ON PSEUDO-EINSTEIN RULED REAL HYPERSURFACES IN COMPLEX SPACE FORMS

YOUNG JIN SUH1

Abstract. In this paper we define the new notion of pseudo-Einstein ruled real hypersurfaces, which are foliated by the leaves of pseudo-Einstein complex hypersurfaces in complex space forms $M_n(c)$, $c \neq 0$. Also we want to give a new characterization of this kind of pseudo-Einstein ruled real hypersurfaces in terms of the Ricci tensor and the certain integrability condition defined on the orthogonal distribution T_0 in $M_n(c)$

Mathematical Subject Classifications (1991): 53C40, 53C15, 53B25.

Key words: Einstein, Pseudo-Einstein ruled real hypersurface, Complex space form, Ricci tensor, Totally geodesic, Distribution, Weingarten map.

1 Introduction

A complex $n(\geq 2)$ -dimensional Kaehler manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a complex projective space $P_n(\mathbb{C})$, a complex Euclidean space \mathbb{C}^n or a complex hyperbolic space $H_n(\mathbb{C})$, according as c > 0, c = 0 or c < 0. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by (ϕ, ξ, η, g) .

Until now several kinds of real hypersurfaces have been investigated by many differential geometers from different view points ([2],[3],[4],[7],[12]and [14]). Among them in a complex projective space $P_n(\mathbb{C})$ [3] Cecil-Ryan and [7] Kimura proved that they are realized as the tubes of constant radius over Kaehler submanifolds if the structure vector field ξ is principal. Also Berndt [2] showed recently that all real hypersurfaces with constant principal curvatures of a complex hyperbolic space $H_n(\mathbb{C})$ are realized as horospheres or the tubes of constant radius over certain submanifolds when the structure vector field ξ is principal. Nowadays in $H_n(\mathbb{C})$ they are said to be of type A_0, A_1, A_2 , and B.

When the structure vector field ξ is not principal, Kimura [8] and Ahn, Lee and the present author [1] have constructed an example of ruled real hypersurfaces foliated by totally geodesic leaves, which are integrable submanifolds of the distribution T_0 defined by the subspace $T_0(x) = \{X \in T_x M : X \perp \xi\}$, $x \in M$, along the direction of ξ and Einstein complex hypersurfaces in $P_n(\mathbb{C})$ and $H_n(\mathbb{C})$ respectively. The expression of the Weingarten map is given by

$$A\xi = \alpha \xi + \beta U$$
, $AU = \beta \xi$ and $AX = 0$, (1.1)

¹This paper was supported by the grant from BSRI, 1998-015-D00030, Korea Research Foundation, Korea and partly by TGRC-KOSEF.

where we have defined a unit vector U orthogonal to ξ in such a way that $\beta U = A\xi - \alpha\xi$ and β denotes the length of a vector field $A\xi - \alpha\xi$ and $\beta(x)\neq 0$ for any point x in M, and for any X in the distribution T_0 and orthogonal to ξ . Recently, several characterizations of such kind of ruled real hypersurfaces have been studied by the papers ([1],[8],[9],[10] and [15]). Moreover, among them there are so many ruled real hypersurfaces, which are foliated in parallel by the leaves of the distribution $T_0 = \{X \in T_x M : X \perp \xi\}$ along the integral curve of the structure vector ξ . Then in such a situation the vector field U defined in above is always parallel along the direction of ξ .

Now as a general extension of this fact we introduce a new kind of ruled real hypersurfaces in $M_n(c)$ foliated by pseudo-Einstein leaves, which are integrable submanifolds of the distribution T_0 defined by the subspace $\{X \in T_x M : X \perp \xi\}$, along the direction of ξ and pseudo-Einstein complex hypersurfaces in $M_n(c)$. Then such kind of ruled real hypersurfaces are said to be pseudo-Einstein, because its Ricci tensor of the integral submanifold M(t) is given by

$$S^{t} = (\frac{n}{2}c - \mu)I + (\mu - \lambda)\{U \otimes U^{*} + \phi U \otimes (\phi U)^{*}\}.$$

Moreover, its expression of the Weingarten map is given by

$$AU = \beta \xi + \gamma U + \delta \phi U$$
 and $A\phi U = \delta U - \gamma \phi U$.

In Lemma 3.1 we know that the function λ in above is given by $\lambda = 2(\gamma^2 + \delta^2)$. When $\lambda = \mu$, ruled real hypersurfaces foliated by such kind of leaves are said to be *Einstein*. In particular, $\lambda = \mu = 0$, this kind of Einstein ruled real hypersurfaces are congruent to ruled real hypersurfaces in $M_n(c)$ foliated by totally geodesic Einstein leaves $M_{n-1}(c)$, which are said to be *totally geodesic* ruled real hypersurfaces in the sense of Kimura [8] for c > 0 and Ahn, Lee and the present author [1] for c < 0. In such a situation the function γ and δ both vanish identically.

