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COMBINATORIAL PROPERTIES OF CONVEX CONES IN R"

MIRCEA BALAIJ

Abstract. In this paper we obtain sets of conditions under which the convex hull of a family
of convex cones is an acute cone. Some intersectional results for families of convex sets there
are also given. Finally, using two combinatorial results concerning families of convex cones,
a lower bound for the Ramsey numbers Ry, (m,3n) is established.
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1 Introduction

The convex cones play an important role in optimization and in theory of inequalities . At
the same time to each convex set one can associate some convex cones such as the generated
convex cone, the polar cone, the dual cone, the recession cone (see (11, [9]) which make
possible to deduce many results about convex sets.

All the cones considered in our paper will have O (the origin of the space R") as vertex.
The ongin itself may or may not belong to the cone.

A convex cone C C R" will be said to be:

- pointed if 0 € C,

- acute if CN(—C) = {0}.

In this work we present some results with combinatorial character for families of convex
cones 1n R". Thus 1n the next section we obtain sufficient conditions in order that the convex
hull of a family of convex cones should be an acute convex cone. In Section 3 we give some
intersection properties for families of convex cones. In the last section, using two results
concerning convex cones, we establish a lower bound for the Ramsey numbers Ry, (m,3n).

2 Acute convex cones

It 1s well known that a pointed convex cone C in R" (more generally in a vector space)
induces a preordering relation < on R" as follows: for x,y € R" we denote x <, y whenever
y—x € C. This relation becomes an ordering if and only if the cone C is acute. This being so,
the following problem arises naturally: establish certain condition under which the convex
hull of a family of convex cone is an acute cone. In this sense we give a first result:

Theorem 1 Let C be a family of convex cones in R" such that for any n+ 1 membered
subfamily B of C, conv (U B) is an acute convex cone. Then conv (U () is an acute convex
cone.
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Proof. To prove that the convex cone conv(U () is acute it is sufficient to show that the
origin is an extremal point of this set, that is 0 ¢conv(U C\ {0}). Supposing the contrary, by
Carathéodory’s theorem there exists

n+1
x€UC\{0}, ;>0 (1<i<n+1), with ) o; =1

=1

such that 0 = opxy + ... + Qs 1 Xp+ 1.

Moreover, the points x; may be supposed from distinct cones C;. Indeed if two of the points
with positive coefficients, for instance x; and x3, belong to the same cone C, then the sum
Oy x] + C2x2 can be replaced by o, where o0 = o + 02 and x = %}11 + %{1,1:2 eC. Ifx; €
C\{0} (1 <i<n+1),then0€conv (U C;\ {0}), hence conv (U C;) is not an acute
cone. This contradicts the hypothesis and cnmpleles the proof. O]

Carathéodory’s theorem is the best possible, in the sense that if the number n + 1 is re-
duced the theorem is no longer true for all subsets of R". However, the theorem can be
sharpened when the attention is restricted to special classes of subsets of R".

Lemma 2 Suppose that A is a nonempty set in R" which satisfies one of the following condi-
tions:

(i) A has at most n connected components.

(i) A is a union of a family of convex sets, all meeting a fixed hyperplane.
Then each point of conv A is a convex combination of n or fewer points of A.

The variant (i) of the previous lemma was obtained by Fenchel [5] for compact sets and
by Bunt [3] without the compactness condition, while the variant (i7) is due to Tverberg [11].

The proof of the following result is similar to that of Theorem 1, using Lemma 2 instead
of Carathéodory’s theorem.

Theorem 3 Let C be a family of convex cones in R" which satisfies one of the following
conditions:

(i) U C\ {0} has at most n connected components.

(ii) There exists a hyperplane H such that HN(C\ {0}) # @ for each cone C € (.
If for any n membered subfamily ‘B of C conv (U B) is an acute convex cone, then conv (U ()
IS an acute convex cone.

