ON THE EUCLIDEAN GEOMETRY OF THE DOUBLE-EDGED RULER

VICTOR PAMBUCCIAN1

The aim of this note is to show that plane Euclidean geometry can be axiomatised by quantifier-free axioms in languages containing operations that correspond to the geometric constructions that can be performed by a double-edged ruler.

The double-edged ruler is an instrument which can be used in the following ways: (i) as a ruler (to draw the line joining two points, as well as to construct the point of intersection of two intersecting lines); (ii) to draw the two parallels to a given line that lie at unit distance from that line; (iii) to draw two parallel lines at unit distance apart, one of which passes through A, the other of which passes through B, whenever the distance between the points A and B, d(A,B), is ≥ 1 (there are two such pairs of parallels whenever d(A,B) > 1).

The subject of quantifier-free (universal) axiomatisations of elementary geometry goes back to [4], where plane Euclidean geometry of ruler and segment-transporter constructions was axiomatised by universal axioms in a language containing two quaternary operation symbols and three individual constants, with 'points' as individual variables. It was further expanded in [2], [11], and [6]-[10].

The possibility of such axiomatisations is suggested by the well known fact (going back to Adler [1], see also [3]) that the set of points that can be constructed in the standard Euclidean plane by using a double-edged ruler in all three possible ways coincides with the set of points that can be constructed with ruler and compass. However, this result does not indicate if and how a quantifier-free axiom system may be set up, for results on the constructibility of points always assume the underlying geometry as 'given', whereas in a quantifier-free axiomatisation the geometry itself needs to be determined by axioms that refer to geometric constructions.

1 The axiomatisations

We first consider a language for constructions with a restricted double-edged ruler, which can be used only in ways (i) and (ii). Let S be a bi-sorted first order language S, whose two sorts of variables will be referred to as 'points' (upper case) and 'lines' (lower case), that contains: three individual constants A_0 , A_1 , A_2 , standing for three non-collinear points; φ , a binary operation symbol with points (say A and B) as arguments and the line joining them, $\varphi(A,B)$, as value (whenever $A \neq B$, an arbitrary line, otherwise); ι , a binary operation symbol with lines (say g and h) as arguments and the intersection point of the lines g and h, $\iota(g,h)$, as value (whenever g and h are not parallel and not equal, an arbitrary point, otherwise); α_i (for i = 1, 2), a unary operation symbol with a line (say l) as variable and the line $\alpha_i(l)$, such that $\{\alpha_1(l), \alpha_2(l)\}$ are the two lines that are parallel to l at unit distance from l, as value.²

¹Partially supported by a TRIS grant from ASU West.

²For logical issues related to many-sorted languages see [5].

66 V. Pambuccian

In [9] we have axiomatised Euclidean planes of characteristic $\neq 2$ in a bi-sorted first-order language L_1 , that contains $A_0, A_1, A_2, \varphi, \iota, \gamma$ as non-logical constants, with $\gamma(P, l)$ standing for the line perpendicular to l in P whenever $l = \varphi(P, Q)$ for some $Q \neq P$, arbitrary, otherwise. We shall prove that an operation equivalent to γ can be defined without using quantifiers by means of the primitive notions in S.