On the other hand, Okumura [13] and Montiel and Romero [12] respectively have considered real hypersurfaces in $P_n(\mathbb{C})$ and in $H_n(\mathbb{C})$ satisfying the condition that the structure tensor ϕ and the shape operator A commute with each other, that is $\phi A = A\phi$, and have shown respectively that they are congruent to real hypersurfaces of type A_1, A_2 in $P_n(\mathbb{C})$ and of type A_0, A_1 and A_2 in $H_n(\mathbb{C})$. That is, we have the following

Theorem A. (Okumura [13], Montiel and Romero [12]) Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, and $n \geq 3$. If it satisfies the condition

$$A\phi - \phi A = 0, \tag{1.2}$$

then M is locally congruent to one of the following spaces:

- (1) In case $M_n(c) = P_n(\mathbb{C})$
 - (A₁) a tube of radius r over a hyperplane $P_{n-1}(\mathbb{C})$, where $0 < r < \frac{\pi}{2}$,
 - (A₂) a tube of radius r over a totally geodesic $P_k(\mathbb{C})$ ($1 \le k \le n-2$), where $0 < r < \frac{\pi}{2}$.
- (2) In case $M_n(c) = H_n(\mathbb{C})$

- (A_0) a horosphere in $H_n(\mathbb{C})$, i.e., a Montiel tube,
- (A₁) a tube of radius r > 0 over a totally geodesic hyperplane $H_k(\mathbb{C})$ (k = 0 or n-1),
- (A₂) a tube of radius r > 0 over a totally geodesic $H_k(\mathbb{C})$ $(1 \le k \le n 2)$.

Let us consider a distribution T_0 defined by a subspace $T_0(x)$ of the tangent space T_xM of M at any point x in M such that $T_0(x) = \{u \in T_xM : g(u, \xi(x)) = 0\}$. Then such a distribution T_0 is said to be *holomorphic* in M, because it is invariant by the Kaehler structure J. Now we consider another condition on the distribution T_0 defined by

$$g((A\phi - \phi A)X, Y) = 0 \tag{1}$$

for any X and Y in T_0 , which is much more weaker than (1.2), that is, the structure tensor ϕ and the second fundamental tensor A commute with each other. Of course in the paper [1] and [8] we have shown that *totally geodesic* ruled real hypersurfaces in $M_n(c)$ satisfy the condition (1.1). So naturally they satisfy the formula (I).

On the other hand, the holomorphic distribution T_0 is said to be *integrable* when it satisfies

$$g((A\phi + \phi A)X, Y) = 0, \quad X, Y \in T_0. \tag{II}$$

Now let us consider the restricted Ricci tensor defined on the distribution T_0 in such a way that

$$g((S\phi - \phi S)X, Y) = fg(AX, Y), \quad X, Y \in T_0, \tag{III}$$

where f is a smooth function defined on M. When the function f vanishes on M identically and its structure vector ξ is principal, the formula (I) implies the formula (III). So naturally in such a situation real hypersurfaces of type A in Theorem A satisfy the formula (III). But its distribution T_0 can not be integrable.

On the other hand, in section 3 it will be shown that pseudo-Einstein ruled real hypersurfaces also satisfy the formula (III). Moreover, its distribution T_0 is integrable. Then as a characterization of this kind of ruled real hypersurfaces in $M_n(c)$ we assert the following:

Theorem B. Let M be a real hypersurface in $M_n(c)$, $c \neq 0$, $n \geq 2$. If it satisfies the condition(III) provided with $f \neq 0$ and the holomorphic distribution T_0 is integrable, then M is locally congruent to a pseudo-Einstein ruled real hypersurface in $M_n(c)$.

2 Preliminaries

First of all, we recall fundamental properties of real hypersurfaces of a complex space form. Let M be a real hypersurface of a complex n-dimensional complex space form $M_n(c)$ of constant holomorphic sectional curvature $c(\neq 0)$ and let C be a unit normal field on a neighborhood of a point x in M. We denote by J an almost complex structure of $M_n(c)$. For a local vector field X on a neighborhood of x in M, the transformation of X and C under J can be represented as

$$JX = \phi X + \eta(X)C, \qquad JC = -\xi,$$

where ϕ defines a skew-symmetric transformation on the tangent bundle TM of M, while η and ξ denote a 1-form and a vector field on a neighborhood of x in M, respectively. Moreover, it is seen that $g(\xi, X) = \eta(X)$, where g denotes the induced Riemannian metric on M. By properties of the almost complex structure J, the set (ϕ, ξ, η, g) of tensors satisfies

$$\phi^2 = -I + \eta \otimes \xi$$
, $\phi \xi = 0$, $\eta(\phi X) = 0$, $\eta(\xi) = 1$,

where I denotes the identity transformation. Accordingly, the set is so called an almost contact metric structure. Furthermore the covariant derivative of the structure tensors are given by

$$(\nabla_X \phi) Y = \eta(Y) A X - g(A X, Y) \xi, \quad \nabla_X \xi = \phi A X, \tag{2.1}$$

where ∇ is the Riemannian connection of g and A denotes the shape operator with respect to the unit normal C on M.

Since the ambient space is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are respectively given as follows

$$R(Y,Z)U = \frac{c}{4} \{ g(Z,U)Y - g(Y,U)Z + g(\phi Z,U)\phi Y - g(\phi Y,U)\phi Z -2g(\phi Y,Z)\phi U \} + g(AZ,U)AY - g(AY,U)AZ,$$

$$(2.2)$$

$$(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \{ \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi \}, \tag{2.3}$$

where R denotes the Riemannian curvature tensor of M and $\nabla_X A$ denotes the covariant derivative of the shape operator A with respect to X.

Now let us suppose that the structure vector ξ is a principal vector with principal curvature α , that is, $A\xi = \alpha \xi$. Then, differentiating this, we have

$$(\nabla_X A)\xi = (X\alpha)\xi + \alpha\phi AX - A\phi AX, \tag{2.4}$$

where we have used (2.1). Then it follows

$$g((\nabla_X A)Y, \xi) = (X\alpha)\eta(Y) + \alpha g(Y, \phi AX) - g(Y, A\phi AX)$$
(2.5)

for any tangent vector fields X and Y on M. By the equation of Codazzi (2.3), we have

$$2A\phi AX - \frac{c}{2}\phi X = \alpha(\phi A + A\phi)X. \tag{2.6}$$

Therefore if a vector field X orthogonal to ξ is a principal vector with a principal curvature λ , then ϕX is also principal with principal curvature $\mu = \frac{(2\alpha\lambda + c)}{2(2\lambda - \alpha)}$, namely we have

$$A\phi X = \mu\phi X, \quad \mu = \frac{2\lambda\alpha + c}{2(2\lambda - \alpha)}.$$
 (2.7)

Accordingly, the Ricci tensor S is given by

$$S = \frac{1}{4}c\{(2n+1)I - 3\eta \otimes \xi\} + hA - A^2$$
 (2.8)

where h is the trace of the second fundamental tensor A of M.

