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ON PSEUDO-EINSTEIN RULED REAL HYPERSURFACES IN COMPLEX SPACE
FORMS
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Abstract. In this paper we define the new notion of pseudo-Einstein ruled real hypersurfaces,
which are foliated by the leaves of pseudo-Einstein complex hypersurfaces in complex space
forms My(c), ¢#0. Also we want to give a new characterization of this kind of pseudo-
Einstein ruled real hypersurfaces in terms of the Ricci tensor and the certain integrability
condition defined on the orthogonal distribution Ty in M,,(c)
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1 Introduction

A complex n(>2)-dimensional Kaehler manifold of constant holomorphic sectional curva-
ture ¢ 1s called a complex space form, which is denoted by M, (c). A complete and simply
connected complex space form is a complex projective space P,(C), a complex Euclidean
space C" or a complex hyperbolic space H,(C), according as ¢ >0, c =0 or ¢ < 0. The
induced almost contact metric structure of a real hypersurface M of M,(c) is denoted by
(¢,8,1,8).

Until now several kinds of real hypersurfaces have been investigated by many differen-
tial geometers from different view points ([2],[3].[4],[7],[12]and [14]). Among them in a
complex projective space P,(C) [3] Cecil-Ryan and [7] Kimura proved that they are realized
as the tubes of constant radius over Kaehler submanifolds if the structure vector field & is
principal. Also Berndt [2] showed recently that all real hypersurfaces with constant princi-
pal curvatures of a complex hyperbolic space H,(C) are realized as horospheres or the tubes
of constant radius over certain submanifolds when the structure vector field £ is principal.
Nowadays in H,(C) they are said to be of type Ap,A,A2, and B,

When the structure vector field & is not principal, Kimura [8] and Ahn, Lee and the
present author [1] have constructed an example of ruled real hypersurfaces foliated by to-
tally geodesic leaves, which are integrable submanifolds of the distribution Ty defined by the
subspace Tp(x) = {X€T.M : X LE}, xéM, along the direction of & and Einstein complex hy-
persurfaces in P,(C) and H,(C) respectively. The expression of the Weingarten map is given
by

A = 0E+BU, AU = B¢ and AX =0, (1.1)
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where we have defined a unit vector U orthogonal to § in such a way that BU = AE — af
and B denotes the length of a vector field AE — & and B(x)#£0 for any point x in M, and
for any X in the distribution 7 and orthogonal to £. Recently, several characterizations of
such kind of ruled real hypersurfaces have been studied by the papers ([1],[8],[9].[10] and
[15]). Moreover, among them there are so many ruled real hypersurfaces, which are foliated
in parallel by the leaves of the distribution Ty = {X€T,M : X L £} along the integral curve of
the structure vector &. Then in such a situation the vector field U defined in above is always
parallel along the direction of &.

Now as a general extension of this fact we introduce a new kind of ruled real hypersur-
faces in M, (c) foliated by pseudo-Einstein leaves, which are integrable submanifolds of the
distribution Ty defined by the subspace {X €T, M : X LE}, along the direction of & and pseudo-
Einstein complex hypersurfaces in M,,(c¢). Then such kind of ruled real hypersurfaces are said
to be pseudo-Einstein, because its Ricci tensor of the integral submanifold M(t) is given by

§ = {;C—,u)f—F (u—A{USU" +oUR(HU)*}.
Moreover, its expression of the Weingarten map is given by
AU = BE+YU + 00U and AoU = U —ydU .

In Lemma 3.1 we know that the function A in above is given by A = 2(y* + 8%). When
A = p, ruled real hypersurfaces foliated by such kind of leaves are said to be Einstein. In
particular, A = u = 0, this kind of Einstein ruled real hypersurfaces are congruent to ruled
real hypersurfaces in M, (c) foliated by totally geodesic Einstein leaves M, _y(c), which are
said to be totally geodesic ruled real hypersurfaces in the sense of Kimura [8] for ¢ > 0 and
Ahn, Lee and the present author [1] for ¢ < 0. In such a situation the function ¥ and 8 both
vanish identically.