Theorem 4 Let C = {Cy,...,C,y} (m > n) be a family of convex cones in R" satisfying the
following conditions:
(i) Foreachi€ {1,2,...,m} card (; > 22,
where (; = {C € C‘\{C} CNCi\{0} ;&ﬂ}
(ii) For each n membered subfamily ‘B of C conv (U ‘B) is an acute convex cone.
Then conv (U C) is an acute convex cone.

Proof. According to Theorem 3 it is sufficient to prove that U C\ {0} has at most n connected
components. The intersection graph of C\ {0} [4], denoted by G(C\ {0}) is the graph whose
vertices are in one-to-one correspondence with the members of ( and in which two vertices
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are Joined by an edge only when the corresponding cones have a common point different
from 0. It is almost obvious that the connected components of the set U C \ {0} are in one-
to-one correspondence with the connected components of the graph G(C\ {0}). Suppose
G(C\ {0}) has p connected components. If x is a vertex of the component G; (1 <i < p)
then G; contains all the vertex incident to x, hence

- 1
card G, > 1=
n+1 n+1
We have
E nm+ 1
= dG; > p——
m Z{car ,_p”_l_l
whence -
< 1 1
p_m_l_](n-i- )< n+
and the proof is complete. L

3 Intersection properties of convex cones

A hyperplane H in R" is said to be homogenous if it contains the origin of the space. The
closure of a set A in R" will be denoted by A.

Lemma 5 IfC is a convex cone for which there exists a homogenous hyperplane H such that
CNH = {0} then C is an acute cone. Conversely, if C is an acute convex cone which either is
closed or has the property that C\ {0} is a relatively open set, then there exists a homogenous
hyperplane H such that CNH = {0}.

Proof. If H is a hyperplane satisfying CNH = {0}, then the set C'\ {0} is contained in one
of the open half-spaces bounded by H and —C\ {0} lies in the opposite open half-space. It
follows that CN(—C)\ {0} = 0.

In order to prove the converse we analyse in turn each of the two variants.

Case 1. Suppose that C is a closed acute convex cone. Denote by B = {x € R" : [|x|| < 1}.
It is clear that the set A =CN (E — %B) 1s compact, hence convA is compact too. Let us show
that 0 ¢€convA. In contrary case there exist m points x; € C\ {0} and m positive numbers o
with 32, o; = 1 such that 0 = 3%, o;x;. Therefore

—X] = Z —II,' eC
i=2 %1

since C 1s convex. By x; € C and —x; € C it follows that C is not an acute cone; a contradic-
tion.

The set B being absorbent, the cone generated by convA (the smallest pointed convex
cone containing convA) coincides with C. By a classical strongly separation theorem, applied
to the disjoint compact convex sets convA and {0}, there exists a linear functional f: R" = R
such that

f{x)> f(0) =0 foreachx € convA.
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Hence f(x) > 0 for each x € C\ {0} and the hyperplane H = {x € R" : f(x) = 0} has the
required property.

Case II. Suppose that C is an acute convex cone such that C\ {0} is relatively open
set. The relatively open convex set C\ {0} and the affine set {0} being disjoint, there is a

hyperplane H containing the origin and disjoint from C\ {0} (see [9, p. 96]) and the proof is
complete. O

Remark 1 The second part of the above lemma is a variant more nuancé of the following
known result (see [2, p. 224], or [9, p. 101]): If C is a convex cone in R" other than R" itself,
then there exists a homogenous hyperplane H such that C is contained in one of the closed
halfspaces bounded by H.

The following lemma is an immediate consequence of Corollary 9.1.3 in [9].

Lemma 6 If C is a finite family of closed convex cones in R" such that conv (U C) is an
acute cone, then conv (U C) is closed.

Theorem 7 Let C be a family of closed convex cones in R" (n > 2) such that for each n
membered subfamily B of C, conv (U B) is an acute cone and N B\ {0} #0. Then N C\

{0} #0.

Proof. Since every two cones have a common point different from 0, the set U C\ {0} is
connected and by Theorem 3 (i), conv(U () is an acute cone.