We first introduce some abbreviations that will improve the readability of the axioms: $a_{i,j} = \varphi(A_i, A_j)$,

```
\begin{split} & \underline{\lambda}(A,B,C) : \leftrightarrow A = B \lor A = C \lor \varphi(A,B) = \varphi(A,C), \\ & \overline{\lambda}(A,B,C) : \leftrightarrow A \neq B \land B \neq C \land C \neq A \land \varphi(A,B) = \varphi(A,C), \\ & \text{and, for } A,B,P \text{ with } \neg \lambda(A,B,P) \text{ and } i \in \{1,2\} \text{ (see Figures 1 and 2):} \\ & \mu_i(A,B,P) := \iota(\varphi(A,B),\varphi(P,\iota(\varphi(A,\iota(\alpha_i(\varphi(A,B)),\varphi(B,P))),\varphi(B,\iota(\alpha_i(\varphi(A,B),\varphi(A,P)))), \\ & \delta_i(A,B,P) := \iota(\varphi(A,P),\alpha_i(\varphi(A,B)), \\ & \varepsilon(A,B,P) := \iota(\varphi(B,\delta_1(A,B,P)),\alpha_2(\varphi(A,B))), \\ & \omega(A,B,P) := \iota(\varphi(A,\varepsilon(A,B,P)),\alpha_1(\varphi(A,B)), \\ & \sigma(A,B,P) := \iota(\varphi(A,B),\varphi(\omega(A,B,P),\delta_2(A,B,P))). \end{split}
```

The abbreviation $\lambda(A,B,C)$ may be read as 'A, B, C are collinear points', $\overline{\lambda}(A,B,C)$ as 'A, B, C are three different collinear points', $\mu_i(A,B,P)$ stands for the midpoint of AB, and $\sigma(A,B,P)$ stands for the reflection of B in A (i. e. A is the midpoint of $B\sigma(A,B,P)$). We further define (see Fig. 3):

```
\rho(A,B,P) := \varphi(P,\sigma(\mu_{1}(P,B,A),A,B)), 

\zeta(A,B,P) := \sigma(\iota(\varphi(A,B),\alpha_{1}(\varphi(A,P))),A,P), 

\tau(A,B,P) := \iota(\alpha_{1}(\varphi(A,B)),\alpha_{1}(\varphi(A,P))), 

\nu(A,B,P) := \iota(\alpha_{1}(\varphi(A,B)),\alpha_{1}(\varphi(\tau(A,B,P),A))), 

\psi(A,B,P) := \iota(\varphi(A,B),\alpha_{1}(\varphi(\tau(A,B,P),A))), 

\kappa(A,B,P) := \iota(\varphi(\zeta(A,B,P),\tau(A,B,P)),\varphi(A,\nu(A,B,P))),
```

and have that $\rho(A, B, P)$ is the parallel through P to AB in case $\neg \lambda(A, B, P)$, and that $\psi \kappa$ is perpendicular to AB. With these abbreviations we are now ready to define our main abbreviation, which is

```
\Gamma(A, \varphi(A, B), P) := \rho(\kappa(A, B, P), \psi(A, B, P), A)
and which may be read as 'the line perpendicular in A to AB'.
```

We have provided in [9] a quantifier-free axiom system for Euclidean planes of characteristic $\neq 2$ in the language \mathbf{L}_1 containing $A_0, A_1, A_2, \varphi, \iota, \gamma$ as primitive notions, where $\gamma(P, l)$ denotes the perpendicular in P on l whenever $l = \varphi(P, Q)$ with $P \neq Q$, an arbitrary line, otherwise. Having defined $\Gamma(A, \varphi(A, B), P)$, which is a variant of $\gamma(A, \varphi(A, B))$ for although the former contains an extra variable as argument, the values of the two are the same, we can now closely follow the axiom system presented in [9] to obtain the underlying Euclidean plane structure of our geometry. Adding to the axiom system thus obtained an axiom stating that the distance between l and $\alpha_1(l)$ is constant, we obtain a complete description of the operations in S and an axiom system for Euclidean planes with a unit length, in which all angles are bisesctable (or, in other words, which have free mobility).

