition 1.4, because
proposition 1.4 requires CNB = {0}.

Proof: Immediately, one checks that C + B is a subalgebra of A. According to example
1.5.3, C x5 B is a well-defined algebra which is /mc by proposition 1.4 and proposition 1.5.
The addition map

g:CxsB—C+B,(c,b)r—c+b

is a continuous, open algebra-epimorphism. Now, C + B is topologically isomorphic to the
quotient algebra (C xg B”kem(q) which is an /mc algebra. O
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Chapter 2
Characters on Locally Convex Algebras

Definition 2.1 For an algebra A we define
o(A) := {x € A"\ {0} : ¢ is multiplicative}
and call ¥ € 6(A) a character on A. Moreover we define
o.(A) :==c{A)NA',
in case A is endowed with a linear topology, and
G6(A) :=0(A)U{0}, G.(A):=0c.(A)U{0}.

Here are some well-known results about characters on algebras; the proofs are only in-
cluded for the reader’s convenience and to help the understanding of further conclusions.

Remarks: Let A be an algebra.

1. If A has a unit and ¥ € 6(A), then

XlGa) : G(A) — K\ {0}
1s a group homomorphism.

2. (See (28, theorem C.1].) Let / C A be an ideal in A and ¥ € o(/). Then there is a
unique extension of ¥ to a character y on A. Moreover, in case A is endowed with a
linear topology such that multiplication is separately continuous on A, W 1s continuous,
iff % 1s continuous.

Proof: One can find u € I such that y(u) = 1. We define:

W(x) = 7 (ux)

for all x € A. Then, clearly, v is linear. Now for all x,z € A we have y(xz) = ¥ (uxz) =
w(uxz)y (u) = y(ux)y(zu) = ylux)y(u)y(zu) = u-r}x(u") w(x y(z).

If ¢ € 6(A) is any extension of ¥, we obtain @(x) = ¥ (u)p(x) = ¥ (ux) = y(x) for all
xX€A.

It remains to prove that W is continuous, if ¥ is continuous. One can find U € Up(A)
such that x(UN1I) C {A € K : |A| < 1}. Since multiplication is separately continuous
on A, there is V € Uy(A) satisfying uV C U. This yields w(V) = y(uV) Cx(UNI). O

Observation: One might as well have taken any algebra B with unit e instead of KK on
the right side, if, in addtion, (/) 2 e. For the continuity part of the above remark it
suffices that B is endowed with a linear topology.

However, we obtain for a (top) algebra A and an ideal / C A:

o(I) C 6(A) and ©.(I) C 6.(A),
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respectively. If / is a maximal ideal, we even get
c(l) Co(A) C6{l) and o.(1) Co.(A) C G&.(1)

(see remark 8.).

. Considering the characters on A, it 1s no restriction to assume that A has a unit, because

we have the bijective maps
O:6(A) — o{Ae), x> (Ae = K, (x,h) = yx{x) +A).
(with inverse map o(A.) — &(A), %~ ¥|A) and
Oc 1 0(A) = 0. (Ae)  — (Ae = K, (x,A) ¥ x(x)+A),

respectively, if A is provided with a linear topology (with inverse map
O-(A;) = G.(A).x — xlA). (See e.g. [17, p. 75].) It is easy to see that both ¢ and ¢,
are homeomorphisms with respect to the relative topologies induced by (A*,6(A*,A))
and by (A].G(A],A,}), respectively (the so-called Gelfand topology).

Thus. 1n this special case of 2. we obtain:

0{A,) = G6(A) and O (A.) = G.(A),

respectively.
Note that in 2. the map o(A) — &(/), > x|/ is generally not injective, if I is not a
maximal ideal.

. (See [28, lemma 6.1, a)].) For all x € A and any character y € c(A) we have ¥(x) €

Galx). Hence, 64(x) #O0forall x € A, if 6(A) #£ 0.

Proof: If y(x) = 0, then x is not invertible in A. This vields 0 € 4{x).
For x(x) # 0, we may assume w.l.o.g. that A has a unit e. Clearly, y(x — ¥(x)e) = 0.
Thus, x — ¥ (x)e cannot be invertible in A. O

. In [28, corollary 5.6, a)] the following result is proved: If A is a commutative, complete,

[mc algebra, then:
Ga(x)U{0} = {x(x) : % € 0c(A))

for all x € A. Hence, by the above remark, for a commutative, complete, /mc algebra
we obtain:

{x(x):x€o(A)} = {x(x) : x €0c(A)}
forall x € A.

. G(A) is always closed in (A*,0(A*,A)), because

G(A) = ﬂ {feA”: f(xy)— f(x)f(y) = 0}. Accordingly, if A is endowed with any
TVEA

linear topology, then 6.(A) is closed in (A", 6{A",A)) (see [28, lemma 6.2, a)]).
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7. Lety € 6(A). For I := kern(y) the following holds:

i) Tis a modular ideal in A, i.e. A/; has a unit.

ii) Iis a maximal ideal, i.e. for each ideal J C A which contains /, J is either equal
toAortol.

(Note that an 1deal which contains a modular 1deal is modular itself. Hence there 1s no
need to distinguish between maximal and modular ideals on the one hand and modular
ideals which are maximal among the modular 1deals on the other hand. So there is no
ambiguity in talking of maximal modular ideals.)

Proof: i) follows from A/; = K.
Let now J C A be an 1deal in A contaiming /. If J # I, it follows:

K=yx()=A=x""(K)=3""(x()))=J+1=1.

O
Thus kern(y ) C kern(y) yields kern(y) = kern(w), hence, by the next remark, ¥ = .

8. The following is e.g. stated in [21, p. 588]. Let y,y € 6(A) be given such that
kern{y) C kern(y). Theny = w.

Proof: Since ¥ vanishes on the kernel of y, and since y, as a character, is an algebra-
epimorphism, there is & € K\ {0} such that ¥ = ay. But multiplicativity implies
o=1. O

Convention: For the sequel, we make the following convention. Let two sets X and ¥
be given. We define the canonical projections pry : XY = X, f+ f(y). Incase X = K, the
projection pry will be denoted by o,.

Examples 2.1.
l. Obviously: 6(K) = {idg }. More generally:
O(K")={0;:1<k<n}(n€eN) and 6(®) = {6, :n >0}
(we identify K" = K111},

2. For any algebra A, and any number p € K \ {0}, and the multiplication ©® : A x A —
A, (x,¥) = x® vy := pxy we have the representation:

o(A,©) = {py:y € c(A)}].

Proof: The inclusion "2’ 1s obvious. For 'C’ only note that for any character
X € 6(A,®) the linear functional W := 7y is a character on A, O
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3. We now characterize 6(A[X|) for an arbitrary algebra A. First note that for any family

of linear spaces (E;);cr there is the isomorphism

o: HE; —* ( @ E:-:) a(fs)sET — ( @ Es — Hﬁ{'ri).TET = Efs(-’:s]) -

seT seT seT scT

Now we claim the following representation 6(A[X]) =
{(Frzo € (AN ¥mn > 0¥y € Ax ful®)- Fa0) = frtnlx-9) .

Proof: To verify the inclusion 'D’, one easily computes that ¢ (( fy )x>0) 1s multiplica-
tive for any sequence (fi)x>0 € (A" }M"{n} satisfying the above requirement.

To see the inclusion "C’, let ( fi )i>0 € (A*)”U{G} be given, such that there are m,n > 0
and x,y € A ith fyu(x) fu(y) # fren (xy). Then we get

= ¢((fk)£::_:-n)(1‘€m *J’fn) — fm+n[=‘:}’) 75 fm(x)fn(y) =

O((fi)a=0) (xen ) O((fi)k=0) (ven),
hence (fi)is0 € (A7) 5(A[X)). 0

Note that, in general, the maps f, are not multiplicative. Take for instance A = IK,
which yields A[X] = (p,*). Then, by the above considerations, we obtain &(¢) =
{(xn)nz0 € @:Vm,n >0 Xpxn = Xppin}. Now xﬁ = xg implies xg € {0,1}. If xo = 0,
then x,, = 0 for all n > 0. Moreover, we obtain inductively x, = x{ forall n € IN. Hence,
we have the representation

o(e) ={()ws0:2€ K}.
This yields o(¢) N (o(K))N 1 = {eo, (1)nz0}-

. As in the above example we get & (AN} ) =

{(fizo € AN Vmn > 0¥y €A+ fu(X) £u(3) = fuan(x-¥) | This im-
plies
5 (A”U{“}, *) —&(A) x {0}V

For the scalar case this yields o(w,* ) = {ep}.

. Let A = CogB as in definition 1.4. Let ¢ : A — B denote the corresponding algebra-

epimorphism. Then we have the representation

c(A) =c(C)U(c(B)og).