On the other hand, Okumura [13] and Montiel and Romero {12] respectively have con-
sidered real hypersurfaces in P,(C) and in H,(C) satisfying the condition that the structure
tensor ¢ and the shape operator A commute with each other, that is $A = A9, and have shown
respectively that they are congruent to real hypersurfaces of type A;,A; in P,(C) and of type
Ap,A; and A in H,(C). That is, we have the following

Theorem A. (Okumura [13], Montiel and Romero [12]) Let M be a real hypersurface of
My(c), c¢#0, and n>3 . If it satisfies the condition

Ad—0A =0, (1.2)
then M is locally congruent to one of the following spaces:

(1) In case M,(c) = P,(C)

(A1} a tube of radius r over a hyperplane P,_;(C), where
0<r<i?,

(A2) a tube of radius r over a totally geodesic P(C)
(1<k<n—2), where 0 <r < %

(2) In case M,(c) = H,(C)
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(Ag) a horosphere in H,(C), i.e., a Montiel tube,

(A1) a tube of radius r > 0 over a totally geodesic hyperplane Hy(C) (k =0 or
n—1)

(A3) a tube of radius r > 0 over a totally geodesic Hy(C) (1<k<n—2).

Let us consider a distribution Ty defined by a subspace Ty(x) of the tangent space .M of
M at any point x in M such that Ty(x) = {u€TM : g(u,&(x)) = 0}. Then such a distribution
Ty is said to be holomorphic in M, because it is invariant by the Kaehler structure J. Now we
consider another condition on the distribution 7j defined by

g((A0—94)X,Y) =0 (/)

for any X and Y in Ty, which i1s much more weaker than (1.2), that is, the structure tensor
¢ and the second fundamental tensor A commute with each other. Of course 1n the paper
[1] and [8] we have shown that torally geodesic ruled real hypersurfaces in M, (c) satisfy the
condition (1.1). So naturally they satisfy the formula (I).

On the other hand, the holomorphic distribution Tj s said to be integrable when it satisfies

g((Ad+0A)X,Y) =0, X.YeT. (1)

Now let us consider the restricted Ricci tensor defined on the distribution T 1in such a
way that

where f is a smooth function defined on M. When the function f vanishes on M i1dentically
and its structure vector & is principal, the formula (I) implies the formula (III). So naturally
in such a situation real hypersurfaces of type A in Theorem A satisfy the formula (III). But
its distribution Tj can not be integrable.

On the other hand, in section 3 it will be shown that pseudo-Einstein ruled real hyper-
surfaces also satisfy the formula (III). Moreover, its distribution Tj is integrable. Then as a
characterization of this kind of ruled real hypersurfaces in M, (c) we assert the following:

Theorem B. Let M be a real hypersurface in My(c), c£0,n>2. If it satisfies the condition(I11)
provided with f#0 and the holomorphic distribution Ty is integrable, then M is locally con-
gruent to a pseudo-Einstein ruled real hypersurface in My(c).

2 Preliminaries

First of all, we recall fundamental properties of real hypersurfaces of a complex space form.
Let M be a real hypersurface of a complex n-dimensional complex space form M,(c) of
constant holomorphic sectional curvature ¢(70) and let C be a unit normal field on a neigh-
borhood of a point x in M. We denote by J an almost complex structure of M,(c). For a local
vector field X on a neighborhood of x in M, the transformation of X and C under J can be
represented as

JX = 6X +n(X)C,  JC= &,
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where ¢ defines a skew-symmetric transformation on the tangent bundle TM of M, while n
and & denote a 1-form and a vector field on a neighborhood of x in M, respectively. Moreover,
it is seen that g(&,X) = n(X),where g denotes the induced Riemannian metric on M. By
properties of the almost complex structure J, the set (¢,&,1,¢) of tensors satisfies

¢* = ~-I+n®E, o=0, nM(0X)=0, nE) =1,

where [ denotes the identity transformation. Accordingly, the set is so called an almost con-
ract metric structure. Furthermore the covariant derivative of the structure tensors are given
by

where V is the Riemannian connection of g and A denotes the shape operator with respect to
the unit normal C on M.