We first introduce some additional abbreviations, for line intersection (χ) , line parallelity (||), line parallelity or equality (||'), line perpendicularity (\vdash), segment congruence (Pieri's relation π), η , and θ_i :

```
\chi(\varphi(A,B),\varphi(C,D)) : \leftrightarrow \lambda(A,B,\iota(\varphi(A,B),\varphi(C,D))) \land \lambda(C,D,\iota(\varphi(A,B),\varphi(C,D))),
\varphi(X,Y) \mid\mid \varphi(U,V) : \leftrightarrow \varphi(X,Y) \neq \varphi(U,V) \land \neg \chi(\varphi(X,Y),\varphi(U,V)),
```

$$\varphi(X,Y) \parallel' \varphi(U,V) : \leftrightarrow \varphi(X,Y) = \varphi(U,V) \lor \varphi(X,Y) \parallel \varphi(U,V).$$

For A, B, P with $\neg \lambda(A, B, P)$ and $C \neq D$ we define \vdash by $^3 \vdash (\varphi(A, B), \varphi(C, D), P) : \leftrightarrow \varphi(A, B) \neq \varphi(C, D) \land \chi(\varphi(A, B), \varphi(C, D)) \land \Gamma(\iota(\varphi(A, B), \varphi(C, D)), \varphi(A, B), P) = \varphi(C, D).$

For points A, B, C, P with A, B, P not collinear, with $A \neq B$ and $A \neq C$, we define the relation $\pi(A, B, C, P)$ to be read as 'segment AB is congruent to segment AC' by:

$$\pi(A,B,C,P):\leftrightarrow \sigma(A,B,P)=C$$

$$\vee [\neg \lambda(A,B,C) \wedge \varphi(A,\mu_1(B,C,A)) = \Gamma(\mu_1(B,C,A),\varphi(\mu_1(B,C,A),C),A)].$$

We next introduce η by

$$\eta(g,A,B) \leftrightarrow g = \varphi(A,B) \land A \neq B$$

to be read as 'g is the line joining the different points A and B', and $\theta_i(A, B, P)$ for $i \in \{1, 2\}$ by

$$\theta_i(A,B,P) := \iota(\Gamma(A,\varphi(A,B),P),\alpha_i(\varphi(A,B))).$$

We are now ready to state the axioms.4

A 1
$$\varphi(A,B) = \varphi(B,A)$$
,

A 2
$$A \neq B \land B \neq C \land D \neq B \land \varphi(A,B) = \varphi(C,D) \rightarrow \varphi(D,B) = \varphi(B,C)$$
,

A 3
$$\bigvee_{0 \le i, j \le 2, i \ne j, i \ne j+1} (\eta(g, \iota(a_{i,j}, g), \iota(a_{i,j+1}, g)) \vee \eta(g, A_i, \iota(\alpha_1(A_i, A_{i+1}), g)),$$

A 4
$$\neg \lambda(A_0, A_1, A_2)$$
,

A 5
$$\neg \lambda(A,B,P) \rightarrow \varphi(A,B) \parallel \rho(A,B,P) \land P \neq \sigma(\mu_1(P,B,A),A,B)$$
,

A 6
$$\neg \lambda(A,B,X) \rightarrow \iota(\varphi(A,X),\varphi(B,X)) = X$$
,

A 7
$$C \neq D \land \varphi(A,B) \mid\mid \varphi(C,D) \land \neg \lambda(A,B,X) \rightarrow \chi(\varphi(A,X),\varphi(C,D)),$$

A 8
$$C \neq D \land C' \neq D' \land \neg \lambda(A,B,P) \land \neg \lambda(A',B',P') \land \vdash (\varphi(A,B),\varphi(C,D),P) \land \varphi(A,B) \parallel' \varphi(A',B') \land \varphi(C,D) \parallel' \varphi(C',D') \rightarrow \vdash (\varphi(A',B'),\varphi(C',D'),P'),$$

A 9
$$\neg \lambda(P_1, P_2, P_3) \land \neg \lambda(P_1, P_2, B) \land B \neq P_3 \vdash (\varphi(P_2, P_3), \varphi(P_1, B), P_1) \vdash (\varphi(P_1, P_3), \varphi(P_2, B), P_2) \rightarrow \vdash (\varphi(P_1, P_2), \varphi(P_3, B), P_3),$$