Now in order to get our results, we introduce a lemma due to Ki and the present author [5] as follows:

Lemma 2.1 Let M be a real hypersurface in a complex space form $M_n(c)$, $n \ge 2$. If it satisfies

$$A\phi + \phi A = 0, (2.9)$$

then we have c = 0.

3 Pseudo-Einstein ruled real hypersurface

This section is concerned with the necessary properties about *pseudo-Einstein ruled* real hypersurfaces. Before going to give the notion of pseudo-Einstein ruled ones, we recall a ruled real hypersurface M of $M_n(c), c \neq 0$ which is defined in Kimura [7]. Let us denote by \mathcal{D} a J-invariant integrable (2n-2)-dimensional distribution defined on $M_n(c)$ whose integral manifolds are holomorphic planes normal to the plane spanned by unit normals C and JC and let $\gamma: I \rightarrow M_n(c)$ be an integral curve for the vector $\xi = -JC$.

For any $t(\in I)$ let $M_{n-1}^{(t)}(c)$ be a totally geodesic complex hypersurface through the point $\gamma(t)$ of $M_n(c)$ which is orthogonal to a holomorphic plane spanned by $\gamma(t)$ and $J\gamma(t)$. Set $M = \{x \in M_{n-1}^{(t)}(c) : t \in I\}$. Then the construction of M asserts that M is a real hypersurface of $M_n(c)$, which is called a ruled real hypersurface. This means that there exists a ruled real hypersurfaces of $M_n(c)$ with the given distribution \mathcal{D} . This kind of ruled real hypersurface is foliated by leaves, which are totally geodesic complex hypersurfaces $M_{n-1}^{(t)}(c)$. Then from its construction it can be easily seen that the expression of the Weingarten map is given by

$$A\xi = \alpha \xi + \beta U$$
, $AU = \beta \xi$ and $AX = 0$, (3.1)

where U is a unit vector orthogonal to ξ and α and β ($\beta \neq 0$) denote certain differentiable function defined on M and for any X in \mathcal{D} orthogonal to U. Moreover, it can be easily seen that the Ricci tensor S^t of the complex hypersurface M(t) in $M_n(c)$ is proportional to its Riemannian metric such that $S^t = \frac{nc}{2}g$. That is, all of its leaves are Einstein complex hypersurfaces in $M_n(c)$. So such a ruled real hypersurface is naturally said to be *Einstein ruled*.

Now let us consider more generalized notion than the above ones. We want to consider a generalized ruled real hypersurface M, which is foliated by pseudo-Einstein leaves. Here, the meaning of pseudo-Einstein leaves are integrable submanifolds of the distribution \mathcal{D} which are pseudo-Einstein complex hypersurfaces in $M_n(c)$. Then in this case, this kind of generalized ruled real hypersurface is said to be pseudo-Einstein ruled real hypersurfaces.

For the construction of this, let us consider two shape operators A_C and A_ξ of any integral submanifold $M(t) = M_{n-1}^{(t)}(c)$ of \mathcal{D} in $M_n(c)$ in the direction of C and ξ . For any unit vector field V along \mathcal{D} , let V^* be the corresponding 1-form defined by $V^*(V) = g(V, V) = 1$. If the Ricci tensor of M(t) is given by

$$S^{t} = \left(\frac{n}{2}c - \mu\right)I + (\mu - \lambda)\left\{V \otimes V^{*} + \phi V \otimes (\phi V)^{*}\right\}$$

for a certain vector field V, where λ and μ are smooth functions on M, then the real hypersurface M with the given distribution \mathcal{D} of $M_n(c)$ is said to be *pseudo-Einstein ruled*. In

particular, if $\lambda = \mu$, then it is said to be *Einstein ruled* and if $\lambda = \mu = 0$, then it is said to be totally geodesic and Einstein ruled, and is the ruled real hypersurface as discussed in above. Accordingly, we say that the real hypersurface M is pseudo-Einstein ruled, Einstein ruled or totally geodesic ruled, then it is easily seen that any integral submanifold of \mathcal{D} , which is a submanifold of real codimension 2 in $M_n(c)$, is pseudo-Einstein, Einstein or totally geodesic, respectively.

On the other hand, the distribution $T_0(=\mathcal{D})$ is integrable, we see

$$g((A\phi + \phi A)X, Y) = 0 \tag{II}$$

for any vector fields X and Y in T_0 .