Proof: If y € o(C), there is a unique extension of y to a character on A and if ¢ € 6(B)
then @ o g € 6(A). Conversely, let x € 6(A). If x| # 0, then X|c € 6(C) and ¥ is its
unique extension to a character on A; if x| = 0, there is y € 6(B) satisfying ¥ = yogq.
O
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In the sequel, there will be more representations of this type.
[t 15 a well known result from the theory of Banach algebras, that for a Banach algebra A

G(A) = 0.(A) or, equivalently, G(A) = G6.(A)

holds. It had been an unsolved problem (the so-called Michael problem) for a long time
whether this is also true for (Imc) Fréchet algebras (see [28, p. 53]). Now it seems that this
problem obtained a positive solution recently which is due to B. Stensones (see [35]).

Lemma 2.1 Let A be a Banach algebra and I C A a proper modular ideal in A. Then I is not
dense in A.

Proof: Letu € A, such that u+ 7 isaunitin A/;. We claim

{xeA:|x—ull<1}NI=0.

Let x € A, such that ||x —u|| < 1. Theny:= ¥ (u—x)* exists in A. Now y — y(u—x) = u—x
k=1
implies v — yu+ yx+x—u = 0. Thus, u € yx+ x+ 1, because y — yu € I. Hence x € I would

imply u« € I, which is a contradiction. L

Theorem 2.1 (See e.g. [21, Satz 125.2] or [27, p. 170].) Let A be a Banach algebra,
X € O(A), then y is continuous.

Proof: I := kern(y) is a proper maximal modular ideal in A. As a modular ideal 7 is not
dense in A, thus closed, because  is maximal. O

It is easy to see that for a normal Banach sequence space A p,0, : A = K, (Xg)kerv = Pnin
is a character on A for all n € IN. As a consequence of the above theorem we obtain that all
characters on A can be found among the maps p,,0, as far as A contains @ as a dense subspace.

Corollary 2.1 For every normal Banach sequence space A satisfving (sc) we have the repre-
sentation
O(A) = {pndn :n € N}.

Proof: First observe that ¢ is a subalgabra of A with respect to the multiplication ¢ x ¢ —
@, ((‘IH)H'EN! (}’ﬂ}ﬂEh’) = (pnxn}‘n}nEN-

Lety € 6(A) and j, : KK — A,x — xe, denote the canonical injections for all » € IN. Then one
can find n € IN such that ¢ o j, # 0 and such that ¥ o j,, = 0 for all m # n.

Indeed, if % o j,, = 0 held for all n € IV, we would obtain ¥|¢@ = 0. Since ¢ is dense in A and ¥
15 continuous by theorem 2.1, this would imply ¥ = 0, which 1s a contradiction. Thus, there
is n € IN such that o j, # 0.

Let us now assume there was m € IN\ {n} such that x o j,, # 0. Then one could find x,y € K
satisfying 0 # x{(j.(x))x(jm(y)). But, on the other hand, we have

XCn ()X (¥)) = X (n(X)jm(y)) = 0,
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which is again a contradiction.

Thus, (p»0,)|@ is a character on ¢ the kernel of which is contained in the kernel of ¥|@. Now,
example 2.1.1 implies ¥|@ = (pn0,)|®. Continuity of % and the requirement (sc) for A yield
the conclusion. [

Corollary 2.2 For A = 1" we have the representation

EFUIa*) = {(EH}HZ_}'D : |E| < ]}'

Proof: Since (/!,*) is a Banach algebra, we have, by theorem 2.1 o(I', %) C /”. Now go on
as in example 2.1.3. O

Definition 2.2 A top algebra A will be called functionally bounded or functionally continu-
ous, respectively, if all the characters on A are bounded or continuous, respectively, where a
linear functional is called bounded, if it is bounded on bounded sets.

The following proposition is an application of a well-known result from the theory of ¢
spaces to the theory of Imc algebras. (See also [12].)

Proposition 2.1 Let A = (A, T) be a Hausdorff Imc algebra and B C A a bounded subset of
A. By the 1¢ remark after definition-remark 1.1

UR:4

ne N

is the smallest subalgebra of A containing B. There is a metrizable Imc linear topology § on
< B > which is finer than the relative topology TN < B > and B is bounded in (< B >,5).

< B> =

Proof: Let 1/ be a Onbhd-basis in A consisting of closed, and absolutely m-convex sets. For
all n € IN we define

Uy = (ﬂ{UE‘V:UZJ:—!B}) N <B>.

Clearly, each U, is absolutely m-convex and closed in < B >. It remains to prove, that U, is
absorbantin < B >. Any x €< B > is of the form

Y& LK), )
X = z le- b}-
k=1 j=1

for some N,Ny,....Ny € IN, lﬁ-ﬂ € IK, and some bfr-k} e B* for all k € {1,..,N}, and j €

{1,..,N}. Since 1B C U,. we obtain (1)“B* c U, for all k € {1,...,N}. This implies

M

bf,—“ € [Uy) forall k € {1,...,N}, and j € {1,...,Ni}, thus x € [U,]. Now, as U, is absolutely
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convex, one cand find ¢ > 0 such that ux € U,,. ]

As an application we obtain the next theorem, which is the most general precision of
the relation between question 1 and question 2 in [28, p. 53]. (See also [12].) It is a slight
improvement of the corresponding result for complete Imc algebras due to Dixon and Fremlin

(see [14]). However, their proof also yields the sligtly more general result stated in theorem
2.2.

Theorem 2.2 All Imc Fréchet algebras are functionally continuous iff all Hausdorff locally
complete, Imc algebras are functionally bounded.

Proof: The condition above is obviously sufficient. For the converse let A be a Hausdorff,
locally complete, Imc algebra. Let us assume there is x € 6(A), and B = I'B C A bounded,
such that ¢ (B) is not bounded in /K. Take § as in proposition 2.1, then the completion (< B >
, $)7of (< B >, §) is an Imc Fréchet algebra. By [29, 5.1.26] the embedding < B > < A
has a continuous, linear, and multiplicative extension j: (< B >, §)™— A. B is still bounded

P

in (< B>, §5)and y =y o j € o(< B> )is continuous. Now

y(B) = x(j(B)) = x(B)

which 1s an unbounded subset of K. This is a contradiction. O

There 1s also a positive result for Hausdorff locally complete, /mc algebras, as far as they
have a fundamental sequence of bounded sets, which is due to S. Dierolf and J. Wengenroth
(see [12]).

Proposition 2.2 Let A = (A,T) be a Hausdorff locally complete, Imc algebra with a funda-
mental sequence of bounded sets (B, )nep. Then A is functionally bounded.

Proof: Let be a Onbhd-basis of A, consisting of absolutely m-convex, closed sets. We
may assume B,, = I'B, C B,y for all n € IN. The inductive limit (A, R) := ind,.en{[Bx], P5,)
1s an LB-space. Furthermore, we define:

Ay = m[;L [ﬂ{UE ‘V:iBnCU}]

which 1s a subalgebra of A for all n € IV and

Vi 1= (ﬂ{u €V: iﬂﬂ cu}) M An

for all n,m € IN. Then {V,,, : m € IN} is a decreasing Onbhd-subbasis of an /mc Fréchet
topolgy S, on A, forall n € IN.

Indeed, (A,, S, ) is obviously semimetrizable. It is metrizable because the inclusion (A,,5,;) =
(A,S) is continuous. It remains to prove that (4,,.5,) is complete. For this purpose it suffices
to show that (4,,5,) is locally complete (see [29, 5.1.9]). Now, by [7], an lcs F is locally
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complete, iff every local Cauchy sequence converges in F. A local Cauchy sequence is a
sequence which is contained in the linear span of a bounded set and is Cauchy with respect
to the corresponding Minkowski functional. Every local Cauchy sequence (vi)iepv in A, is
a local Cauchy sequence in A, because A, is continuously included in A, hence (yi )Jren con-
verges to some vy € A. Every local Cauchy sequence 1s a Cauchy sequence, thus for each
m € IN there 1s ky, € IN such that y, —y; € %Vnm for all k, j > k. This implies that for each
m € IN there 1s k,, € IV such that

T

I 1
—y€ — U | =— rl U
Y m(#ﬂngew ) m(%ﬂnc €V )

for all k£ > k,,,. This yields

Vme N3k, e NVk > ky: yp—VE iVnm,

which proves that (v, ),ev = Y€ A, (n 2 0) in (A,,5,).

(A,S) := ind,epv(An,Sn) 1s an LF-space. (Note that A, O B, forall n € IN, hence A D UA, D
UB, = A.) S is finer than 7, thus § is finer than &, because .S is bornological and R _is the
coarsest bornological topology which is finer than 7. Now, by Grothendieck’s factorization
theorem (see [29, 1.2.20]), we obtain § = &X_and for all n € N there is k,, > n such that

o4l oL,

([Bn]apﬁﬂ) — (Amusn) = ([Bknlapﬂgn)'

Thus, for all n € IV one can find an absolutely convex set V,, € Uy(A,,S5,) such that
ViVn C V), C B, NA,.