A 10
$$\neg \lambda(A,B,P) \rightarrow \Gamma(A,\varphi(A,B),P) \neq \varphi(A,B)$$
,

as well as the minor Desargues axiom (des) and Fano's axiom in the following form:

A 11
$$\neg \lambda(A,B,C) \land \varphi(A,B) \parallel \varphi(C,D) \land \varphi(B,C) \parallel \varphi(A,D)$$

 $\rightarrow \chi(\varphi(A,C),\varphi(B,D)) \land \mu_1(A,C,B) = \iota(\varphi(A,C),\varphi(B,D)).$

It follows from [9, p. 12-14] that all models of $\Sigma = \{A1 - A11, \mathbf{des}\}$ are Euclidean planes associated to a quadratic field extension where the field characteristic is $\neq 2$, and that $\varphi, \iota, \Gamma, \mu_1$ have the desired interpretation therein. To obtain the desired interpretation for σ , α_1 and α_2 we add the following axioms $(i \in \{1,2\})$:

³In this definition, by $\Gamma(\iota(\varphi(A,B),\varphi(C,D)),\varphi(A,B),P)$ we mean $\Gamma(\iota(\varphi(A,B),\varphi(C,D)),\varphi(\iota(\varphi(A,B),\varphi(C,D),X),P)$, where X is A or B, whichever is $\neq \iota(\varphi(A,B),\varphi(C,D))$.

⁴Addition in the indices of the A_i is mod 3.

68 V. Pambuccian

A 12
$$\neg \lambda(A,B,P) \rightarrow \lambda(A,B,\sigma(A,B,P)) \land \mu_1(B,\sigma(A,B,P),P) = A$$
,

A 13_i
$$A \neq B \rightarrow \varphi(A,B) \parallel \alpha_i(\varphi(A,B))$$
,

A 14
$$\neg \lambda(A,B,P) \to \mu_1(\theta_1(A,B,P),\theta_2(A,B,P),B) = A$$
,

From axiom A12 it follows that σ has the desired interpretation, A13 and A14 imply that for every line l $\alpha_1(l)$ and $\alpha_2(l)$ are two parallel lines equidistant from l, and A15 ensures that for different lines l and l', the distances between $\alpha_1(l)$ and l, and $\alpha_1(l')$ and l' are the same. It follows that

Representation Theorem 1 . \mathfrak{M} is a model of $\Sigma \cup \{A12 - A15\}$ if and only if \mathfrak{M} is isomorphic to a Euclidean plane associated to a quadratic field extension with characteristic $\neq 2$ in which all angles are bisectable, and in which the primitive notions of S have the desired interpretation.

We can obtain ordered Euclidean geometry with free mobility and with a unit distance by adding a ternary relation symbol ξ for the betweenness relation to S and the following axioms:

A 16
$$\xi(A,B,C) \rightarrow \overline{\lambda}(A,B,C)$$

A 17
$$\overline{\lambda}(A,B,C) \to \xi(A,B,C) \vee \xi(B,C,A) \vee \xi(C,A,B)$$
,

A 18
$$\xi(A,B,C) \rightarrow \xi(C,B,A)$$
,

A 19
$$\neg \lambda(A,B,P) \rightarrow \xi(A,\mu_1(A,B,P),B)$$
,

A 20
$$\neg(\lambda(P_1, P_2, P_3) \bigvee_{n=1}^{3} \lambda(P_n, M, N)) \land \xi(P_1, M, P_2) \rightarrow \bigvee_{i=1}^{2} (\chi(\varphi(M, N), \varphi(P_i, P_3)) \land \xi(P_i, W, N), \varphi(M, N), \varphi(P_i, P_3))$$
.