Since the ambient space is of constant holomorphic sectional curvature c, the equations
of Gauss and Codazzi are respectively given as follows

R(Y,Z)U = 3{g(Z,U)Y —g(Y,U)Z +g(0Z,U)¢Y —g(¢¥,U)0Z

—2g(0Y,Z)0U } + g(AZ,U)AY — g(AY,U)AZ, (2.2)

(QXA)Y o (vFA)X = g{ﬂ(x)qﬁ’ T TI(Y)Q?X - 23(¢X, Y)]Cj,}, (23]‘

where R denotes the Riemannian curvature tensor of M and VyA denotes the covariant deriva-
tive of the shape operator A with respect to X.

Now let us suppose that the structure vector £ is a principal vector with principal curvature
a, that is, A = . Then, differentiating this, we have

(VxA)E = (X)) + 00AX — ADAX, (2.4)
where we have used (2.1). Then it follows

g((VxA)Y,§) = (Xan(Y) + og(Y,AX)

—g(¥,AGAX) (%)
for any tangent vector fields X and ¥ on M. By the equation of Codazzi (2.3), we have
2AGAX — %q:X = o(0A +A)X. (2.6)

Therefore if a vector field X orthogonal to & is a principal vector with a principal curvature A,

then ¢X is also principal with principal curvature u = ;g‘lf;] , namely we have

2h0o+ ¢
ADX = udpX = — : .
Accordingly, the Ricci tensor § is given by
1
S = Zc{(2n+ DI —3N®RE} +hA — A2 (2.8)

where h 1s the trace of the second fundamental tensor A of M.

Now 1n order to get our results, we introduce a lemma due to Ki and the present author
[5] as follows:
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Lemma 2.1 Let M be a real hypersurface in a complex space form M, (c), n>2. If it satisfies
Ad+0A =0, (2.9)

then we have ¢ = (.

3 Pseudo-Einstein ruled real hypersurface

This section is concerned with the necessary properties about pseudo-Einstein ruled real hy-
persurfaces. Before going to give the notion of pseudo-Einstein ruled ones, we recall a ruled
real hypersurface M of M, (c),c#0 which is defined in Kimura [7]. Let us denote by D
a J-invariant integrable (2n — 2)-dimensional distribution defined on M,(c) whose integral
manifolds are holomorphic planes normal to the plane spanned by unit normals C and JC and
let v: I—=M,(c) be an integral curve for the vector § = —JC.

For any ¢(€1) let ME] (c¢) be a totally geodesic complex hypersurface through the point
¥(¢) of M, (c) which is orthogonal to a holomorphic plane spanned by ¥ (r) and JY (¢). Set

M = {IEME_]] (c) : t€l}. Then the construction of M asserts that M is a real hypersurface
of M,(c), which is called a ruled real hypersurface. This means that there exists a ruled real
hypersurfaces of M, (c) with the given distribution D. This kind of ruled real hypersurface is

foliated by leaves, which are totally geodesic complex hypersurfaces M fﬂ i (¢). Then from its
construction it can be easily seen that the expression of the Weingarten map 1s given by

A = 0+ BU, AU = BE and AX =0, (3.1)

where U is a unit vector orthogonal to  and o and B (B#0) denote certain differentiable
function defined on M and for any X in D orthogonal to UU. Moreover, it can be easily
seen that the Ricci tensor §' of the complex hypersurface M(¢) in M, (c) is propotional to
its Riemannian metric such that §' = “g. That is, all of its Jeaves are Einstein complex

hypersurfaces in M,(c). So such a ruled real hypersurface is naturally said to be Einstein
ruled.

Now let us consider more generalized notion than the above ones. We want to consider a
generalized ruled real hypersurface M, which is foliated by pseudo-Einstein leaves. Here, the
meaning of pseudo-Einstein leaves are integrable submanifolds of the distribution D which
are pseudo-Einstein complex hypersurfaces in M,(c). Then in this case, this kind of general-
ized ruled real hypersurface is said to be pseudo-Einstein ruled real hypersurfaces.