(An, pv, ) is a normed algebra such that

cont. Comnt. cant.

([Bﬂ]vpﬂu) — (Amp‘«”n) — ([Bffn]vpﬂk,,) — (A,‘T]_

For all n € IN let now (A,, p,) be the completion of (4,,py,), which is a Banach algebra
and M, : (A, pn) = (A,T) denote the continuous, linear, and multiplicative extension of
(An,pv,) = (A,T). Then R _is the finest /c topology, such that n, : (A,, p,) — A is continu-
ous foralln € IV,

Let now % € 6(A). Then ¢ on, € 6(A,,p,), continuous for all n € IN. This implies that
¥ : (A, R ) — K is continuous, hence ¥ : (A,7) — K is bounded. O

Although Michael’s problem appears to be solved, a description of the characters on cer-
tain algebras still seems desirable. So our next aim is a characterization of 6(A) for a number
of certain (Fréchet) algebras. Since not all of these are Fréchet algebras, these results can
still be regarded as results on automatic continuity (boundedness) of linear and multiplicative
functionals.

More precisely: Starting with an algebra A we form a certain algebra A and get a represen-
tation of 6(A) in terms of 6(A) which enables us to conclude: A is functionally continuous
(bounded), if A is functionally continuous (bounded).
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Definition-Remark 2.1. Let X be any topological space. We define
C(X):={f:X — K : fis continuous}

and

CB(X):={f € C(X): f(X)is bounded}

The latter provided with || - || is a Banach algebra. We supply C(X) with the compact open
topology, which is generated by the family

{P.&;’ . C(X) — [G,W),f — Eggf{'rnﬁ'{:an

of submudltiplicative seminorms. Thus C(X) becomes an Imc algebra. If X is completely
regular, then C(X) is a Fréchet algebra iff, X is a hemicompact k-space (See [17, p. 69]).

Remarks: Let X be a topological space, A € {C(X),CB(X)}, and x € o(A).

I. Incase A = C(X), we have x(f) € f(X) forall f € Aand x(f) € f(X),ifA = CB(X),
respectively, because otherwise f —%(f) 1l would be invertible. This is a contradiction,
because ¥(f —x(f)11) =0, Il denoting the unit X = K, x+— 1 of A.

2. Consequently, we may conclude: ¥(f) > 0if f > 0 and x(|f]) = |x(f)] for all f € A.

Proposition 2.3 (See e.g. [33, p. 38f].) Let X be any topological space. Then C(X) is
functionally bounded with respect to the relative product topology induced on C(X) by K.
(Thus C(X) is also functionally bounded with respect to the compact open topology.)

Proof: Let x € o(C(X)), and (fu)nerv € C(X)V be a pointwise bounded sequence. We

obtain:
|fﬂ - I(fn) 11 |
I+ | fo=x(fm) 1]

g:= ¥ gn € CB(X) is well defined and the restriction of ¥ to C'B(X) is continuous, because
n=1

CB(X) is a Banach algebra. The second remark above implies ¥(g,) = 0 for each n € IV.

gy =27" € CB(X).

Thus, continuity of ¥ on C'B(X) yields x(g) = ¥ x(g.) = 0. Now, the first remark above
n=|

implies that there is x € X such that g(x) = 0. Therefore g,(x) = 0 for all n € IN. Thus, we

obtain ¥{ f,) = fu(x) for all n € IN. This yields the conclusion:

sup [X(fu)l = sup|fu(x)] <o
nelN nclV

Corollary 2.3 For every set S the algebra K° = (C(S,T,,.) is functionally bounded, T,,.
denoting the discrete topology on §.
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However, the following shows that it is not clear whether KK° is always functionally con-
tinuous. We are now going to characterize those sets S such that K* is functionally continu-
ous.

In [29, p. 179] the follwing result is proved:
For a set § t.f.a.e.

i) K is not bornological.
i) Thereis an ultrafilter ¥ on S satisfying (| F =0 and ]’l F, #0forall (F)een € FV.
ne

iii) There is a measure i on 2° with values in {0, 1} such that z#(S) = 1 and u({s}) = 0 for
all s € §.

The last property of F in ii) is called the countable intersection property. It is easy to see
that the countable intersection property is equivalent to:

V(E)wen € FN Q, F,e¥F

The measure g in iif) is called an Ulam measure. A set § is said to satisfy the Mackey-Ulam
condition, if no such measure exists; else it is said to be of measurable cardinality.

The proof of ’i) & iii)’ is due to Mackey. To prove the implication ’ii) = i)', one constructs
a bounded linear functional ¥ : K — K which is not the 0-map but vanishes on K. Going
through the proof again, ¥ turns out to be a character on K°. A set § with property i), ii), or
iii) is said to be of strongly inaccessible cardinality. It is unknown whether such sets do exist.
The following is a slightly more general version of what is proved in {29, theorem 6.2.23],
i) =)

Proposition 2.4 If a set § is of strongly inaccessible cardinality, then for every algebra A
different from {0} which is not of strongly inaccessible cardinality there is a linear and mul-
tiplicative map y : A> — A different from the 0-map which vanishes on A\S). If, in addition, A
is a tvs with a fundamental sequence of bounded sets, 7y is also bounded.

Proof: Let F be an ultrafilter on S as in the remark above. For x = (x;)ses € A5 we define
By :={{xs:sE€F}:F € F}. Bis afilterbasis on A and the filter ¥, generated by B, is an
ultrafilter on A. Indeed, let G C A, not belonging to . Then we have {s € S:x; € G} ¢ F,
hence F:={s€S:x, ¢ G} € Fand {x;:s€ F} CA\ G implies A\ G € ..

It is easy to see that F, has the countable intersection property, hence [ . # 0, because A is
not of strongly inaccessible cardinality. Since [ F; is an ultrafilter, this implies

ﬂ?x = {I(I)}

for some x(x) € A.
We claim that % : A> — A is linear and multiplicative. For all x € AS first observe that F, con-
verges to X (x) in A with its discrete topology. Now, it is easy to see that Fry — x(x) + x(¥)
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and F, — Ax(x) and Fy = %(x) - %(y).

Moreover, let x € A\ {0}. Then, clearly x((x)ses) = {x}, hence % # 0-map. Let now
x = (x;)ses € A®). Then E := {s € S: x; # 0} is finite. It follows that S\ E € F, because
otherwise one would obtain [} # # @. This implies ¥ (x) € {x;:s € S\ E} = {0}.

Let, finally, (B,)nen be a fundamental sequence of bounded sets for A, and B C AS any

bounded set. One can find a family (B;)es of bounded sets in A such that B C [] B,. For
se8

all n € N we define F,, := {s € S: B; C B,} and get S = | J F,. Thus, we can find n € N
nelN

such that F, € F. This implies x(x) € {x; : s € F,,} C B, for all x = (x,)ses € B, hence 7y is
bounded. n

Corollary 2.4 For every set S, t.fa.e.:
i) o (Hf‘s) = {(55 K5 = K, (x;)ses I—Hrs) 1S € S}.
ii) IS is functionally continuous.
it} § is not of strongly inaccessible cardinality.

Proof: The implication ’ i) = ii)’ is obvious. The proof of * if) = {)’ is in complete analogy
to the proof of corollary 2.1 and the proof of the equivalence ’ ii) < iii)’ is an immediate
consequence of corollary 2.3, proposition 2.4 and the remark after corollary 2.3. O

Corollary 2.5 Let S be a set which is not of strongly inaccessible cardinality and (A)ses a
family of algebras. Then we have the representation:

G (l‘[,q,) ={yopr;:t €S,y € (A}

SES

Proof: We may assume that each A; has a unit e;, because [] A, is an ideal in [] (4;).,
€S s€S

hence xy € ¢ (1'[ As) has a unique extension to a character ¢ € ¢ ( I1 (As),,)* Ifo=wyopr
seS SES

with t € § and y € o((A,).) then, clearly, x = (W|A,) o pr;.

jiKS =TT As, (1) ses — (use)ses is an algebra embedding. Let now ¥ € 6 (]'[ A_f) then
SES SES
%0 j € o(K®) (note that o j((1)ses) = 1). Hence %o j = §, for some t € S.

Let (x;)ses € T As such thatx, = 0. We set u; = 1, if s # ¢ and g, = 0. Then
FES

%((xs)ses) = x((usesxs)ses) = X (J((us)ses) (x5)ses) =
= (X0 N{(us)ses)x((xs)ses) = 0.
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Now pr; : 1 A; = A, is an algebra-epimorphism the kernel of which is contained in the ker-
5SS
nel of ¥ which yields the conclusion. O

Corollary 2.6 Let S be a set which is not of strongly inaccessible cardinality. If (As)ses is a

family of functionally bounded (continuous) top algebras, then the algebra [] A; is function-
ses
ally bounded (continuous).