Let us suppose for the beginning the family of cones ( finite. In this case, by Lemma
6, the set conv(U () is closed. From Lemma 5 we infer the existence of a homogenous
hyperplane Hy disjoint from conv(U )\ {0} . Let H be a translate of Hy which intersects
the set conv(U ) \ {0}. For each C; € C denote by A; = HNC; and let 4 be the family of
all sets A;. Then each C; coincides with the cone generated by A; and conv(U ) is the cone
generated by U A4, Since any n members of the family  have a common half-line, it follows
that each n» members of the family 4 have a common point. By Helly’s theorem there is at
leastan x € N A4, whence {ox:a >0} C N C.

Pass to the proof of the theorem in the case when the family (C is infinite. Let § =
{xeR":||lx|]|] =1} and B = {CNS§:C € C}. Obviously the members of the family B are
compact sets and according to the first part of the proof B has the finite intersection property.
It follows N B # 0, hence N C\ {0} # 0. O

Remark 2 As the next example shows, the hypothesis of Theorem 7 cannot be weakened.
Consider the family of planar cones C = {C},C2,C3}, where C; = {(x,y) € R?:x >0, y> 0},
Cr={(x,y) €R?:x<0,y>0}and C3 = {(x,y) € R* : y =0}. The intersection of any two
cones contains at least one half-line, but conv(C UC>) is not an acute cone and the conclusion
of the theorem is not true.

The assertion of Theorem 7 holds in the situation presented below.

Theorem 8 Let C be a finite familv of pointed convex cones in R" (n > 2) such that for each
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C € C, C\ {0} is open. If for each n membered subfamily B of C, conv (U ‘B) is an acute
cone and N B\ {0} # 0, thenn C\ {0} # 0.

Proof. By Theorem 3 (i) conv (U () is an acute cone. Since the convex hull of an open set
is open [13, p. 122] Lemma 5 is again applicable for the cone conv (U () and further on the
proof 1s similar to the proof of Theorem 7. O

Sandgren [10] and Valentine [13] employed the duality theory of convex cones in order
to obtain some Helly’s type theorems. The same technique will be used further on, obtaining
new combinatorial results for families of cones. Recall that if C 1s a nonempty convex cone
in R” the set

CO={xeR":{x,y)<0,VyeC)

is called the polar of C. Observe that C” is a pointed closed cone. The proofs of the following
lemmas are elementary and they can be found, in close variants, for instance in [1], [9], [10].

Lemma 9 If C is a family of closed convex cones in R" then (M C)G = conv (U C).

Lemma 10 If {C;:i €I} is a finite family of closed convex cones in R" then the following
assertions are equivalent:

((yN{C;:iel}={0}.

(ify conv (U {C?:iel}) =R"

Lemma 11 IfC is a closed convex cones in R", then C (respectively C°) is acute if and only
if CY (respectively C) is n - dimensional.

The following theorems concerning families of convex cones will be obtained by means
of the associated polar cones and of the previous lemmas.

Theorem 12 Let C = {Cy,...,Cyn} (m > n) be a family of convex cones in R" satisfying the
following conditions:
(a) Foreachi€ {1,2,...m} card G > %=, where

G ={Ce C\{C;}:conv (CUC;) #R"}.

(b) The intersection of any n members of C is n- dimensional.
Then N C is n - dimensional.

Proof. We divide the proof into two parts. For the beginning suppose that all cones C; € ( are
closed. Consider the family of the polar cones (° = {C‘0 :C € C} and for each cone C; € C

denote by
(= {C" e O\ {P}: 0N # {0}

By Lemma 10 the condition (a) is equivalent with card ¢’ > 2. From (b), taking into ac-

count Lemma 11, it follows that for any n membered subfamily B° of Y the set conv (U BY)
is an acute convex cone and thus, by Lemma 6, conv(U B) is closed.
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Therefore the family of cones ¢° fulfils the conditions of Theorem 4. Applying this
theorem we obtain that conv (U Y } i1s an acute convex cone. Moreover, by Lemma 6 this
cone 1s closed. Using once again Lemmas 9 and 11 it follows that N C is # - dimensional.