For the construction of this, let us consider two shape operators A¢ and A of any integral

submanifold M(t) = M}EI (¢) of D in M,(c) in the direction of C and &. For any unit vector
field V along D, let V* be the corresponding 1-form defined by V*(V) = g(V,V) = 1. If the
Ricci tensor of M(t) is given by

Fl

§' = (e =l + (u—M{VRV" +oVa(eV)'}

for a certain vector field V, where A and y are smooth functions on M, then the real hyper-
surface M with the given distribution D of M, (c) is said to be pseudo-Einstein ruled. In



76 Young Jin Suh

particular, if A = y, then it is said to be Einstein ruled and if A = p = 0, then it is said to be
totally geodesic and Einstein ruled, and is the ruled real hypersurface as discussed in above.
Accordingly, we say that the real hypersurface M 18 pseudo-Einstein ruled, Einstein ruled or
totally geodesic ruled, then it is easily seen that any integral submanifold of D, which 1s a
submanifold of real codimension 2 in M,(c), is pseudo-Einstein, Einstein or totally geodesic,
respectively.

On the other hand, the distribution Tp(= D) is integrable, we see

g((A0+04)X,Y) =0 (1)

for any vector fields X and Y in 7.

Now from the notion of pseudo-Einstein ruled real hypersurfaces M in M, (c) we are going
to give an expression of Ag +A% of two shape operators Ax and Ac of the integral submanifold

M (t) of the distribution D, which is a pseudo-Einstein submanifold of real codimension 2 in
M, (c). Of course this expression will be useful to get a complete expression of the shape
operator A of M (See Lemma 3.1). Since M(r) is a submanifold of codimension 2, & and C
are orthonormal vector fields on its leaf in M, (¢). So we have the equation of Gauss

VxY =VxY+g(AX,Y)C
- V’ﬂf}’+g(A§X,Y)§+g(ACX,Y)C,

where V and V! are the covariant derivatives in the ambient space M,(c) and in the submani-
fold M(t), respectively and moreover Ac and A; are the shape operators in the direction of C
and &, respectively. Then we have

g(VxY,8) = g(VxV,8) = —g(VxE,Y) = g(AeX,Y),
for any X, Y €Ty, from which it implies that
A X = —9AX, X€Ty. (3.2)
On the other hand, by the equation of Gauss we have
g(AX.,Y) =g(AcX,Y), X,Y€T

and therefore
AcX = AX —Bg(X,U)E, X€T. (3.3)

By (II) we have

From this it can be easily seen that the traces of these two shape operators Az and A¢ are both
equal to zero. Now the curvature tensor of the integral submanifold M(¢) is given by

g(RI(X,Y)ZW)= ${g(Y,Z)g(X,W)—g(X,Z)g(Y,W)+g(¢Y,Z)g(0X,W)
—g(0X,Z)g(¢Y,W) —2g(0X,Y)g(0Z,W)}
+8(AeY,Z)g(A: X, W)+ g(AcY,Z)g(AcX, W)
~8(AX,Z)g(AcY. W) — g(AcX ., Z)g(AcY, W)
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for any vector fields X,Y,Z and W in D. Since the traces of the above two shape operators
Ag and Ac are both equal to zero, its Ricci tensor §' of M(¢) in M, (c) is given by

g(s'Y,z) = I %g(R'(ei,Y)Z,e;)

r-l

= §cg(¥,Z) - g((Af + AR)Y, 2) (3.5)

for any Y,Z in D. In such a situation we can define the Ricci tensor S of the pseudo-Einstein
submanifold M(¢) in such a way that

§ = (gc—ﬂ)f +(u—=M{UU* + U (0U)"}.