For sets of strongly inaccessible cardinality we have the following characterization in
terms of characters on product algebras:

Proposition 2.5 Let a set § be given. § is of strongly inaccessible cardinality, iff for ev-
ery family of algebras (Ag)ses satisfying 6(A;) # O for all s € S there is a character ¥ €

c (]'[ Aj) which cannot be found among the characters in {yo pr;:s € §,y € 6(A;) }.
FES

Proof: If there is a character y € 6 (K°) \ {3; : s € S}, then, by corollary 2.4, S is of strongly
inaccessible cardinality.

For the converse let (W;)ses € [] 0(As). We define
SES

Y= H‘l’s . HAJ — KS‘J (xs)ses ¥ (Ws(xs))ses,
SES SES

which is an algebra-epimorphism. Take € o(K3) as in proposition 2.4 and we define

Q=)oY EO (ﬂ AJ) . Then, clearly, ¢ vanishes on @Asi Thus, % cannot be of the
SES SES

form o pr for any s € S and any y € G(A,). O

Proposition 2.6 (See [33, p. 42f].) Let X be a Tychonov space. X is realcompact, iff
o(C(X)) ={(8:: C(X) > K, f — f(x)) : x€ X}.

Proof: The realcompactification of X can be defined by
v:X — o(C(X)),x — by,

which is a homeomorphism onto its range satisfying v(X) = ¢(C(X)). Now, X is realcom-
pact, iff v is surjective. O

Corollary 2.7 For the characters on I” we have the representation
o(I”)={0,:z€ BN}

(BN denoting the Stone-Cech compactification of the natural numbers).
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Proof: It is easy to see that

0: C(BN) — I7, f > (f(n))nen

is an algebra isomorphism. Now, by [15, theorem 3.11.1] and the above proposition, every
character on C(BiV) is of the form &, for some z € BIV. O

In the sequel we are going to describe the characters on C(X,A), where C(X,A) denotes
the algebra of continuous functions f : X — A for a topological space X and a top algebra A in
some important cases. Moreover, we will generalize corollary 2.1 to vector-valued sequence
spaces A(A) for [c algberas A and normal Banach sequence spaces A. Last, but not least, there
is a description of 6(H (Q,A)), H(Q,A) denoting the algebra of holomorphic functions from
an open subset Q of the complex plane to a locally complete /c algebra A.

These results are due to S. Dierolf, Schroder, and Wengenroth. See [11].

Proposition 2.7 Ler X be a realcompact topological space and A a metrizable top algebra.
Then
o(C(X,A)) = {yopr,:xe X,y € 6(A)}.

Proof: We may assume that A has a unit e. Indeed C(X,A) is an ideal in C(X,A,). Now, for
all x € o(C(X,A)), one can find a unique extension @ € 6(C(X,A,)) of x. If ¢ = yo pr,, for
some x € X and some Y € (A, ), then, clearly, x = (y|A) o pr.
We define

JiC(X) — C(X,A), fr— (f®e: X = A, x> fx)e),

which is well-defined, linear, and multiplicative. Then ) o j is a character on C(X) (note that
(x e j)(11) = 1). Thus, proposition 2.6 implies that we can find x € X such that x o j = &,.
I:= kern(pr,) = {f € C(X,A) : f(x) =0} is an ideal in C(X,A). Now we claim that [ is
contained in the kernel of .

Let therefore f € I. Since A is metrizable, there is by [22, theorem 2.8.1] an F-norm || - |} :
A — [0,o0) on A generating its linear topology. (Note that an F-norm satisfies the triangle

inequality and |[Aw|| < ||w]| for all w € A and for all A € Bg[0,1].) We define g := /|| f]| €
C(X). Then g has obviously the same zeros as f. Moreover, we define a function 4 on X by

h2) = { IF QI fG), if £(2) #0
0, if fiz)=0

for all z € X. First observe thatf = j(g)h.

Now we claim that, in fact, h € C(X,A). h is certainly continuous in all points z € X with
f(z) #0. Let now z € X such that f(z) =0, and € > 0. Choose n € N such that 2 < &. We
get

1
vi={yeX: IOl < 3 € w00,
and for y € V either ||h(y)|| = 0 or one can find k € IV, k > n such that

1
(k+1)?

OIS 5
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But this yields
I 1 k+1 [

A= < —
N OIS

and, by the second remark on F-norms above, we obtain

o 1
PESWTE]]

Now, the triangle inequality yields

< i+ 1) fFl-

)l = (k+1)f(y)

k+1 1+ 2
IO < (e DI < 5= = — 2 < 7 <

< E,

= k2

which proves that h 1s continuous.
Now we conclude

x(f) = x(g)h) = (xo ) (g)x(h) = glx)y(h) = 0.

Since pr,: C(X,A) — A is an epimorphism and kern(pr,) C kern(} ), we can find a character
W on A satisfying ¥ = yo pr.. O

Corollary 2.8 For a realcompact space X and a metrizable rop algebra A, C(X,A) is func-
tionally bounded (continuous) with respect to the relative product topology induced by A%, if
A is functionally bounded (continuous).

Let A be a realcompact, metrizable rop algebra and X a Tychonov space. By [15, theorem
3.11.16) every f € C(X,A) has a unique extension g € C(vX,A). This implies C(X,A) =
C(vX,A) and we obtain:

Corollary 2.9 Let X be a Tvchonov space and A a realcompact, metrizable top algebra. Then
o(C(X,A)) ={wepr. . xeVvX,y € c(A)}.

Corollary 2.10 For a Tychonov space X and a realcompact, metrizable top algebra A, the
algebra of continuous functions on X with values in A, C(X.A), is functionally bounded
(continuous) with respect to the relative product topology induced by A*, if A is functionally
bounded (continuous ).

Note that A as a metrizable tvs 1s realcompact, 1f it 1s not of strongly inaccessible cardi-
nality (see [15, p. 465]).
In case that in proposition 2.7 X is compact, the requirement A being metrizable can be re-
laxed.

Definition 2.3 An lcs E satisfies the strict Mackev condition (sMc), if for every bounded
subser B C E one can find an absolutely convex and bounded subset D C E containing B such
that the Minkowski functional pp induces the original topology on B.



Locally Convex Algebras 131

Remark: By [29, theorem 5.1.27 ii)] every metrizable [cs satisfies (sMc).

Proposition 2.8 Let X be a compact topological space and A a Hausdorff I¢ algebra satisfy-
ing (sMc). Then
o(C(X,A)) = {yopri:x€X,y € 6(A)}.

Proof: Let) € o(C(X,A)). As in proposition 2.7 we may assume that A has a unit e. Again
we define

JiCX) —= CXA), fr—(fRe: X 5 Ax— f(x)e)

and obtain ¥ o j = 9, for some x € X, because by [15, theorem 3.11.1] every compact space
is realcompact. Again we claim

X(1f € C(X,A): f(x) =0}) = {0}.

Let f € C(X,A) such that f(x) = 0. f(X) is bounded in A. So, by (sMc), f(X) is contained
in a bounded set D = I'D C A such that the Minkowski functional pp induces the original
topology on f(X). Now go on as in the proof of proposition 2.7 only replacing the F-norm
| - || by the Minkowski functional pp. O]

Observe that what is really needed in the above proof is a weaker condition than (sMc),
namely: Every compact subset K is contained in an absolutely convex, bounded subset B
such that pg induces the original topology on K.

As a consequence of proposition 2.8 we obtain:

Corollary 2.11 For a compact space X and a Hausdorff lc algebra A satisfying (sMc), C(X,A)
is functionally bounded (continuous) with respect to the relative product topology induced by
AX, if A is functionally bounded (continuous).

If X = oV = INU {0} is the Alexandroff compactification of IV the requirement for A
can be weakened to the Mackey convergence condition.
Observe that C(0ouV,A) = c(A) is the algebra of convergent sequences in A. Indeed

¢:c(A) — ClodN,A),

Xrs -i'f te N
(Xphnew— | g: 0N 2 At — {

lim x if t =oco
nefV " f

1$ an algebra-1somorphism.

Definition 2.4 A tvs E satisfies the Mackey convergence condition (Mcc), if for all (xp)nen €
co(E) there is a sequence (up)neny € coN (0,00) such that

{P;lIanEH € co(E).

Remark: By (29, 5.1.30ii)] (sMc) implies (Mcc).
We are first going to consider the algebra co(A) of nullsequences in A where A is a top
algebra.
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Proposition 2.9 Let A be a top algebra satisfying (Mcc). Then the characters on co(A) admit
the representation

c(co(A)) = {yopr,:y€c(A),n € N}.