Now from the notion of pseudo-Einstein ruled real hypersurfaces M in $M_n(c)$ we are going to give an expression of $A_{\xi}^2 + A_C^2$ of two shape operators A_{ξ} and A_C of the integral submanifold M(t) of the distribution \mathcal{D} , which is a pseudo-Einstein submanifold of real codimension 2 in $M_n(c)$. Of course this expression will be useful to get a complete expression of the shape operator A of M (See Lemma 3.1). Since M(t) is a submanifold of codimension 2, ξ and C are orthonormal vector fields on its leaf in $M_n(c)$. So we have the equation of Gauss

$$\bar{\nabla}_X Y = \nabla_X Y + g(AX, Y)C
= \nabla_X^t Y + g(A_{\xi}X, Y)\xi + g(A_CX, Y)C,$$

where $\bar{\nabla}$ and ∇^t are the covariant derivatives in the ambient space $M_n(c)$ and in the submanifold M(t), respectively and moreover A_C and A_{ξ} are the shape operators in the direction of C and ξ , respectively. Then we have

$$g(\bar{\nabla}_X Y, \xi) = g(\nabla_X Y, \xi) = -g(\nabla_X \xi, Y) = g(A_{\xi} X, Y),$$

for any $X, Y \in T_0$, from which it implies that

$$A_{\xi}X = -\phi AX, X \in T_0. \tag{3.2}$$

On the other hand, by the equation of Gauss we have

$$g(AX,Y) = g(A_CX,Y), X,Y \in T_0$$

and therefore

$$A_C X = AX - \beta g(X, U)\xi, X \in T_0. \tag{3.3}$$

By (II) we have

$$A\phi X = -\phi AX - \beta g(X, \phi U)\xi, \ X \in T_0. \tag{3.4}$$

From this it can be easily seen that the traces of these two shape operators A_{ξ} and A_{C} are both equal to zero. Now the curvature tensor of the integral submanifold M(t) is given by

$$g(R^{t}(X,Y)Z,W) = \begin{cases} \frac{c}{4} \{g(Y,Z)g(X,W) - g(X,Z)g(Y,W) + g(\phi Y,Z)g(\phi X,W) \\ -g(\phi X,Z)g(\phi Y,W) - 2g(\phi X,Y)g(\phi Z,W) \} \\ +g(A_{\xi}Y,Z)g(A_{\xi}X,W) + g(A_{\zeta}Y,Z)g(A_{\zeta}X,W) \\ -g(A_{\xi}X,Z)g(A_{\xi}Y,W) - g(A_{\zeta}X,Z)g(A_{\zeta}Y,W) \end{cases}$$

for any vector fields X, Y, Z and W in \mathcal{D} . Since the traces of the above two shape operators A_{ξ} and A_C are both equal to zero, its Ricci tensor S^t of M(t) in $M_n(c)$ is given by

$$g(S^{t}Y,Z) = \sum_{i=1}^{2n-2} g(R^{t}(e_{i},Y)Z,e_{i})$$

= $\frac{n}{2}cg(Y,Z) - g((A_{\xi}^{2} + A_{C}^{2})Y,Z)$ (3.5)

for any Y, Z in \mathcal{D} . In such a situation we can define the Ricci tensor S^t of the pseudo-Einstein submanifold M(t) in such a way that

$$S' = (\frac{n}{2}c - \mu)I + (\mu - \lambda)\{U \otimes U^* + \phi U \otimes (\phi U)^*\}.$$

Then by (3.5) it can be easily checked that the expression of the Ricci tensor S^t is equivalent to the expression of the tensor $A_{\xi}^2 + A_C^2$ of M(t) given by

$$\begin{cases}
(A_{\xi}^{2} + A_{C}^{2})U = \lambda U, \\
(A_{\xi}^{2} + A_{C}^{2})\phi U = \lambda \phi U, \\
(A_{\xi}^{2} + A_{C}^{2})X = \mu X, \quad X \in \mathcal{D} \perp U, \phi U,
\end{cases} (3.6)$$

where λ and μ are smooth functions on M(t).

Now we give some examples of pseudo-Einstein ruled real hypersurfaces in complex projective space $P_n(\mathbb{C})$.

Example 1 Let M be a ruled real hypersurface in $P_n(\mathbb{C})$ foliated by complex hyperplane $P_{n-1}(\mathbb{C})$. Then the expression (3.1) implies that

$$A_{\xi}X = 0$$
 and $A_CX = 0$

for any $X \in \mathcal{D}$, where \mathcal{D} denotes the distribution of $P_{n-1}(\mathbb{C})$. This implies $A_{\xi}^2 + A_C^2 = 0$ on the distribution \mathcal{D} . Then its Ricci tensor is given by $S^t = \frac{nc}{2}g$. So we know that M is a totally geodesic Einstein ruled real hypersurface in $P_n(\mathbb{C})$.

Example 2 Let M be a real hypersurface in $P_n(\mathbb{C})$ foliated by complex quadric Q^{n-1} . Then it is known that in Kimura [10] the shape operator A_C defined on the distribution of the complex quadric Q^{n-1} satisfies

$$A_C^2 = \lambda^2 I$$
.

Moreover, we know that $A_{\xi}X = -\phi AX$ for $X \in \mathcal{D}$. Then we know

$$A_{\xi}^{2}X = \phi A \phi A X$$

 $= \phi A \phi A_{C} X$
 $= -\phi^{2} A A_{C} X$
 $= -\phi^{2} \{A_{C}^{2} X + \beta g(A_{0} X, U) \xi\}$
 $= -\phi^{2} \{\lambda^{2} X\}$
 $= \lambda^{2} X,$

where in the third equality we have used the integrability of the distribution \mathcal{D} . So it follows that $(A_{\xi}^2 + A_C^2)X = 2\lambda^2 X$ for any $X \in \mathcal{D}$. Then the Ricci tensor S^t is given by $S^t = \{\frac{n}{2}c - 2\lambda\}g$. From this we conclude that M is not totally geodesic *Einstein* ruled real hypersurface.