Then by (3.5) it can be easily checked that the expression of the Ricci tensor § is equivalent
to the expression of the tensor A% +AZ of M(t) given by

[ (AF+ADU = MU,

(A§+A%)¢U= MU, (3.6)
(A +ADX =  pX, XeDLU,pU,

where A and y are smooth functions on M(z).
Now we give some examples of pseudo-Einstein ruled real hypersurfaces in complex
projective space P, (C).

e

\

Example 1 Let M be a ruled real hypersurface in P,(C) foliated by complex hyperplane
P,_{(C). Then the expression (3.1) implies that

A:X =0and AcX =0

for any X € D, where D denotes the distribution of P,_; (C). This implies AE +AZ = 0 on the

distribution 2. Then its Ricci tensor is given by §' = 5g. So we know that M is a totally
geodesic Einstein ruled real hypersurface in P,(C).

Example 2 Let M be a real hypersurface in P,(C) foliated by complex quadric ¢"~!. Then
it is known that in Kimura [10] the shape operator A¢c defined on the distribution of the
complex quadric Q" ! satisfies

AL =21

Moreover, we know that Az X = —¢AX for X€D. Then we know

Agx = ¢AGAX

PADACX

—0*AACX

—¢1{A§X + PBg(AoX,U)S}
—0*{A*X}

= AMX,

H

i

where in the third equality we have used the integrability of the distribution D. So it follows
that l(fll1 +AZ)X = 2)*X for any X €D. Then the Ricci tensor §' is given by §' = {§c—2A}g.

From ths we conclude that M is not totally geodesic Einstein ruled real hypersurface.
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Example 3 Let I be a complex curve in P,(C). Now let us consider
oz(I) = U.xer{ﬂ'ﬂx'g v|v is a unit normal vector of I at x}.

Then ¢% (') is an (n — 1)-dimensional complex hypersurface in P,,(C) (See [8],[9]), which
is a submanifold of real codimension 2 in P,(C). Moreover, it is a pseudo-Einstein complex
hypersurface in P,(C). Then we construct a real hypersurface M in P,(C) foliated by such
kind of leaves along the integral curve of the normal vector field & = —JC.

For this, we consider a regular curve y: /—-M,(c). Then we can construct a ruled real
hypersurface M foliated by pseudo-Einstein complex hypersurfaces in such a way that

M = U,‘)f[f)xq:tg[l_)
- u,qa‘é}(r).

Moreover, let us take a structure vector ¢ such that S(7y(r)) = ¥ (¢) orthogonal to the tangent
space of ¢z (I') at y(¢). The vector {(y(¢)) can be smoothly extended to any point in ¢[,?':} (T") by

parallel displacement P in such a way that PE_,('}'(I))J_Txib?{T) for any x in ¢?{1"}. Then in

this case we call such a real hypersurface in P,(C) pseudo-Einstein ruled real hypersurface.
Now let us show that its leaves are pseudo-Einstein complex hypersufaces in P,(C).

In fact, if we consider the principal curvatures of the shape operator A¢c defined on the
distribution of 03 (T'), it is given by

car(g +0) with multiplicity 1,

n
cnr(i — 6) with multiplicity 1,

0 with multiplicity 2n — 4.
Then from this expression of the shape operator A- we can put
Tt
5

for a certain vector field U €D and any vector field X €D orthogonal to U and ¢U, where D
denotes the distribution of ¢x (I") orthogonal to the structure vector & Then it can be easily
seen that

AcU = m!(g +0)U, AcoU = cot(~ —8)6U,and AcX =0

AU =co*(3+0)U =4U,

quau = cot?(% —0)oU = 54U,

AzX =0
for any X orthogonal to U,¢U. Also if we apply the same method as in Example 2, the shape
operator Az can be calculated. So naturally it follows that

(Ag +AZ)U =M\,
(Ag + A%‘)'I’U = mUa
(A +ADX =0

for any X orthogonal to U and ¢U. Accordingly, we have our assertion.
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Now from the formula (3.6) it follows

Lemma 3.1 Let M be a proper pseudo-Einstein ruled real hypersurfaces in My(c), c#0,n>3.

Then we have
AU =  BE+yU + 00U, (3.7)
AOU = U —ypU, A =2(y +8%). ‘

In particular, if it is totally geodesic, we have y = & = (.