Proof: Again we may assume that A has a unit e, because cy(A) is an ideal in ¢cp(A,). Form
the canonical embedding

Jicp— EH(AL (mﬂ)HEH — (‘-IHE}HEN-

x © j is a character on ¢g. Indeed, let us assume ¥ o j = 0 and let any (yi)renv € co(A) be given.
Choose (ug)kerv € oM (0,°0)¥ such that (;J;flyk)kew € cg(A). This yields

X (idrenv) = 2 (G Jken)) X ((P;;_]}’k)kew) =0,

which is a contradiction,
Thus, by corollary 2.1, one can find n € IN such that o j = §,. Let now (x;)renv € co(A) be
given such that x, = 0. One can find (0 )kerv € coN (0,9)" such that (m;]xk)kgﬂ € co(A).

Now we define
Oy, k#n
Br =
0, k=n

for all k € IV. Then (By)reav € ¢o and we obtain:
(e )xen = J((Brdken) - (0 X )ren.

This yields
X5 ken) = X((Bidken)) - X((0 ' xi)ken) = 0.

Now conclude as in the proof of proposition 2.7. O

Corollary 2.12 Let A be a top algebra satisfying (Mcc), then
o(C(oN,A)) = {wopr.:x€alN,y € o(A)}.
Proof: First observe that co(A) is an ideal in c(4). Let X € 6(c(A)). Now, if x(co(A)) # {0},

then there is n € IN and y € 6(A) such that x|co(A) = yo pr,. Hence ¥y = yo pry,.
If kern(y) D co(A) = kern(pr=.), one can find y € 6(A) satisfying ¥ = Yo pr... O

Corollary 2.13 Let A be a normal Banach sequence space containing © as a dense subspace,
and A an [c algebra satisfying (Mcc), then

6(MA)) = {yopupry:n€ N,y € c(A)}.
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Proof: Lety € o(A(A)). By [16, theorem 3.3] A" is dense in A(A), hence

JiMA) — colA), (Xn)new = (PnXn)nen

is a well-defined 1isomorphism onto an ideal in cg(A). (See the 3~ remark after definition
1.5.) Now, by proposition 2.9, x o j~' = o pr, for some n € IN and some vy € 6(A), thus

X =VYopr,oj=\yop,pry. O

Corollary 2.14 For every normal Banach sequence space A and every lc algebra A satisfying
(Mcc), MA) is functionally bounded (continuous), if A is functionally bounded (continuous).

We are now going to describe the characters on H(,A), the algebra of vector-valued
holomorphic functions, where €2 is an open subset of € and A an /¢ C-algebra.

Definition 2.5 Let 2 be an open subset of € and A an lc C-algebra. [ : 2 — A is called
holomorphic, iff it is weakly holomorphic, i.e. X' o f is holomorphic in the usual sense for all
x'eA.

Remark: Let £ be given as above and A an [c algebra such that the closed absolutely
convex hull of any compact subset of A is again compact (the so-called convex-compactness-
property (cc)). Then, by [19, théoréme 1] every weakly holomorphic function is holomorphic
in a stronger sense: They have locally uniformly convergent Taylor series. This implies that
H(,A) is an algebra with respect to pointwise operations.

By [18, II theorem 5.5] the requirement (cc) for A in Grothendiecks’s theorem can be weak-
ened to local completeness.

Proposition 2.10 Let Q be an open subset of € and A a locally complete lc C-algebra. Then,
for the characters on H(Q,A) we have the representation

O(H(Q.A)) = {yopr,:z€ Q,y € 6(A)}.

Proof: Lety € 6(H(£,A)). We may again assume that A has a unit e, thus there is the
canonical embedding j: H(Q) — H(Q,A), f — f®e. It is well known that, as a character
on H(Q), x o j satisfies x o j = 8, for some z € £ (see [28, theorem 12.7]). Again we prove
x(kern(pr;)) = {0}. Let therefore f € H(€,A) be given, such that f(z) = 0. We define

f1C) -
— —7 l“;?é 2y
o { F@), =2

for all € € €. Since f has a Taylor expansion f({) = ¥, ft—::.—ii}-{g — z)" around z, it follows
n=1 ]

that g is again holomorphic. h: Q > C,{— {—z € H(_ﬂ) satisfies f = j(h)g and the same
reasoning as in proposition 2.7 yields the conclusion. U
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Corollary 2.15 For an open subset Q) of the complex plane and every locally complete Ic -
algebra A, H(Q,A) is functionally bounded (continuous) with respect to the relative product
topology induced by A%, if A is functionally bounded (continuous).

We are now concluding this chapter presenting a more general result than corollary 2.13.

Proposition 2.11 Let B and C be Ic algebras, B satisfying (Mcc). Let A be a normal Banach
sequence space containing @ as a dense subspace and f : C — B a linear, multiplicative, and
continuous map. Let us denote by

A= {(J’H)HEH ecl: (f(¥n) ) nen € l(B)]'

the projective limit of Moscatelli type (see [25, prop. 3.1.1]). Then we have the following
representation of the characters on A:

6(A) ={wopr,:neN,yeo(C)}.

Proof: W.Lo.g. we may assume that f is surjective. Let ¥ € 6(A). By the usual argument
it follows that there is n € N and y € &(C) such that x|C'") = yo pr,. Now, it suffices to
prove that x|C'™) = 0 implies ¢ = 0 for all % € &(A).

Let % € 5(A) such that x|C) = 0. We assume ¥ € 6(A). As in the proof of corollary 2.13
observe that A 1s an ideal in D := proj (C 4 B, Eu) . Thus y has a unique extension to a

character on D, hence we may assume A = ¢p.

Moreover, we may assume that C has a unit e. Indeed, if C has no unit, form C,. In case B has
auniteg, f: C, = B,y+Ae > f(¥) + Aep, is a linear, multiplicative, and continuous extension
of f. Incase Bhasnounit f:C, = B,,y+Ae— f(y) + Ae is again a linear, multiplicative, and

continuous extension of f. A = proj (C A4 B,m) is an ideal in D := proj (CE A B, m) and

the unique extension Y of ¥ to a character on D vanishes on 1,2"'}, because CEM A CCW),
and y(x) = y(ux) for all x € D and some (fixed) u € A satisfying % (u) = 1 (see definition of
the extension of a character on an ideal in the proof of the 2™ remark after defimition 2.1).
Jjico = A,(Op)nen — (Cpe)nen is an algebra embedding. This yields y o j € &(cp) and
¥ o jlﬂa’{”} = (), thus y o j = 0, because ¢ 1s a Banach algebra.

Let now (yx)xenv € A be given. One can find (Vi )kev € coN (0,0)" such that (,T'* FO) ke €
co(B) and we conclude by

1

(Vi ken = (‘_J"k) (YkYk ) ke
Vi keN

which yields

X(Ok)ken) =% ( (%}"k) keﬂ) X ((Yeye)ken) =0,

which is a contradiction. ]
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Corollary 2.16 For Ic algebras B and C, B satisfying (Mcc), and a linear, multiplicative,
and continuous map f : C — B, and a normal Banach sequence space A satisfying (sc), the

Moscatelli algebra proj (C = B,l) is functionally bounded (continuous), if C is functionally
bounded (continuous).

Chapter 3

Inductive Topologies on Locally Convex Algebras

We have already hinted that an algebra A endowed with the /¢ inductive topology with respect
to a family of linear and multiplicative maps (f; : A, = A);er, where each A, is an [{m)c
algebra, 1s, in general, not /(m)c.

However, one may always consider the finest /(m)c topology on A such that each f;
1s continuous, but generally nothing essential about this topology can be proved unless it
coincides with the /¢ inductive topology.

Example 3.1. Let (A;);c7 be a family of /(m)c algebras, then ( [T A;)gcs e 18 @an inductive
seE

spectrum of /(m)c algebras each provided with componentwise multiplication, which is di-

rected by inclusion. The /¢ inductive limit is equal to @ A, with 1ts /c direct sum topology.
sES

{ @ Us (U.F)J'ES € H %(As)}

S'ES .T'ES

2
1s a Onbh-basis in @ A;, hence 69 Us| = EB U? implies that @ A is I(m)c again.
SES SES sES sES

Note that however 1.4.3 is an example of an /c inductive limit of /mc algebras which has
continuous multipliation but fails to be Imc, the corresponding linear maps are not multiplica-
tive.

In the sequel we will focuss countable inductive limits of /(m)c algebras and aim at con-
ditions such that the /¢ inductive limit is again an /(m)c algebra.

For the first result which is presented in this section see [12]. Proposition 3.1 is due to M.
Akkar, C. Nacir (see [1]) where a result of [30] is applied. There, again, at a key point, a
statement of [4] is quoted. A commutative version is stated in [23].