Example 3 Let Γ be a complex curve in $P_n(\mathbb{C})$. Now let us consider

$$\phi_{\frac{\pi}{2}}(\Gamma) = \bigcup_{x \in \Gamma} \{exp_x \frac{\pi}{2} v | v \text{ is a unit normal vector of } \Gamma \text{ at } x\}.$$

Then $\phi_{\frac{\pi}{2}}(\Gamma)$ is an (n-1)-dimensional complex hypersurface in $P_n(\mathbb{C})$ (See [8],[9]), which is a submanifold of real codimension 2 in $P_n(\mathbb{C})$. Moreover, it is a *pseudo-Einstein* complex hypersurface in $P_n(\mathbb{C})$. Then we construct a real hypersurface M in $P_n(\mathbb{C})$ foliated by such kind of leaves along the integral curve of the normal vector field $\xi = -JC$.

For this, we consider a regular curve $\gamma: I \rightarrow M_n(c)$. Then we can construct a ruled real hypersurface M foliated by pseudo-Einstein complex hypersurfaces in such a way that

$$M = \bigcup_{t} \gamma(t) \times \phi_{\frac{\pi}{2}}(\Gamma)$$
$$= \bigcup_{t} \phi_{\frac{\pi}{2}}^{(t)}(\Gamma).$$

Moreover, let us take a structure vector ξ such that $\xi(\gamma(t)) = \gamma(t)$ orthogonal to the tangent space of $\phi_{\frac{\pi}{2}}(\Gamma)$ at $\gamma(t)$. The vector $\xi(\gamma(t))$ can be smoothly extended to any point in $\phi_{\frac{\pi}{2}}^{(t)}(\Gamma)$ by parallel displacement P in such a way that $P\xi(\gamma(t)) \perp T_x \phi_{\frac{\pi}{2}}^{(t)}(\Gamma)$ for any x in $\phi_{\frac{\pi}{2}}^{(t)}(\Gamma)$. Then in this case we call such a real hypersurface in $P_n(\mathbb{C})$ pseudo-Einstein ruled real hypersurface. Now let us show that its leaves are pseudo-Einstein complex hypersurfaces in $P_n(\mathbb{C})$.

In fact, if we consider the principal curvatures of the shape operator A_C defined on the distribution of $\phi_{\frac{\pi}{2}}(\Gamma)$, it is given by

$$cot(\frac{\pi}{2} + \theta)$$
 with multiplicity 1,
 $cot(\frac{\pi}{2} - \theta)$ with multiplicity 1,
0 with multiplicity $2n - 4$.

Then from this expression of the shape operator A_C we can put

$$A_C U = \cot(\frac{\pi}{2} + \theta)U$$
, $A_C \phi U = \cot(\frac{\pi}{2} - \theta)\phi U$, and $A_C X = 0$

for a certain vector field $U \in \mathcal{D}$ and any vector field $X \in \mathcal{D}$ orthogonal to U and ϕU , where \mathcal{D} denotes the distribution of $\phi_{\frac{\pi}{2}}(\Gamma)$ orthogonal to the structure vector ξ . Then it can be easily seen that

$$A_C^2 U = \cot^2(\frac{\pi}{2} + \theta)U = \frac{\lambda}{2}U,$$

$$A_C^2 \phi U = \cot^2(\frac{\pi}{2} - \theta)\phi U = \frac{\lambda}{2}\phi U,$$

$$A_C^2 X = 0$$

for any X orthogonal to $U, \phi U$. Also if we apply the same method as in Example 2, the shape operator A_{ξ} can be calculated. So naturally it follows that

$$(A_{\xi}^{2} + A_{C}^{2})U = \lambda U,$$

 $(A_{\xi}^{2} + A_{C}^{2})\phi U = \lambda \phi U,$
 $(A_{\xi}^{2} + A_{C}^{2})X = 0$

for any X orthogonal to U and ϕU . Accordingly, we have our assertion.

Now from the formula (3.6) it follows

Lemma 3.1 Let M be a proper pseudo-Einstein ruled real hypersurfaces in $M_n(c)$, $c \neq 0$, $n \geq 3$. Then we have

$$\begin{cases}
AU = \beta \xi + \gamma U + \delta \phi U, \\
A\phi U = \delta U - \gamma \phi U, \quad \lambda = 2(\gamma^2 + \delta^2).
\end{cases} (3.7)$$

In particular, if it is totally geodesic, we have $\gamma = \delta = 0$.

Proof. Naturally let us put

$$A\xi = \alpha \xi + \beta U,$$

$$AU = \beta \xi + \gamma U + \delta \phi U + \epsilon X,$$

$$A\phi U = -\gamma \phi U + \delta U - \epsilon \phi X,$$
(3.8)

for some vector field X orthogonal to ξ , U and ϕU where in the third equation we have used the condition (II), because the distribution \mathcal{D} is integrable. Since M is supposed to be proper pseudo-Einstein, we may put $\lambda \neq \mu$. In order to prove $\varepsilon = 0$, firstly let us prove the following

$$A^{2}U = (\alpha + \gamma)\beta\xi + (\beta^{2} + \frac{\lambda}{2})U. \tag{3.9}$$

Indeed, (3.2), (3.3) and the first formula of (3.6) imply

$$\lambda U = -A_{\xi} \phi A U + A_{C} (A U - \beta \xi)$$

$$= \phi A \phi A U + A (A U - \beta \xi) - \beta g (A U - \beta \xi, U) \xi$$

$$= 2 \{ A^{2} U - \beta A \xi - \beta g (A U, U) \xi \},$$

where in the third equality we also have used the condition (II).

Secondly, we calculate the following

$$A^2 \phi U = \beta \delta \xi + \frac{\lambda}{2} \phi U. \tag{3.10}$$

In fact, (3.2), (3.3) and the second formula of (3.6) give

$$\begin{array}{lcl} \lambda \phi U & = & (A_{\xi}^2 + A_C^2) \phi U \\ & = & \phi A^2 U + A^2 \phi U - \beta^2 \phi U - \beta g (A \phi U, U) \xi. \end{array}$$

So by (3.8) we get the above (3.10).