Proof. Naturally let us put

AE  =oaf+pU,
AU  =BE+vyU + 00U +eX, (3.8)
AoU = —yoU + 00U —edX,

for some vector field X orthogonal to £, U and ¢U where in the third equation we have used
the condition (1I), because the distribution D is integrable. Since M is supposed to be proper
pseudo-Einstein, we may put A#u. In order to prove € = 0, firstly let us prove the following

A
= (a+7)BE+(B*+)U. (3.9)
Indeed, (3.2), (3.3) and the first formula of (3.6) imply

AU = —Ag0AU +Ac(AU — BE)
= 0AQAU +A(AU —BE) — Bg(AU — BE,U)E
= 2{A%U — PAE - Bg(AU,U)E},

where in the third equality we also have used the condition (II).
Secondly, we calculate the following

A*U = BOE + %q:v. (3.10)
In fact, (3.2), (3.3) and the second formula of (3.6) give

MU = [A%+A%)¢U
= AU +A%QU - B*¢U — Bg(AdU,U)E.

So by (3.8) we get the above (3.10).
Finally we give the following for any X orthogonal to &, U and ¢U.

A2X=Be§+‘§x, 3.11)

because the third formula of (3.6) and the condition (II) imply that

X

I

...A OAX +Ac{AX — Bg(X,U)E}
A°X —Bg(AX,U)E).
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Now let us apply the shape operator A to the second formula of (3.8) and use also (3.8)

and (3.9). Then
(% — Y — 8)U —yeX + BeopX
U —yeX + 0edX,

eAX

where we have used

2 2 2
|AdU || _f+a +g 3.12)

=—1'-}

which can be obtained from (3.8) and (3.10). So let us assume £€#0, then AX =eU —yX +
d¢X . This implies

A*X gAU — YAX + 8A0X
(BE + YU + 39U + eX) — y(eU —yX + 6¢X)
—(e0U — X — 0X)

= efE+(e?+7 +8)X.

From this together with (3.11) it follows
p=2(7+8+¢%).

Then by (3.12) we have A = u, which makes a contradiction. So we should have € = 0. It
completes the proof of Lemma 3.1. O

Now let us suppose that the coefficients o, 3,y and & of the vector A and AU satisfy
B%y =20y’ + §%). A smooth function f is defined by fy = 2ctd, and then it satisfies

6 =p*-2ay.

Moreover, if we put AX = AX for any X€T', where T’ denotes the orthogonal complement
of L(§,U,0U), then (3.4) gives ADX = —AdX. From this and (3.7) it follows h = TrA = c.
Thus (3.7) together with these formulas imply

2hAGU + B*0U — fAU =0 (mod &),and
—2hAU + B2U — fAQU =0 (mod &)

where in the second equation we have used the condition (II). When the function y in (3.6)
vanishes, then (3.11) implies ||AX||> = 0 for any X€T’, where T’ denotes the orthogonal
complement of L(E, U, 0U). So it follows

2hAGX — fFAX=0 (mod &), XeT'.
Consequently, if the coefficients o, P and y satisfy B*y = 20.(y* + &%), then they satisfy
2hAGX — fAX + B*{g(X,0U)U + g(X,U)oU }=0 (modt), (3.13)
for a smooth function f by 20:8/y. Then (3.13) is equivalent to
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4 Proof of the Theorem

Let M be a real hypersurface of M,(c), ¢#0, n>2. Assume that it satisfies
g((Ad+0A)X,Y) =0,X.YET, (II)

where f is a smooth function on M. The condition (III) 1s equivalent to

g([h(AD—0A) — (A% — 0A%) — FA]X,Y) =0 (4.1)

for any vector fields X and ¥ 1n Tj.

Without loss of generality, we may suppose that § is not principal. Then we can put
AE = af + BU, where o and B are smooth functions on M and [ does not vanish identically
on M. Let My be an open subset in M consisting of points x at which B(x)#0. Since & is
supposed to be not principal, My is not empty.