Pass now to the general case, removing the closedness condition imposed to the cone C;.
If conv(CUC;) # R", taking into account Remark 1, there exists a closed homogenous half-
space S which contains conv(CUC;). Then conv(CUC;) will be also contained in S, hence

conv(CUC;) # R”. Thus the family = {C\,...,Cn} satisfies the conditions (a), (b).From
the first part of the proof N (_j‘ is n - dimensional, hence being a convex set it has nonempty

interior. So there exits an open ball B such that BcCnN E‘ Since, for a convex set A in a
topological vector space int A =int A [13, p.123], foreachC € C wehave BCint CC C. It
follows B C N C, whence N C is n - dimensional. O

Theorem 13 Let C be a family of convex cones in R" (n > 2), such that for each n membered
subfamily B of C, N ‘B is an n - dimensional cone and conv (U B) # R". Then conv (U () #
R”.

Proof. As in the previous proof let ¥ = {(10 :C € C} . Itis easy to check that the hypothesis
of the theorem can be reformulated as follows: for each n membered subfamily BY of (Y,
conv(U BY) is an acute cone and N B\ {0} # 0. By Theorem 7, N 9\ {0} #0. If b €
N ¢\ {0} it follows that

CC{xeR": (x,b) <0} foreachCe€ _,

whence
conv (U C)C {xeR": {x,b) <0}

and the proof is complete. O

4 A lower bound for the Ramsey numbers R», (m,3n)

For a nonempty set M and a positive integer kK <card M, we denote by & (M) the family of
all subsets with k elements of M. We recall that, for positive integer, k, m;, m; the Ramsey
number Ry (m;,m;) is the minimal integer r with the following property:

if M is a set with r elements and (B, B} is an ordered partition of the family P (M),
then for an index i € {1,2} there is a subset M; of M with cardinality m; such that all the
subsets with k elements of M; are contained in B;.

The problem of determining the Ramsey number is far from being solved. The literature
contains some partial solutions to this problem and different lower or upper bounds for the
Ramsey numbers (see [6]). In this section we establish a lower bound for the Ramsey numbers
Roy(m,3n), m > 2n.

The two following lemmas will be helpful. The first is a classical result (see [7] for a
historical account). The second is a result of Katchalski [8].

Lemma 14 Let C be a finite family of pointed convex cones in R" with card C > 2n. If
N B # {0} for any n membered subfamily ‘B of C, then N C # {0}.
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Lemma 15 Let C be a family of m pointed convex cones in R" (m > n) such that:

(i) N C = {0},

(if) N B # {0} for any n membered subfamily ‘B of C.
Then there exists a n+ [’"g”] membered subfamily X of C such that 0 X # {0} . Moreover,
for any positive integers n < m, n+ {’"1_ ”] in the above statement cannot be replaced by
n [252] + 1.

Theorem 16 If m and n are positive integers such that m > 2n, then Ry, (m,3n) > 2m —n.

Proof. By the last part of Lemma 15 there exists a family C of 2m —n — 1 convex cones such
that
(1) N B # {0} for any n membered subfamily B of C;
(2) N K = {0} for any m membered subfamily X of C.
We partition the set P, (C) of 2n membered subfamilies of C into two classes (B, B>)
such that 8 constitutes the class of all 2n membered subfamilies B for which N B # {0}.
Supposing by way of contradiction that Ry, (m,3n) < 2m —n — 1, then by the definition of
the Ramsey numbers, it would follow that there exists a subfamily X of C having one of the
following properties:

(a) K has m members and any 2n membered subfamily of X belongs to °8;. By Lemma
14 we get N K # {0} which contradicts (2).

(b) X has 3n members and any 2n membered subfamily of B of X belongs to B, i.e.
N B = {0}. On the other side, in view of (I}, Lemma 15 implies that X contains a 2n
membered subfamily B such that N B # {0} . Thus we arrived again to a contradiction and
the proof is complete. U
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