Finally we give the following for any X orthogonal to ξ , U and ϕ U.

$$A^2X = \beta \varepsilon \xi + \frac{\mu}{2}X,\tag{3.11}$$

because the third formula of (3.6) and the condition (II) imply that

$$\mu X = -A_{\xi} \phi AX + A_C \{AX - \beta g(X, U)\xi\}$$

= $2(A^2X - \beta g(AX, U)\xi).$

Now let us apply the shape operator A to the second formula of (3.8) and use also (3.8) and (3.9). Then

$$\varepsilon AX = (\frac{\lambda}{2} - \gamma^2 - \delta^2)U - \gamma \varepsilon X + \delta \varepsilon \phi X
= \varepsilon^2 U - \gamma \varepsilon X + \delta \varepsilon \phi X,$$

where we have used

$$||A\phi U||^2 = \gamma^2 + \delta^2 + \epsilon^2$$

= $\frac{\lambda}{2}$, (3.12)

which can be obtained from (3.8) and (3.10). So let us assume $\varepsilon \neq 0$, then $AX = \varepsilon U - \gamma X + \delta \phi X$. This implies

$$A^{2}X = \varepsilon AU - \gamma AX + \delta A \phi X$$

$$= (\beta \xi + \gamma U + \delta \phi U + \varepsilon X) - \gamma (\varepsilon U - \gamma X + \delta \phi X)$$

$$-(\varepsilon \phi U - \gamma \phi X - \delta X)$$

$$= \varepsilon \beta \xi + (\varepsilon^{2} + \gamma^{2} + \delta^{2})X.$$

From this together with (3.11) it follows

$$\mu = 2(\gamma^2 + \delta^2 + \varepsilon^2).$$

Then by (3.12) we have $\lambda = \mu$, which makes a contradiction. So we should have $\varepsilon = 0$. It completes the proof of Lemma 3.1.

Now let us suppose that the coefficients α, β, γ and δ of the vector $A\xi$ and AU satisfy $\beta^2 \gamma = 2\alpha(\gamma^2 + \delta^2)$. A smooth function f is defined by $f\gamma = 2\alpha\delta$, and then it satisfies

$$f\delta = \beta^2 - 2\alpha\gamma.$$

Moreover, if we put $AX = \lambda X$ for any $X \in T'$, where T' denotes the orthogonal complement of $L(\xi, U, \phi U)$, then (3.4) gives $A\phi X = -\lambda \phi X$. From this and (3.7) it follows $h = TrA = \alpha$. Thus (3.7) together with these formulas imply

$$2hA\phi U + \beta^2 \phi U - fAU \equiv 0 \pmod{\xi}$$
, and $-2hAU + \beta^2 U - fA\phi U \equiv 0 \pmod{\xi}$.

where in the second equation we have used the condition (II). When the function μ in (3.6) vanishes, then (3.11) implies $||AX||^2 = 0$ for any $X \in T'$, where T' denotes the orthogonal complement of $L(\xi, U, \phi U)$. So it follows

$$2hA\phi X - fAX \equiv 0 \pmod{\xi}, X \in T'.$$

Consequently, if the coefficients α , β and γ satisfy $\beta^2 \gamma = 2\alpha(\gamma^2 + \delta^2)$, then they satisfy

$$2hA\phi X - fAX + \beta^2 \{g(X, \phi U)U + g(X, U)\phi U\} \equiv 0 \ (mod \xi), \tag{3.13}$$

for a smooth function f by $2\alpha\delta/\gamma$. Then (3.13) is equivalent to

$$g((S\phi - \phi S)X, Y) = fg(AX, Y), X, Y \in T_0.$$
(3.14)

4 Proof of the Theorem

Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. Assume that it satisfies

$$g((A\phi + \phi A)X, Y) = 0, X, Y \in T_0, \tag{II}$$

$$g((S\phi - \phi S)X, Y) = fg(AX, Y), X, Y \in T_0, \tag{III}$$

where f is a smooth function on M. The condition (III) is equivalent to

$$g([h(A\phi - \phi A) - (A^2\phi - \phi A^2) - fA]X, Y) = 0$$
(4.1)

for any vector fields X and Y in T_0 .

Without loss of generality, we may suppose that ξ is not principal. Then we can put $A\xi = \alpha \xi + \beta U$, where α and β are smooth functions on M and β does not vanish identically on M. Let M_0 be an open subset in M consisting of points x at which $\beta(x) \neq 0$. Since ξ is supposed to be not principal, M_0 is not empty.

From the condition (II) it follows that

$$(A\phi + \phi A)X = \beta g(\phi X, U)\xi, X \in T_0 \tag{4.2}$$

from which together with (4.1) it follows that

$$2hg(A\phi X,Y) - \beta^2 \{g(X,U)g(\phi Y,U) + g(Y,U)g(\phi X,U)\} = fg(AX,Y), \tag{4.3}$$

for any vector fields X, Y in T_0 .

In fact we have

$$g(A\phi X, Y) = -g(\phi AX, Y)$$

for any vector fields X and Y in T_0 by (II). So it follows

$$g(A^{2}\phi X, Y) = g(A\phi X, AY)$$

$$= g(A\phi X, (AY)_{0}) + \beta g(Y, U)g(A\phi X, \xi)$$

$$= -g(\phi AX, (AY)_{0}) + \beta^{2}g(Y, U)g(\phi X, U)$$

$$= -g(A\phi AX, Y) + \beta^{2}g(Y, U)g(\phi X, U)$$

$$= -g(A\phi (AX)_{0}, Y) + \beta^{2}g(Y, U)g(\phi X, U)$$

$$= g(\phi A^{2}X, Y) + \beta^{2}\{g(X, U)g(\phi Y, U) + g(Y, U)g(\phi X, U)\}$$

for any vector fields X and Y in T_0 . Then substituting these formulas into (4.1), we have the formula (4.3).