From the condition (II) it follows that

(A9 +0A)X = Pg(0X,U)E, XETy (4.2)

from which together with (4.1) it follows that

2hg(AGX,Y) - B*{g(X,U)g(¢Y,U) +g(Y,U)g(dX,U)} = fg(AX,Y), (4.3)

for any vector fields X,Y in 7.
In fact we have

for any vector fields X and Y in Ty by (II). So it follows

g(A%9X,Y) =g(AdX,AY)
= g(A0X, (AY )o) + Bg(Y,U)g(A¢X,E)
—8(9AX, (AY )o) + P?g(Y,U)g(0X,U)
—g(AGAX,Y) +Bg(Y,U)g(0X,U)
—2(A0(AX)o,Y) + B*g(Y,U)g(¢X,U)
= g(0A%X,Y) + B*{g(X,U)g(oY,U) +g(Y,U)g(0X,U)}

for any vector fields X and Y in 7. Then substituting these formulas into (4.1), we have the
formula (4.3).
Now let us take U 1n place of X in (4.3), we have

o

2hAQU — AU + B*OU=0 (mod &). (4.4)
Assume that the holomorphic distribution Tj is integrable. Namely, we assume
g((Ad+0A)X,Y) =0, X,YET. (I1)
Suppose that § is principal. Then by the condition (II) we see

Ad+0A = 0.
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By Lemma 2.1 due to Ki and the present author implies that ¢ = 0, a contradiction. Hence
we may suppose that & is not principal. Then we can put A = of + PU, where o and B are
smooth functions on M and B does not vanish identically on M. Let My be an open subset in
M consisting of points x at which B(x)50. Since & is supposed to be not principal, M is not
empty. On the open subset My we put AU = BE+yU + 6V, where £, U and V are orthonormal,
where ¥ and 8 are smooth functions on My. We denote by L(E,U) or L(E,U, V) a distribution
spanned by &, U and V in the tangent bundle TM, respectively.
Now let us put
AU = BE+yU +0oV

AU = —0AU = —yoU — 3oV (#.5)

Substituting these into (4.4), we have
YU + OV + (2hy— B*)oU + 2h80V =0 (mod &). (4.6)
Now firstly we assert that an information for the distribution L(E, U, ¢U) is given.

Lemma 4.1 If it satisfies (II) and (I11) and f+#0, then we have

AE = ot + BU;
AU =BE+YU +80U:  PPy=2a(y +8%), h=aq, 4.7
AdU = 8U —yoU:;

on the open subset My and the distribution L(E,U.oU) is A-invariant.
Proof. We consider only the non-empty open subset Mj. Taking an inner product (4.6) with
X = U and V respectively, we have
fY+2h8g(U,0V) =0, f8+ (B> —2hy)g(U,¢V) = 0. (4.8)
Next, let us take an inner product (4.6) with ¢UJ and ¢V, respectively. Then we have
f3g(V,0U) + (2hy—PB*) = 0, fyg(U,0V)+2h8 =0. (4.9)
By using (4.9) to eliminate the second terms of (4.8) respectively, we have

eU,6V)* =1} =0, f3{g(U,¢V)* -1} = 0. (4.10)

Suppose that g(U, 0V )7#=£1. Then we see that Y= 6 = 0, because of the assumption f7#0.
So by (4.9) we know B = 0 on My, a contradiction. Hence we have g(U,¢V) = £1. Since U
and ¢V are unit, ¢V = £U. Without loss of generality, we may assume that V = ¢U.