Lemma 3.1 Let (A,||]|a) and (C,||-l|c) be seminormed algebras and f : A — C a continuous
algebra-homomorphism. Then there is a submultiplicative seminorm ||| - ||| on C which is
equivalent to || - ||c such that

AN < [lxila
for all x € A.
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Proof: Let B4 and B¢ denote the closed unit balls on A and on C, respectively. U := f(B,)
is bounded and multiplicative, thus one can find A > 1 such that U C AB¢. Now we define

D:=T ( kg (UU%BC)E)

which is the smallest absolutely m-convex subset of C containing U/ U %B{-. We claim D C
ABc. It suffices to prove (U U iﬂc)k C ABcforall k€ N.
Now, (U ULBc)" is the union of U¥, (3 Bc)* and of finite products of sets of the form

UlB;:, lB.;;;n'lf, UlB;:U, 1BcUch

AT A A AT A
. . . . 1 . L .
all of which being contained in AB¢. By 5 B¢ C D C ABc¢ we obtain that ||| - ||| := pp is
equivalent to || - |lc and U C D yields |||fC)]] < || - |- O

Proposition 3.1 Let (A,)nen be a sequence of seminormed algebras such that each A, is
continuously embedded in Ap+1. Then A := LL A, endowed with the finest Ic topology such
ne

that all the inclusions A, < A are continuous (i.e. the Ic inductive limit of ((An)nen,(An <
Ans1)nen)) is an Imc algebra.

Proof: As an application of the above lemma we find inductively a sequence (B )nen €
[T Uo(A,) of bounded, absolutely m-convex sets, such that B, C B,4 for all n € IN. Hence

nelN
{F (HE‘L Ean) : (En)nen € (0, 1]”}

15 a Onbhd-basis of the /¢ inductive limit consisting of absolutely m-convex sets. O

For Ic algebras satisfying the countable neighbourhood condition, we can prove a more
general result, namely:

Proposition 3.2 Let (A,)ncn be a sequence of lc algebras satisfying (cnc) such that each A,
is continuously included in Ap1. Then A = ind,evAy is an lc algebra.

Proof: Let an absolutely convex Onbhd U € Up(A) be given. Now, the assertion will be
proved within two steps:

1# step. To begin with, we claim the existence of a sequence (Vi)nenv € IE'[H Uy(A,) and
n

of sequences (Wé"})k}n € J1 Uo(Ax) such that forallr € N and forall k > n
k>n

VUV W"Yyuwv,yuw cu.
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Indeed, let n € IN be given. Since the [c topology on A, is finer than then the relative Ic
topology induced by A; for all k > n, the restrictions of multiplication on A; to A, X A and to
A X Ay, respectively, are continuous. Finally, A; i1s continuously included in the /¢ inductive
limit A. Thus, we have

A XA = Ar s A and - Ap XA, = Ap > A,
hence one can find V®) € 1Ug(A,) and W € Uy(Ay) satisfying
VAU A U(w{kly{kﬁ) cU.

Now, by the countable neighbourhood condition, one can find {pg)ienw € 1 (0,e0) such that
kzn

= [‘[ oxV¥ NU € Up(A,). Thus, we obtain:
=H
v, ((—LW“‘]) nu) U ((iw“‘}) mU) V,CU
Pk Pk

2~ step. Now we claim the existence of a sequence (Uy,)nen € [1 Uo(An) of absolutely
- nelN

for all k > n.

convex sets such that:

i) VmneIN: U, CU,+1 CU.
ii) Vmne N : U,U, CU.

i) Vne NVk>n3W € Up(Ay) : WU(U,W)U(WU,) C U.

We will prove the second assertion inductively: Since A; is an /¢ algebra, one can find
Uy =TU, € Uy(A,) such that U LJUf' C V). Condition iii) is guarante:ed by the 1+ step.

Let us now assume that we have already found (U,,...,U,) € ]'[ Uy (Ay) satisfying the con-

ditions {) — iii). Because of iii) we can find V € Up(A,+1) such that Vu(Uu,viu(vu,)CcU.
Furthermore, there is V € Uy(Ap+1), V C Vyi NV such that V2 C V. Now we define

Ups1:=T(UpUV) € Up(Ans1)
and we obtain:
E} Uﬂ {: Uﬂ-|—]_ C U+

it) Uy Uy UUU 4 C UE 1 C F{UEUVEUU,,?UVUH) crivuvuu,vuvl,) C
forallk <mn+ 1.
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It only remains to prove that condition iii) is satisfied. Let therefore Xk > n+ 1. By the
choice of Uy,...,U, we can find W =TW € Uy(A;) such that (U,W)U(WU,)UW C U and
(Va W)U (WV,41) C U. Now we obtain U, W C T(U,WUVW) CT(UUV,, /W)CU
and, similarly, WU, ;. C U. This yields iii).

Now V = U Un € Uy(A) is the desired Onbhd, because
nelN

JTE

wcr( U UmU,,)CU.
mneN

O

Note that in the 2% step of the above proof condition i) and iii) are only needed for
technical reasons.
Seeking to relax the requirement in proposition 3.1 each A, being a seminormed algebra one
must assume, that all A, are commutative Imc algebras with (cnc). This result is due to S.
Dierolf and Wengenroth (see [12]).

Proposition 3.3 Let (A, )henv be a sequence of commutative, Imc algebras satisfying (cnc)
such that for all n € IN A,, is continuously enbedded in A,.. Then A := ind,c A, is an Imc
algebra.

Proof: Let U =TU € Uy(A). Inductively, we are going to construct an increasing sequence

(Udnenw € TI Uo(A,) of absolutely m-convex sets each contained in U such that for all
nelV

n € IN and for all £ > n there is an absolutely m-convex Onbhd V;"] € Up(Ay) satisfying

vV cu and V" cu.

n=1: For all kK € IN we can find an absolutely m-convex set W € Uy(A;) which is
contained in U. Choose (p;)ienv € (1,%)" and an absolutely m-convex set U, € Uy(4,)

For all kK € IN we set VJ‘” ot iﬂf’k and we obtain

uiv c WW, c Wi C U.

i
n— n+ 1 :Letus assume that we have already found Uy C ... C U, and ((V;;:)k )

as required above. Choose (pi )k>n41 € (1 ;o)™ and an absolutely m-convex set W € Up(Ap+1)

such that W C ( M p;{ﬂ{"}) NUNV™. . We define

]-
kSnt 1 "

Up1 :=T(U,UWUWU,) € Up(Ans1)-
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Since A,y is commutative, U, is absolutely m-convex. Moreover, WU, C V,f:}l u, cu
implies U, C Uy,+) C U. Further on, for all K > n+ 1 we define

n l | ]
ASREE (EV"{ 3’) NU (cv.")

and we obtain:

UV T (U OV Buv v cu.

Now V .= U U, € Up(A) is an absolutely m-convex Onbhd which is contained in U. [
nelN

Observe that in the above proof the sets V;"}

are only needed for technical reasons.

In the sequel we are going to investigate inductive algebras of Moscatelli type. Inductive
limits of Moscatelli type have their origin in the theory of /¢ spaces. But the concept is also
adaptable (algebraically) to algebras. We are now going to study conditions which yield that
the inductive limit of Moscatelli type of /(m)c algebras is again an [(m)c algebra. For this
purpose we need some preparation.

Definition-Remark 3.1. Let I(m)c algebras B and C be given such that C is continuously
included in B. Let, furthermore, A be a normal Banach sequence space. By corollary 1.6

An = 1 BXA{(C)i>n) is an l(m)c algebra with respect to the multiplication
| <k<n

Ay XAy — A () ke, ke ) ¥ (PrXeyi)ken

foralln € IN. (A,)uen is an inductive system directed by inclusion and A, — r' An+1 for all
n € IN. It is easy to see that

A= ind(C—= B,A) := indeyA, = B':”}-H‘L(C].

Moreover, a Onbhd-basis of the lc inductive limit is given by

{ @ Un+MV) : (Un)nen € 'IIO{B}”,V =IVe ‘ZI[}(C')} .

nelN

A will be called the Moscatelli algebra (with respect to B, C, and \). We are aiming at
conditions such that A is an l(m)c algebra.

Observation: Since @ U, UA(V) C @ U, +MV) C2I( 69 U, UA(V)), a Onbhd-
neN neN neN

basis of A is also given by

V= {l‘ ( % UnUl(V)) : (Un)nen € Up(B)Y,V =TV € %(C)}-

nelV
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Thus 1t follows:
A is an [c algebra <

Y(Un)nen € Up(BYN,V =TV € Uy(C) 3(Up)nen € Up(BYN,V =TV € Uy(C) :

2
(@ {?nul(l?)) c Pu,+\MV) =

nefy ne

Y(Un)nen € Un(BYN,V =TV € Uy(C) 3(Un)nen € Uo(B)N,V =TV € Uy(C) :
( D f.?n) AMV) U V) ( D m) c Bu,+rMy),
nc N ncilv nelN

because each U, and V can be assumed to satisfy U2 C U,,and V> C V,

We are now giving a componentwise characterization such that the inductive algebra of
Moscatelli type of Ic algebras B and C as it is introduced above is an Ic algebra (this general-
1zes |12, proposttion 1}).