Now let us take U in place of X in (4.3), we have

$$2hA\phi U - fAU + \beta^2 \phi U \equiv 0 \pmod{\xi}. \tag{4.4}$$

Assume that the holomorphic distribution T_0 is integrable. Namely, we assume

$$g((A\phi + \phi A)X, Y) = 0, X, Y \in T_0. \tag{II}$$

Suppose that ξ is principal. Then by the condition (II) we see

$$A\phi + \phi A = 0$$
.

By Lemma 2.1 due to Ki and the present author implies that c=0, a contradiction. Hence we may suppose that ξ is not principal. Then we can put $A\xi=\alpha\xi+\beta U$, where α and β are smooth functions on M and β does not vanish identically on M. Let M_0 be an open subset in M consisting of points x at which $\beta(x)\neq 0$. Since ξ is supposed to be not principal, M_0 is not empty. On the open subset M_0 we put $AU=\beta\xi+\gamma U+\delta V$, where ξ,U and V are orthonormal, where γ and δ are smooth functions on M_0 . We denote by $L(\xi,U)$ or $L(\xi,U,V)$ a distribution spanned by ξ,U and V in the tangent bundle TM, respectively.

Now let us put

$$AU = \beta \xi + \gamma U + \delta V$$

$$A\phi U = -\phi AU = -\gamma \phi U - \delta \phi V$$
(4.5)

Substituting these into (4.4), we have

$$f\gamma U + f\delta V + (2h\gamma - \beta^2)\phi U + 2h\delta\phi V \equiv 0 \pmod{\xi}. \tag{4.6}$$

Now firstly we assert that an information for the distribution $L(\xi, U, \phi U)$ is given.

Lemma 4.1 If it satisfies (II) and (III) and $f \neq 0$, then we have

$$\begin{cases}
A\xi = \alpha\xi + \beta U; \\
AU = \beta\xi + \gamma U + \delta\phi U; \\
A\phi U = \delta U - \gamma\phi U;
\end{cases} \beta^{2}\gamma = 2\alpha(\gamma^{2} + \delta^{2}), h = \alpha, \tag{4.7}$$

on the open subset M_0 and the distribution $L(\xi, U, \phi U)$ is A-invariant.

Proof. We consider only the non-empty open subset M_0 . Taking an inner product (4.6) with X = U and V respectively, we have

$$f\gamma + 2h\delta g(U, \phi V) = 0, \ f\delta + (\beta^2 - 2h\gamma)g(U, \phi V) = 0. \tag{4.8}$$

Next, let us take an inner product (4.6) with ϕU and ϕV , respectively. Then we have

$$f\delta g(V, \phi U) + (2h\gamma - \beta^2) = 0, \ f\gamma g(U, \phi V) + 2h\delta = 0.$$
 (4.9)

By using (4.9) to eliminate the second terms of (4.8) respectively, we have

$$f\gamma\{g(U,\phi V)^2 - 1\} = 0, \ f\delta\{g(U,\phi V)^2 - 1\} = 0. \tag{4.10}$$

Suppose that $g(U, \phi V) \neq \pm 1$. Then we see that $\gamma = \delta = 0$, because of the assumption $f \neq 0$. So by (4.9) we know $\beta = 0$ on M_0 , a contradiction. Hence we have $g(U, \phi V) = \pm 1$. Since U and ϕV are unit, $\phi V = \pm U$. Without loss of generality, we may assume that $V = \phi U$.

The mutual relation among the coefficients is given by (4.2),(4.3),(4.4) and (4.5). It completes the proof.

Lemma 4.2 If it satisfies (II) and (III) and $f \neq 0$, then we have

$$AX = 0, \quad X \in T'. \tag{4.11}$$

Proof. By Lemma 4.1 the distribution T' is also A-invariant, because T' is an orthogonal complement of $L(\xi, U, \phi U)$ in the tangent bundle TM and the shape operator A is symmetric. For a principal vector X in T' with principal curvature λ , by (4.2) we have $A\phi X = -\lambda \phi X$. Accordingly, we have by (4.3)

$$2h\lambda g(\phi X, Y) + f\lambda g(X, Y) = 0$$

for any vector field Y in T', which yields that $\lambda = 0$, because of the assumption. It completes the proof.

Now we are in a position to prove the main theorem

Proof of the Theorem. Lemma 4.2 and the condition of the Theorem we have

$$AX = 0 (4.12)$$

for any vector field X in T' on M_0 . By the continuity of principal curvatures we see that the shape operator satisfies the conditions (4.7) and (4.12) on the whole M.

In fact if we consider the set $int(M - M_0)$, then ξ is principal. From this together with the condition (II) we assert $A\phi + \phi A = 0$. Thus Lemma 2.1 implies c = 0, which makes a contradiction. Accordingly the set M_0 should be dense in M. So we have the above assertion.

Since the distribution T_0 is integrable on M by the definition, the integral manifold of T_0 can be regarded as the submanifold of codimension 2 in $M_n(c)$ whose normal vectors are ξ and $J\xi = C$.