The mutual relation among the coefficients is given by (4.2),(4.3),(4.4) and (4.5). It com-
pletes the proof. O

Lemma 4.2 If it satisfies (11) and (IIl) and f+#0, then we have

AX =0, XeT' (4.11)
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Proof. By Lemma 4.1 the distribution 7' is also A-invariant, because 7’ is an orthogonal
complement of L(E,U,9U ) in the tangent bundle 7M and the shape operator A is symmetric.
For a principal vector X in 77 with principal curvature A, by (4.2) we have AQX = —ApX.
Accordingly, we have by (4.3)

2hAg(0X,Y) + fAg(X,Y) =0

for any vector field Y in 77, which yields that A = 0, because of the assumption. It completes
the proof. Cl

Now we are in a position to prove the main theorem

Proof of the Theorem. Lemma 4.2 and the condition of the Theorem we have
AX =0 (4.12)

for any vector field X in 77 on M. By the continuity of principal curvatures we see that the
shape operator satisfies the conditions (4.7) and (4.12) on the whole M.

In fact if we consider the set int(M — My), then & is principal. From this together with
the condition (II) we assert A¢ + ¢4 = 0. Thus Lemma 2.1 implies ¢ = 0, which makes a
contradiction. Accordingly the set My should be dense in M. So we have the above assertion.

Since the distribution Ty is integrable on M by the definition, the integral manifold of Tj
can be regarded as the submanifold of codimension 2 in M, (c) whose normal vectors are §
and JE =C.

By the definition of the second fundmental form, we see

g(VxY,C) = —g(VxC,Y) = g(AcX,Y) = g(AX,Y), (4.13)

g(VxY,E) = g(VxY,E) = —g(VxE,Y) = g(A:X,Y), (4.14)

for any vector fields X and Y in T, where V denotes the Riemannian connection of M, (¢)
and Az or Ac denotes the shape operator of the integral submanifold M (z) of the disribution
Ty in M, (¢) in the direction of the normal & or C, respectively. For any point x in the integral
submanifold M(z) we denote by {¢;,0e;}, i = 1,...,n— 1, an orthonormal basis of the tangent
space T,M(t). Then by (3.2) and (4.2) we have

gx(Aéq)Ef:q]Ef) — _gx{"qgehff)-
On the other hand, by (3.4) and (4.2) we have

gx(Acte;, 0e;) = —g(0Ace;, de;) = —g(Acei, e;).

These mean that the integral submanifold M(t) is minimal in the ambient space M,(c). Since
Tp 1s also J-invariant, 1ts integral manifold is a complex hypersurface and moreover, it 1s seen
that these shape operators satisfy

VxY VyY +g(AX,Y)C
VY +g(AeX,Y)E+ g(AcX,Y)C
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where V' denotes the Riemannian connection of the integral submanifold of 7j. Thus we see

AcX = AX+g(AcX—-AX, ) =AX-Pg(X,U)E, X€Tp
AX = —0AX, X€Tp,

on My, because we have

g(vxyré) = _E{vx‘gi}’) = _g{'qJAXaY) X, Y€Ty,

by (2.1). Since it is discussed in above that the open subset Mj 1s dense in M, by means of
the continuity of principal curvatures we have

AU = PBE+YU + 00U, AU = dU — U,

AX = 0, XeT' (4.15)

on M and therefore it is seen that another shape operator A of the integral submanifold of Ty
satisfies

U —yoU, X=U:
AtX = —yU-3U, X=0oU: (4.16)
0, XeT!

on M, where X€T"’ is principal, and it is also seen that another shape operator Ac of the
integral submanifold of T satisfies

W+80U, X=U;
AcX =4 U -vwU, X =oU: (4.17)
0, XeT'.

on M, where X€T' is principal. By combining (4.16) with (4.17) and by the direct calculation,
it 1s trivial that we have

(Af +ADX =2(Y +8)X, X =U and ¢U.
In the case where X isin 77, we see
(AZ+A2)X =0, XeT'

This shows that an integral submanifold is pseudo-Einstein. Thus M is a pseudo- Einstein
ruled real hypersurface, because the Ricci tensor §* of any integral manifold M(r) of the
distribution 7 in a complex space form M, (c) is given by

§t = gf:f — 2P + ) {URU* +oU6U*}.

Conversely, let M be a pseudo-Einstein ruled real hypersurface in M,(c). Then we have
shown in section 3 that M satisfies (3.14), which is equivalent to the condition (III). Also by
its construction we know that it satisfies the condition (II). So it completes the proof. O]
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