Proposition 3.4 Let B and C be Ic algebras such that C is continuously included in B. Let
A be a normal Banach sequence space and let A = ind(C < B, ) denote the corresponding
inductive limit of Moscatelli type. A is an lc algebra, iff for all (Uy)nen € Up(BYY and
V € Uy(C) there are (U, ey € Up(B)N and V € Uy(C) such that for all n € N

0,Vuvi, Cc U, +p;'V
(where multiplication is the ordinary multiplication on B).
Proof: To see that the above condition is necessary, let n € IV, x, € Uy, and y € V. Since

B C By, it follows that p;'ve, € A(V). Hence one can find u, € U, and z = (2 )ren € MV)
such that X,y = PuXnpP; ' ¥n = ity + 2,. It remains to prove z, € p; V. But this follows from

pv(Pazn) = llpv(zn)enlin < llpv ((2i)ken)ln < 1.
Accordingly, one proves VU, C U, +p;'V.
To see that the condition is sufficient let (x,)uerw € €D Un, (yn)nen € MV). If py (v) #

nelV
0 for some n € IN we obtain:

Thus, there are u, € U,, and z,, € V such that xnmyﬂ = u, + p,,'lzm This implies

PnXn¥n = Pﬁ(p;r}'n}“n + Py (¥n)zn-

Since py (Pnyn)un € Uy, it remains to prove that (py (va)zn)new € A(V). Butsince py(z,) <1,
we obtain:

Py (Py (Yn)zn)) pg ()05 (0) o () =012 < (1P (¥a))nenllr-
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Let now n € IN such that py(y,) = 0. We choose any sequence (1 )rew € BaN [T (0,p; "
keN

and conclude:
ﬂ;lyn E i} =>' Hun E Uﬂazﬂ E V . IHFEI.}IH =uﬂ+p;lzﬂ =:>

PnXn¥Yn = Prlinlin + HnZn,
where U, = I'U, implies pyunu, € Uy, because pu, < 1. Finally
"(pV(pﬂzﬂ)}pp[yn}=ﬂi (O)Pﬁ{.}’n]ﬂ”l 5 ”ﬂ"l i: 1.

Altogether, we get

{IH)HEH(}’H)HEN €2 ( @ U, +;‘.(V}) .

nelN

As a first application of the above proposition we obtain:

Proposition 3.5 Let B and C be Ic algebras such that C is continuously included in B and
let \ be a normal Banach sequence space. If for all (Uy)nen € Uo(B)Y there is a sequence
(n)nen € (0, W)N such that

g 12 (UnNC) € Up(C),

then A = ind(C < B,1) is an Ic algebra.

Proof: Let (Uy)nen € Us(B)N, and V € Up(C). Since B is an Ic algebra, we can find
an absolutely convex set W, € Uy(B) such that W2 C U, for all n € IN. Choose (y)nen €

(0,0)" such that ¥ := ['l pn (WaNC) € Uo(C). Uy = - W, yields
ne

.~ i
GH?UVUH C Wﬂz C Un C Un_l' _V.

n

Corollary 3.1 Let B, C, A, A be given as above such that (cnc) holds either for B or for C.
Then A is an Ic algebra.

The proof is immediate.

Proposition 3.6 Ler an Ic algebra B and a subalgebra C C B endowed with the relative
topology induced by B be given. Moreover, let A be a normal Banach sequence space. If C is
an ideal in B then A = ind(C < B, ) is again an Ic algebra.
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Proof: Let (Uy)nerw € Uo(B)Y, and V € Up(C) be given. Both
:BxC—=C,(x,y)—=xy and -:CxB— C,(y,x)— yx

are well-defined and continuous, thus one can find U € Uy(B) and V € Uy(C) such that
UVUvVU c V. U, :=p;'U satisfies U,VUVU, Cp;'VCU,+p;'V. 0

Corollary 3.2 Let B, C, A, and A as in the above proposition, C provided with the relative
topology induced by B such that either C is dense in B or C is an ideal in B, then the Ic
inductive limit A is again an lc algebra.

Remark: Let now, in addition B and C be Imc algebras. Then A is an Imc algebra, iff
for all (Up)new € Uog(B)Y and for all V =TV € Uy(C) there are (Uy)nery € Up(B)Y and

V =TV € Uy(C) such that

k
U (@ ﬂnUl(f’)) c D v +rwv).
kel nelN ne N
Since

U ( D ﬂnul{?))k =

b ger e o 4 ((@e)or)
ukg(l(v (@U)) y ( (?% ) )
u((@2)o(ge)

and every U, and V can actually be assumed as absolutely m-convex, we get that A 1S an
Imc algebra, iff for all (Uy)nen € Up(B)™ and for all V =TV € Uy(C) there are (U,)nen €

Up(B)N and V =TV € Up(C) such that

U (( @ ﬂ,,) 1(?))k v U (l{f’) (@J ﬂn))k J
U (a.u?) ( %E.; U',.,) l(P))k v U (( 3; ﬂn) MV) (,,EN ﬂn))k c

However, the search for a ‘componentwise’ characterization for the /mc case as it is given for
the /c case in proposition 3.4 was unsuccessful. Anyhow, we have:
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Proposition 3.7 Let B and C be Imc algebras and A a normal Banach sequence space such
that C is continuously included in B. Let us denote by A the cﬂrrfspondingminducﬁve limit of
Moscatelli type, ind(C < B, L). Iffor all (Un)nen € Up(B)N one can find (Uy) ey € Up(BYY

andV =TV € Uy(C) such that

U,V uvu,uvu,V C Uy,
foralln e IN, then A is an Imc algebra.

Proof: By the above considerations, it suffices to prove

( & i:r,,) AV) | A7) ( P t?,,) L A7) ( P ﬂ,,) A(V)

nely nelN nelN

U (@ﬂn)l(f’)(@ﬂn) c Du,
nelV nelV nelN

because every U, can be assumed as absolutely m-convex. Moreover, since every U, can be
assumed to be contained in U, it finally suffices to prove:

(g ﬂn) A7) | MP) (6; ﬂn) U A@) ( D ﬂ,,) \?) © DU,

Let us first concentrate on the inclusion ( @ f?,,) AMV) C @ Up,. Let, therefore, (x,)nen €
ne N nelN

6; Uns (yn)nen € MV). Then py (puyn) < ll(Pg (%) )nenv|h. < 1 implies pay, € V (n € N),
1=

thus we obtain: ppx,y, € U,.

The same considerations yield

1(1?)(@ U) c Pu, and l(fe’)(

nelN ne N nelN

r::r,,) MV) ¢ D u,.

Proposition 3.8 Let B and C be Imc algebras and A a normal Banach sequence space such
that C is continuously included in B. Again we denote the inductive limit of Moscatelli type,

ind(C < B,)), by A. If for all (Uy)nen € U(B)N there is a sequence (ity)nen € (0,00)
such that

El 1 (UnNC) € Up(C),

then A is again an Imc algebra.
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Proof: Let (Uy)nen € Uo(B)Y. We may assume that each U, is absolutely m-convex. We
can find a sequence (i, )nenv € (1,%0) and an absolutely m-convex set V € Up(C) such that

2
VcC rl (U, NC). Now, foreveryn€ N U, := (FL) U, satisfies:
ne

. o

0,V uv0,uvV0,V c U?VUU?UU; C U,

Corollary 3.3 Ler B, C, A, and A be given as above, such that either B or C satisfies (cnc).
Then A is an Imc algebra.

The proof is immediate.

Let again B and C be Imc algebras such that C is continuously included in B, and A a nor-
mal Banach sequence space, and A denote the corresponding inductive limit of Moscatelli
type, ind(C < B, ). It is clear that A is an Imc algebra, if for all (Uy)nen € Uo(B)Y, and

V =TV € Uy(C) there are (T)new € Up(B)N and V =TV € Uy(C) satisfying ¥ C V and
U, C U, foralln € N and

2
( ) ﬁﬁ+1(i‘f)) c P 0, +M9).
nelN neN
Since

2
( P o, +1(1'?)) = P 72+ AMV)? + D oMY + MV) P U,
nelN nelN neN nelN

it follows that A is an Imc algebra, if for all (Up)nen € Up(BYN, and V =TV € Up(C) there
are (Up)nen € Up(B)N and V =TV € Up(C) satisfyingV C V and U, C U, foralln € N
and

P 0.M7) + MV) DB . c B T, +0V).

nelN nelN nelN

Going through the second part of the proof of proposition 3.4 replacing U, by U, and V
by V yields that A is Imc, if for all (Up)nen € Up(B)V, and V =TV € Uy(C) there are

(Up)nen € Up(B)N and V =TV € Up(C) satisfying V C V and U, C U, and
U,vuvo, c U,+p;'V.
foralln € IN.