By the definition of the second fundmental form, we see

$$g(\bar{\nabla}_X Y, C) = -g(\bar{\nabla}_X C, Y) = g(A_C X, Y) = g(AX, Y), \tag{4.13}$$

$$g(\bar{\nabla}_X Y, \xi) = g(\nabla_X Y, \xi) = -g(\nabla_X \xi, Y) = g(A_{\xi} X, Y), \tag{4.14}$$

for any vector fields X and Y in T_0 , where $\bar{\nabla}$ denotes the Riemannian connection of $M_n(c)$ and A_{ξ} or A_C denotes the shape operator of the integral submanifold M(t) of the disribution T_0 in $M_n(c)$ in the direction of the normal ξ or C, respectively. For any point x in the integral submanifold M(t) we denote by $\{e_i, \phi e_i\}$, i = 1, ..., n-1, an orthonormal basis of the tangent space $T_x M(t)$. Then by (3.2) and (4.2) we have

$$g_x(A_{\xi}\phi e_i, \phi e_i) = -g_x(A_{\xi}e_i, e_i).$$

On the other hand, by (3.4) and (4.2) we have

$$g_x(A_C \phi e_i, \phi e_i) = -g_x(\phi A_C e_i, \phi e_i) = -g_x(A_C e_i, e_i).$$

These mean that the integral submanifold M(t) is minimal in the ambient space $M_n(c)$. Since T_0 is also J-invariant, its integral manifold is a complex hypersurface and moreover, it is seen that these shape operators satisfy

$$\bar{\nabla}_X Y = \nabla_X Y + g(AX, Y)C
= \nabla_X^t Y + g(A_{\xi}X, Y)\xi + g(A_CX, Y)C$$

where ∇^t denotes the Riemannian connection of the integral submanifold of T_0 . Thus we see

$$A_C X = AX + g(A_C X - AX, \xi)\xi = AX - \beta g(X, U)\xi, \quad X \in T_0$$

 $A_\xi X = -\phi AX, X \in T_0,$

on M_0 , because we have

$$g(\nabla_X Y, \xi) = -g(\nabla_X \xi, Y) = -g(\phi AX, Y) \quad X, Y \in T_0,$$

by (2.1). Since it is discussed in above that the open subset M_0 is dense in M, by means of the continuity of principal curvatures we have

$$AU = \beta \xi + \gamma U + \delta \phi U, A\phi U = \delta U - \gamma \phi U,$$

$$AX = 0, X \in T'$$
(4.15)

on M and therefore it is seen that another shape operator A_{ξ} of the integral submanifold of T_0 satisfies

$$A_{\xi}X = \begin{cases} \delta U - \gamma \phi U, & X = U; \\ -\gamma U - \delta \phi U, & X = \phi U; \\ 0, & X \in T' \end{cases}$$
 (4.16)

on M, where $X \in T'$ is principal, and it is also seen that another shape operator A_C of the integral submanifold of T_0 satisfies

$$A_C X = \begin{cases} \gamma U + \delta \phi U, & X = U; \\ \delta U - \gamma \phi U, & X = \phi U; \\ 0, & X \in T'. \end{cases}$$
 (4.17)

on M, where $X \in T'$ is principal. By combining (4.16) with (4.17) and by the direct calculation, it is trivial that we have

$$(A_{\varepsilon}^2 + A_C^2)X = 2(\gamma^2 + \delta^2)X$$
, $X = U$ and ϕU .

In the case where X is in T', we see

$$(A_{\xi}^2 + A_C^2)X = 0, \quad X \in T'.$$

This shows that an integral submanifold is pseudo-Einstein. Thus M is a pseudo-Einstein ruled real hypersurface, because the Ricci tensor S^t of any integral manifold M(t) of the distribution T_0 in a complex space form $M_n(c)$ is given by

$$S^{t} = \frac{n}{2}cI - 2(\gamma^{2} + \delta^{2})\{U \otimes U^{*} + \phi U \otimes \phi U^{*}\}.$$

Conversely, let M be a pseudo-Einstein ruled real hypersurface in $M_n(c)$. Then we have shown in section 3 that M satisfies (3.14), which is equivalent to the condition (III). Also by its construction we know that it satisfies the condition (II). So it completes the proof.

References

- S. S. Ahn, S. B. Lee and Y. J. Suh, On ruled real hypersurfaces in a complex space form, Tsukuba J. Math. 17 (1993), 311–322.
- [2] J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132–141.
- [3] J. Berndt and Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians, Monatshefte für Mathematik 127 (1999), 1-14.
- [4] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481–499.
- [5] U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama 32 (1990), 207–221.
- [6] U-H. Ki and Y. J. Suh, On a characterization of real hypersurfaces of type A in a complex space form, Canadian Math. Bull. 37 (1994), 238–244.
- [7] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans Amer. Math. Soc. 296 (1986), 137–149.
- [8] M. Kimura, Sectional curvatures of a holomorphic plane in P_n(C), Math. Ann. 276 (1987), 487–497.
- [9] M. Kimura, Some non-homogeneous real hypersurfaces in a complex projective space I (Construction), The Bull. of the Faculty of Edu. Ibaraki Univ. 44 (1995), 1–160.
- [10] M. Kimura, Some non-homogeneous real hypersurfaces in a complex projective space II (Characterization), The Bull. of the Faculty of Edu. Ibaraki Univ. 44 (1995), 17–31.
- [11] M. Kimura, Curves in SU(n+1)/SO(n+1) and some submanifolds in $P_n(\mathbb{C})$, Saitama Math. J. 14 (1996), 79–89.
- [12] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata 20 (1986), 245–261.
- [13] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355–364.
- [14] J. D. Pérez and Y. J. Suh, Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_i} R = 0$, Differential Geom. and its Appl. 7 (1997), 211–217.
- [15] Y. J. Suh, Characterizations of real hypersurfaces in complex space forms in terms of Weingarten map, Nihonkai Math. J., 6 (1995), 63–79.

Received December 9, 1998 and in revised form March 2, 1999
Department of Mathematics
Kyungpook National University
Taegu 702-701
KOREA

e-mail: yjsuh@bh.kyungpook.ac.kr