To obtain the ordered Euclidean geometry of ruler and compass constructions, i. e. Cartesian planes over ordered Euclidean fields, we extend the language of $S \cup \{\xi\}$ by another pair of binary operation symbols, standing for the operation (iii) of the double edged ruler, β_1 and β_2 . This language will be denoted by S'. For points A and B with $d(A,B) \geq 1$, $(\beta_1(A,B),\beta_2(A,B))$ may be read as 'the pair of lines (different if d(A,B) > 1) that pass through A such that $\alpha_i(\beta_1(A,B))$ and $\alpha_j(\beta_2(A,B))$ pass through B for some $i,j \in \{1,2\}$ '. For points A and B that are less than 1 apart, $\beta_i(A,B)$ is an arbitrary line. The axioms that ensure that the β_i have precisely the above meaning are (here i,k take values in $\{1,2\}$, so there are four axioms $A21_{i,k}$ and two axioms $A22_i$):

A 21_{i,k} ¬λ(A,B,P) ∧
$$\overline{\xi}$$
(A,ι(φ(A,B),α_i(Γ(A,φ(A,B),P))),B)
→ η(β_k(A,B),A,ι(α₁(A,B),β_k(A,B))) ∧ ($\bigvee_{j=1}^2$ η(α_j(β_k(A,B)),B,ι(α₁(A,B),α_j(β_k(A,B))),

A 22_i $\neg \lambda(A, B, P) \land \xi(A, \iota(\varphi(A, B), \alpha_i(\Gamma(A, \varphi(A, B), \rho))), B)$ $\rightarrow \beta_1(A,B) \neq \beta_2(A,B)$, where $\overline{\xi}(X,Y,Z) : \leftrightarrow \xi(X,Y,Z) \lor Y = Z$. We now have the following

Representation Theorem 2 . \mathfrak{M} is a model of $\Sigma \cup \{A12 - A22\}$ if and only if \mathfrak{M} is isomorphic to a Cartesian plane over a Euclidean ordered field, in which the primitive notions of S'have the desired interpretation.

Figure 2

Figure 3

References

- A. Adler, "Über die zur Ausführung geometrischer Konstruktionen notwendigen Hilfsmittel", S.-Ber. Akad. Wien 99 (1890), Abt. IIa, 846-859.
- [2] E. Engeler, "Remarks on the theory of geometrical constructions", pp. 64-76 in: Lecture Notes in Mathematics 72, Springer-Verlag, Berlin-Heidelberg-New York, 1968.
- [3] D. Jarden, Constructions with the bi-ruler and the double-ruler, Jerusalem, 1964.
- [4] N. Moler and P. Suppes, "Quantifier-free axioms for constructive plane geometry", Compositio Math. 20 (1968), 143-152.
- [5] A. Oberschelp, "Untersuchungen zur mehrsortigen Quantorenlogik", Math. Ann. 145 (1962), 297-333.
- [6] V. Pambuccian, "Ternary operations as primitive notions for constructive plane geometry", Z. Math. Logik Grundlagen Math. 35 (1989), 531-535; II, 38 (1992), 345-348.
- [7] V. Pambuccian, "Ternary operations as primitive notions for constructive plane geometry" III, IV, V, VI. Math. Logic Quarterly 39 (1993), 393-402; 40 (1994), 76-86; 40 (1994), 455-477; 41 (1995), 384-394.
- [8] V. Pambuccian, "Le plus simple système d'axiomes pour la géométrie élémentaire", Bull. Pol. Acad. Sci., Math. 42 (1994), 77-84.
- [9] V. Pambuccian, "Zur konstruktiven Geometrie euklidischer Ebenen". Abh. Math. Sem. Univ. Hamburg 68 (1998), 7-16.
- [10] V. Pambuccian, "Another constructive axiomatization of Euclidean planes", Math. Logic Quarterly 45 (2000), 45-48.
- [11] H. Seeland, Algorithmische Theorien und konstruktive Geometrie, Hochschulverlag, Stuttgart, 1978.

Received February 5, 1999
Department of Integrative Studies,
Arizona State University West,
Phoenix, AZ 85069-7100, U.S.A.
e-mail: pamb@math.west.asu.edu