Proposition 3.9 Let an Imc algebra B and a subalgebra C C B be given such that C is en-
dowed with the relative topology induced by B. Moreover, let A be a normal Banach sequence
space. If C is an ideal in B, then A = ind(C < B,A) is an Imc algebra.
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Proof: Let (Up)nen € Uo(B)Y, V € Up(C). We may assume that all these sets are absolutely
m-convex. Continuity of - : Bx C — C and - : C x B — C implies that there is an absolutely
m-convex set U € Up(B) such that U(UNC)U(UNC)U C V. We define Uy := 5-UNU, and

=(UNC)NV andnbtainﬂnf’uf’ﬁ,,Cp;]ff’cﬂn+p;1?. O

Proposition 3.10 Ler B, C, A, and A be given as above, such that C carries the relative
topology induced by B and such that C is dense in B. Then A is an Imc algebra.

Proof: Let (U,)nen € ‘HU(B)” V € Up(C). We may assume that all these sets are absolutely
m-convex. We define U, := 5-VNU, and V :=V and obtain U,V UVU, C p, 'V C U, +p, V.
O

The next result is a sharper version of proposition 3.9 and of proposition 3.10. It is also
an application of propostion 1.9 to the theory of /¢ inductive limits in the category of Imc
algebras:

Proposition 3.11 Let an Imc algebra B and a subalgebra C C B be given such that C is en-
dowed with the relative topology induced by B. Moreover, let A be a normal Banach sequence
space and let us denote ind(C — B,A) by A. If C is an ideal in B, then A is an Imc algebra.

Proof: By proposition 3.6, A is an Ic algebra. We define D := C and obtain that D) 4+ A(C)
is an Imc algebra by proposition 3.10. Moreover D) 4+ A(C) is an ideal in A.
Indeed, let (x)ieny € D), (vidkew € B™, (vi)ken (zi)renv € A(C), then

(Cerdxenw + O )enw) - ((Vidken + (zkken) =

(Prxrvi) ke + (Prxezi)ken + (PrYeviken + (PrYiZk) ke,

where (prxivi)ken + (Pixkzi)ken + (Pryividken € DY) and (pryrzi)ken € M(C), hence
(D™ +1(C)) A € DM +A(C). Accordingly, we get 4 (D) +A(C) ) € D™ +A(C).
We form (D'[”} +l(C')) x s B®) (according to example 1.5.3) which is an /mc algebra by
proposition 1.4 and proposition 1.5. We claim that A is a quotient algebra of DV) 4 A(C) x5

BW)_ Therefore we must prove that

q: p) + A(C) }:SB(M — A,

(e )renw + i )kens (Vidkew) = (xx +Vidkenv + (Vi )ken

is linear, multiplicative, continuous and open.

Obviously, g is linear and multiplicative. For continuity of g it suffices to prove that D) 4
MC) s cunlmunusly included in A. Since for all n € N,
[T B x M(C)isn) < A, also [T D x M(C)izn) < A holds. Clearly, this yields D) +

k<n k<n
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A(C) <3"A. It remains to prove that g is open. Let therefore U € U (D[”} +l(C)) and
Vel (B{”}) be given. Then the following holds:

gUxV)=U+V D UNAC))+V € U(B™ +1(C)),

thus g 1s also open. O

In [37] Warner gives a rather complicated example of an inductive limit of metrizable

Imc algebras which is not /mc. I do not know whether multiplication is continuous on the
inductive limit.
In [12] the authors prove that in case B = C(C), C = H(C) (the algebra of entire functions),
both B and C endowed with the compact open topology, and A = [*, on A, which is in fact
the strict inductive limit of commutative, Imc Fréchet algebras, multiplication is not even
continuous. Now we are going to introduce a whole class of such counterexamples.

Definition-Remark 3.2. Ler again B and C be lc algebras, such that C is continuously
included in B. For alln € IN we form

A, =B"! ){HC

k>n

which is an Ic algebra with respect to the product topology and componentwise multiplica-
tion. Ay is Imc, iff both B and C are Imc.
Foralln € IN we have A, fif'AH]. We set

A = ind(C <= B) := ind((Ap)nen) = BN + CV,

which is a subalgebra of BY, and endow A with the lc inductive limit topology. Then a
Onbhd-basis on A is given by

{ @ UH + HC {UHJFIEN = 'IIU{BJN,FH - W}

neN k=>m

or by

{r( D v, 1‘[6)  (Un)nen € Up(B)N ,m € w},

k>m

respectively, where [] C stands in abbreviation for {0}~ x [] C.
k>m k>m

The next result characterizes when A is an /(m)c algebra.

Proposition 3.12 Ler Ic algebras B and C be given, such that C is continuously included in

B. Let us denote the lc inductive limit, ind(C — B), by A. Then A is an Ic algebra, iff c” is
an ideal in B.
Moreover, if B is in fact an Imc algebra, then A is Imc, iff C’ is an ideal in B, as well.
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Proof: To see that the above condition is necessary, we first prove that for all U € Up(B)
there is U € Up(B) such that
UCuUCUCU+C,

if A is an [c algebra. Indeed, one can find (U, )nenv € Uo(B)Y and m € N such that

nelN k>m
Now we claim

2
1"( Du,un c) c UW) + CVN, This clearly implies U,,C UCU,, C U +C.

BCUCB C U+C

for all U € Upy(B); thus, BCUCB C ﬂ[ } U+0C)= C’. But this implies
UeUy(B

BC ul’Bc
since multiplication is continuous on B. Letx € B, y € C, and U € Uy(B). We can find

U € Up(B) such that TCUCU C U +C. Since U is absorbant, there is p > 0 such that
px € U. Now we get: xy = px5y € U +C and yx € U +C, respectively.

For the converse let (Up)nenv € Uo(B)™ and m € IN. We can find (Up)nev € Up(BYN satis-
fying U? C U, For all n € NN. It suffices to prove

(@ﬁnu ]‘Ic)zc D uv.+J]c

but this is clear, because U,CUCl, C C c C+U,.
In case B is Imc, we may assume U, = U, and we obtain

2
%(@UH+HC) c Du.+TI]c
nelN k>m nelN k>m

O

So the /¢ inductive limit A is, in general, not an /¢ algebra. In case B is Imc, A is Imec, iff
multiplication is continuous on A.

Lemma 3.2 Let an algebra A and a subalgebra B C A be given. Then the smallest ideal in A
containing B, > B < , is of the form

I'{ABUBAUABAUBABUB).
(Hence, in case A is a top algebra, > B < is the smallest closed ideal in A containing B.)

Proof: We must only prove that / := I'(ABUBAUABAUBABUB) is an ideal. Since [ is
absolutely convex, it suffices to verify IK - C I and ATUIA C I. For the former only note that
KB C B and KA C A hold. For the latter it suffices to show

A(ABUBAUABAUBABUB)U(ABUBAUABAUBABUB)A
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C (ABUBAUABAUBABUB).

But this is obvious. O

For the inductive limit topology in the category of /¢ algebras we obtain the following
characterization:

Proposition 3.13 Let B and C be lc algebras such that C is continuously included in B. Let
us denote by D the closed ideal generated by C in B. Now we claim that the strongest Ic

n—1
algebra topology T on A = ind(C — B) such that all the inclusions [] Bx [] C— (A,T)
k=1 k>n

are continuous is equal to the relative topology R_ induced by the Ic inductive limit B®) +
DY = ind(D < B).

Proof: As ﬂis_an ideal in B, the /¢ inductive limit BN + DV is an ¢ algebra, hence 8 C T,
Letnow U =TU € Uy(A,T) be given. Choose V € Uy(A,7T) such that

vuviuv? cu.

Since V is in particular a Onbhd in the /¢ inductive limit topology, we can find a sequence

(Vi hnen € Up(B)YN and m € IN such that @ Ve + [1 C C V. Each V, is absorbing in B,

nc iV k=>m
thus,

P (BcuCBUBCBUCBCUC) C U.

k>m

Since U 1s absolutely convex and, in particular, closed with respect to the /¢ inductive limit
topology on BW) + N we obtain that

U> @ T (BCUCBUBCBUCBCUC) > [ D,

k= m k>m

which proves that U/ 1s a Onbhd with respect to the relative topology induced by the /¢ induc-
tive limit BN + DV, D

Proposition 3.14 Let B, C, D, and A be given as above such that, in addition, B is imc. Then
the Imc inductive topology ‘T on A is equal to the relative Ic inductive topopolgy R induced

by BV 4 DN on BN} 4 DIV,

Proof: The proof of the inclusion & C ‘7" is in complete analogy to the proof of the above
proposition.

For the inclusion "X D 7T let U = I € Uy(B™) +CN,T) be absolutely m-convex and
go on as in the above proof. O
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Corollary 3.4 Let B, C, and A be given as in proposition 3.13 or in proposition 3. 14, respec-
tively, such that, in addition, C is dense in B. Then the l{m)c inductive algebra topology on A
is equal to the relative product topology induced on A by BV,

Proof: The proof is an immediate consequence of propositien 3.13, 3.14, respectively, [
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